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Abstract 
 

Assuming network transfer is the dominant factor of 
communication, current communication models estimate 
only network related delays and are inadequate to 
address other performance factors such as memory 
access delay. Modern computer architectures employ 
complex hierarchical memory systems to compensate for 
the performance gap between processor and memory, 
nonetheless significant delays occur when transmitting 
non-contiguous data. This study revisits the common 
assumption that memory access patterns are a negligible 
factor of communication. Our experimental results show 
non-contiguous memory access may increase the 
communication cost multi-fold in a cluster environment, 
confirming the need for rethinking MPI implementation 
and parallel algorithm design, and motivating discussion 
of a memory-aware communication model. 
 
 
1. Introduction 
 

The processor–memory performance gap [3] is a 
bottleneck for high performance computer systems. Many 
architectural advances in memory hierarchy design have 
targeted this gap in an effort to increase the effective 
bandwidth of memory access. Techniques that overlap 
latency, reduce cache misses and increase the instruction 
throughput of the processor are common in commodity 
architectures.  Implementations include features such as 
larger and faster hierarchical caches, blocked data 
transfer, non-blocking transfers, superscalar and out-of-
order execution, and branch prediction. Despite these 
technical advances, memory performance remains the 
dominant contributor to execution time in sequential 
codes. 

 
The communication performance of parallel programs is 

not immune to the effects of memory latency especially in 
the case of non-contiguous message communication, where 
a message distributed at various locations of memory. Non-
contiguous message communication is common in parallel 
computing. However, assuming network is the dominant 
factor of communication, memory factor has been largely 
ignored in current communication models. Our 
experimental results show that recent technology advances 
have changed the communication cost distribution. Memory 
access pattern has become an increasingly important factor 
of communication. Non-contiguous communication may 
increase communication overhead by multi-fold in a cluster 
environment. The high cost of non-contiguous 
communication requires a rethinking of parallel algorithm 
design, MPI [11, 9] implementation, and calls for a memory 
aware communication model. 

Message passing of non-contiguous data types is 
common in parallel programming. The spatial locality of 
data impacts the performance of parallel algorithms such as 
the ocean grid solver and Barnes-Hut [6] and other domain 
decomposition based algorithms. The ocean grid solver 
exchanges data along horizontal and vertical boundaries. In 
many domain partition based solutions the boundary data is 
contiguous and spatial locality is optimal in the cache. 
When the boundary is non-contiguous (e.g. column 
boundary in a row-ordered language implementation), the 
amount of cache misses increase based on the contiguity of 
the data. The Barnes-Hut application initially operates on 
adjacent particles with good spatial locality for 
communication. As the simulation progresses, particles 
travel through physical space decreasing the spatial locality 
of communication causing additional cache-related delays. 
Another example, transmission of a sub-matrix may require 
a series of non-contiguous accesses incurring more memory 
latency than contiguous accesses of the same size. 



Transmissions of data in such cases often utilize the 
message-passing model, a widely used and accepted 
parallel programming interface [11]. 

To quantify the impact of non-contiguity on 
communication, we study the total cycles, cache misses, 
and load/store instructions for contiguous and non-
contiguous MPI point-to-point communication in this 
research. In the remainder of this paper, we discuss 
previous attempts at modeling communication 
performance. Next, we describe the details of non-
contiguous message communication in MPI. Section 4 
addresses the effects of memory access on a parallel 
application’s point-to-point communication performance. 
Section 5 describes the experimental setup and finally, in 
Section 6 we present our experimental results. 

 
 

2. Related work 
 

Much research exists regarding the communication 
cost of message passing for contiguous data. Dongarra et. 
al. [18] provides a good overview of message passing 
performance issues and measurements. Gropp and Lusk 
[8] provide the mpptest tool for measuring MPI message 
performance accurately.  This tool is currently part of the 
MPICH distribution [20] and through experimentation can 
help tweak parameters in MPI implementations for 
specific platforms. Few studies have targeted the 
performance of non-contiguous data. Ashworth [21] 
provides an application specific benchmark for non-
contiguous communication in regular-partitioned, grid-
based, distributed finite difference models.  This work is 
solely empirical and contextually specific, drawing no 
general conclusions regarding non-contiguous 
communication performance for message passing 
applications. 

Existing parallel communication models focus on 
network interface communication delay. LogP [5] is a 
popular, realistic model for parallel computation, which 
provides a basis for many succeeding models. L is the 
upper bound for the latency, or delay in communicating a 
message from its source network buffer to the destination 
network buffer. o, the overhead, is the amount of time the 
processor is busy during the transmission or reception of a 
message. g, the gap, is defined as the minimum time 
interval between consecutive message receptions. P is the 
number of processor/memory modules. The LogP model 
is accurate for fixed-size, small messages. LogGP [1], 
where G represents the gap per byte, extends LogP for 
systems that provide hardware support for long messages. 
Both models ignore network contention since it is a 
difficult factor to quantify in estimates of point-to-point 
communication. For the special case of active messages, 
contention is quantified as the time an interrupt spends 

queued at the target processor.  This motivates an additional 
C parameter for contention, the LoGPC model [2]. Model 
accuracy and complexity increase with the number of 
parameters. 

The above models approximate the communication 
latency over the network quite well. None of them 
addressed memory access delay at the communication end 
points. In our effort to project the inevitability of 
introducing a new communication model, we study the 
effect of memory access time as a parameter in this paper. 
Moreover, previous models and measurements average 
overhead at the sender and receiver using half of round-trip 
time as the total communication cost. Since the overhead 
depends on the message data distribution at the sender and 
receiver, overhead may be asymmetrical. Round-trip time 
measurements are thus imprecise for non-contiguous data. 
They are also imprecise in the context of NUMA 
architectures, where the memory access delay is not same 
for all the processors. 
 
 
3. Non-contiguous message passing 
communication in MPI 
 

Two methods in MPI can be used to communicate non-
contiguous data. The first is to manually pack all the blocks 
of data into a contiguous buffer at the sender node and send 
this data block to the receiver. At the receiver the user has 
to manually unpack to retain the structure of the data. Here 
after this method is termed as “user pack/unpack” method in 
this paper. This has the disadvantage of requiring additional 
memory-to-memory copy operations at both nodes even 
when the communication subsystem has scatter-gather 
capabilities. To reduce tedious job of sending non-
contiguous data, MPI implementation provides a 
mechanism called “derived datatypes”. Derived datatypes 
are a means to describe layouts of data in memory. A 
general datatype is constructed as a sequence of basic 
datatypes and a sequence of integer displacements. The 
basic datatypes are MPI_INT (integers in C), MPI_FLOAT, 
MPI_DOUBLE, and MPI_CHAR. The displacements need 
not be positive, distinct or in increasing order. A type map 
is the combination of data types and displacements. This 
type map, together with a base address buf, specifies a 
communication buffer: the communication buffer consists 
of n entries, where the i-th entry is at address buf + dispi. 
[11] 

In MPICH implementation, type map of a derived data 
type can be represented as a data type tree. Leaf nodes 
correspond to basic datatypes and are characterized by their 
size in number of bytes. The internal nodes correspond to 
derived types, and are described by their repetition count 
(for vectors), their extent, size and their children with 



associated displacements. The number of children 
depends on the type of the node. For instance, a structure 
or indexed type has as many children as there are 
components in the structure, while a vector has only one 
child.  

The tree representation suggests how a type map can 
be reconstructed and used when packing an instance of a 
derived datatype to a communication buffer. By a simple 
recursive procedure the tree is traversed from root to 
leaves computing the correct offsets in both user and 
communication buffers during the descent. When a leaf is 
reached copying of the leaf data takes place. The 
repetition count of each internal type node determines 
how many times this node’s sub-trees are visited. The 
overhead with the use of derived datatypes lies in 
traversing the data structure that stores type map. Traff 
[16] makes an effort to reduce this recursive traversal of 
the tree data type in his ‘flattening on the fly’ technique. 
In any algorithm, the overhead consists of the following 
elements:  

 
1. Time to traverse the data structure to find the 

next displacement. 
2. Time to calculate the next memory block 

location 
3. Access that memory location, which may contain 

cache miss penalty due to the large message and 
page faults or the misses due to the spatial 
locality of the data. 

All the non-contiguous memory communication 
operations can be divided into three types. [8] 

 
1. Fixed length block of data with fixed stride 
2. Variable length block with fixed stride 
3. Fixed length block with variable stride. 

In our experiments we used the first method, where the 
fixed length data with fixed stride is passed between two 
processors.  

 
 
4. Overhead in message passing 
 

In parallel program communication of non-contiguous 
data, cache misses cause additional non-overlapped stall 
time. Cache misses are related to the message size and the 
data distribution. In our analysis, we study the memory 
costs in message-passing point-to-point communication.  
Our observation projects that the send/recv time of a 
message in message passing communication is a 
combination of startup time, time to copy the data from 
application memory to either the buffer or to the buffer on 
network interface card from where the data would be 
transferred. Portions of latency will be overlapped and 
must be removed. 

 
Tsend/recv = tst + tac + tmem + tbuf – tol                                (1) 

 
tst is the startup time for communication such as sending a 
request to start the communication. tac is the time to 
calculate the address of the memory location from where 
the next data block has to be copied. This cost is significant 
when the data is non-contiguous. tmem is the cost of the 
copying the message from the sender’s application memory 
to the local/NIC buffer or from the receiver’s local/NIC 
buffer into its application memory. This includes the cache 
miss penalty. If the message size is greater than the buffer 
space available, the sender blocks (assuming blocked 
communication) until the buffer is free (tbuf). tol is present if 
there is any overlapping between the above mentioned 
times. Due to the latest scalar processing technology more 
than one instruction can be processed within one cycle. In 
that case some overlapping would exist where some of tac 
can be overlapped by tmem. This is a simple formula of costs 
that contribute to the overhead at an end point. Finding out 
each cost is the real problem for communication model.  

The major factor of variation in the above formula is 
memory access time for the distributed data. In this case, 
MPI calculates the memory address of the next block when 
derived datatypes are used. Non-contiguous memory 
accesses cause cache misses where the resulting penalties 
that constitute additional overhead. In this paper, we 
conduct exhaustive experimentation to project the amount 
of memory effect based on non-contiguity. Overhead costs 
may be asymmetric. For example in a row-ordered 
programming model, a column of a matrix sent is received 
as a row at the receiver. The memory access patterns differ 
at send/receive ends of transmission so the memory access 
overhead is different for the same size message. In Equation 
1, the send and receive time are same when data is 
distributed similarly.  

As mentioned in section 3, non-contiguous messages can 
be passed using MPI specified derived datatypes, and user 
pack/unpacking method, where user manually packs the 
data at the sender and unpacks at the receiver. The tradeoff 
is between the extra memory, tedious packing/unpacking 
job of the user pack/unpack method and the degraded 
performance of derived datatypes. In user pack/unpack 
technique, the time to calculate the next memory location is 
easy as the user provides those values. The cost of derived 
datatypes depend on how many times it needs to access the 
tree data structure that contains the block information and 
stride information of message.  

The other overhead includes copying blocks of data into 
a separate contiguous memory location. The performance of 
long and contiguous messages is better as they try to avoid 
the use of buffering between the sender user memory and 
receiver user memory. In that way, the additional memory 
copying time is saved. Current implementations of derived 



data types are still using the buffer before sending a 
message, which increases the communication overhead. In 
DSM machines such as SGI Origin 2000, the message is 
directly copied into the shared memory, and the receiver 
accesses that directly. 

 
 
5. Experimental setup 
 
5.1. SGI Origin 2K Architecture 
 

Distributed Shared-Memory (DSM) multiprocessors 
provide the convenience of shared memory programming 
with a scalable design. The SGI Origin 2000 at NCSA 
utilizes a cc-NUMA architecture running the IRIX version 
6.5.14 operating system. The interconnection network for 
128 processors is a 5th degree hypercube with 4 
processors (2 nodes) per router. High-speed, dedicated 
Craylink interconnects link nodes. The achievable remote 
memory bandwidth on Craylink interconnect is 
624MB/sec in each direction, which adds a 165ns off-
node penalty and 110ns per hop. As long as the 
communication is between nodes within a hypercube, per 
hop latency is zero, but the communication to an outer 
cube node causes increase in latency. 

A directory based tree protocol maintains cache-
coherence. A complex memory hierarchy reduces the 
impact of memory latency. Each node contains two MIPS 
R10000 processors [12]; each running at 195MHz, and 
32kB two-way set associative, two-way interleaved 
primary (L1) cache. An off-chip 4MB secondary unified 
cache is present as well. Cache and page block sizes are 
32 and 4096 bytes respectively.  Load misses at L1 and 
L2 were measured as 12 and 90 cycles respectively. The 
MIPS R10000 is a four-way superscalar RISC processor. 
The machine used in testing has 48 195MHz MIPS 
R10000 processors, with 14 GB main memory. The 
available local memory access bandwidth is 680MB/sec in 
each direction. SGI O2K machine is selected as our 
platform because of the availability of library to access the 
hardware counters. As our study is mainly concentrating 
on the effect of local memory references this can be 
generalized for commodity cluster architectures.  

 
 

5.2. Hardware counters 
 

All the commodity processors provide hardware 
performance counters to measure and validate the 
processor architecture. The MIPS R10000 processor has 
two on-chip 32-bit registers to count 30 distinct hardware 
events. In our experiments we have measured the events 
related to total cycles (event 0), graduated instructions 

(event 17), memory data loads graduated (event 18), 
memory data stores graduated (event 19), L1 cache misses 
(event 25), L2 cache misses (event 26). The overhead of 
cache misses on SGI Origin 2000 is measured [mucc97] as 
1 cycle for register access, 2-3 cycles for an L1 cache hit, 
7~13 cycles for an L1 cache miss, 60~200 cycles for an L2 
cache miss. This shows that the overhead increases 
massively if a L2 cache misses occur. We have chosen these 
counters to study the memory effect on communication as 
they reflect the memory operations for any processor. 

 
 

5.3. Performance testing program 
 

We used a program, which is similar to mpptest [8] 
programs that measures the performance of contiguous 
blocking, non-blocking and non-contiguous message 
communication. In this program we inserted hardware 
counter measuring routines before and after each MPI 
communication calls to measure number of cycles, cache 
misses, total instructions, load/store instructions. Messages 
are passed between two processors. All these tests are 
performed on NCSA’s SGI Origin 2000 machine with the 
environment specified earlier in this section. In non-
contiguous message passing program, the sender processor 
sends a block of a matrix, with various strides for various 
message sizes. We defined a data type called columntype, 
which collects the blocks, each of block size 1, which are a 
stride apart. We measured the primary cache misses, 
load/store instructions to show how memory references are 
affecting communication performance with data distribution 
and message size.  

 
 

6. Results and analysis 
 

Our experiments are divided into three categories.  
 

1. Blocking communication overhead of contiguous 
and non-contiguous data, with various message 
sizes ranging from 64bytes to 1024kB. 

2. Blocking and non-blocking communication cost 
for contiguous and non-contiguous data, with 
various message sizes 

3. Blocking communication overhead of non-
contiguous data, with the use of derived datatypes 
and user pack/unpack method. 

We measured the primary cache misses, load/store 
instructions to show how memory references are affecting 
communication performance with data distribution and 
message size.  

 
 



6.1. Contiguous message vs. Non-contiguous 
message passing 

 
Fig. 1 shows how the number of cycles is increasing 

with message size at sender processor, with a fixed stride 
of 16. When the message size is less, most of the message 
is within the cache and the number of cache misses is less. 
Increase in the message size, causes more memory 
operations (load/store) and when the total message size is 
more than the cache memory available, cache misses 
increase. As explained in the section 4, with the number of 
cache misses increase, the amount of memory stall time 
increases affecting communication time. Until the 
message size is below 256kB increase in number of cycles 
is below the proportionate factor due to the processor’s 
pipelining. After 256kB the sender starts blocking to wait 
for a matching receive before sending a message. That 

causes extra waiting time at the sender. In a separate 
experiment we measured the number of load/store 
instructions. Number of loads and stores increase with the 
message size, which proves that the overhead at a 
sender/receiver is a parameter of memory operations. The 
number of load and store instructions also increases below 
the proportionate factor with the message size until the 
explicit blocking at the sender starts. When the buffering 
starts load/stores increase more than the message size 
increment factor.  

The reasons for extra cycles in the case of non-
contiguous message passing are increase in cache misses 
and blocking property of MPI blocking send. We 
investigated further how cache misses are affecting the total 
number of cycles. Fig. 2 shows the number of cache misses 
information. As we have stated earlier, after 256kB 
message, the number of cache misses are increasing at a 
greater number. Due to this the total cost of communication 

Fig. 1 Number of cycles for contiguous vs. non-contiguous message passing 
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from sender to receiver cannot be considered as a constant 
as previous models are assuming. We have investigated 
further into the next level of cache, secondary cache to 
observe the contribution at that hierarchy level. Fig. 3 
shows how the secondary cache misses affects the local 
communication. Each secondary level cache misses costs 
approx. 200 cycles, which means the total cost increases 
massively with secondary miss. The misses are very high 
at larger message sizes.  
 
 
6.2. Blocking vs. Non-blocking 
 

In our experiments, we have measured the total number 
of cycles and primary cache misses in order to study the 
impact of memory on these communication patterns. 
MPI_Send is used for blocking send and MPI_Isend is 

used for non-blocking communication. We observed that 
until the message size is 64kB, the difference between 
blocking and non-blocking communication is insignificant. 
But from 256kB, the communication is insignificant. But 
from 256kB, the blocking communication overhead is very 
high compared to non-blocking communication for both 
contiguous and non-contiguous message data.  

Fig. 4 shows that the number of cycles or cache misses 
for blocking communication are almost equal or a bit higher 
than that of non-blocking communication. But, for non-
contiguous messages, the ratio of blocking to non-blocking 
communication overheads is 3 and 10 at message sizes, 
256kB and 1GB. This is because, blocking send starts 
buffering at this point and it causes extra memory copy 
operations, which is not necessary for non-blocking send. If 
the buffer cannot accommodate to store the entire message, 
then the message is sent in parts, which add up to the buffer 
wait time. This illustrates the need of including buffer 
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waiting time as a factor of communication overhead. The 
increase of memory effect with message size depends on 
the buffering protocols and the implementation of the 
communication calls. 

 
 

6.3.  User pack/unpack vs. Derived Datatypes 
 

In other experiments, we have measured the number of 
instructions, loads, stores and the primary cache misses 
for contiguous and non-contiguous message sending, with 
varying stride and blocking communication. In non-
contiguous communication, we used pack/unpack method 
such as PVM, and MPI derived datatypes. But derived 
datatypes proved to have more overhead cost, which 
degrades the performance. We observed that the increase 
of overhead with the stride is not very high. But the 
difference in memory effect between contiguous and non-
contiguous communication is large. The difference 
between pack/unpack method and derived datatypes 
method is also very high. This shows that the derived 
datatypes are increasing the overhead due to the 
displacement computation. In derived datatypes method, 
the stride effect starts increasing when the stride is more 
than the block size of the cache. 

Measurements for sending a contiguous block of 4 kB 
are: 43,230 cycles, 9,058 graduated instructions, 3,119 
load instructions, 2,390 store instructions, and 1231 L1 
Misses. Table 1 and Table 2 illustrate the number of 
memory parameters for the point-to-point communication 
sending performance of non-contiguous data in two 
methods, the MPI based derived datatypes and user 
packing (packed manually) method. As explained earlier, 
in MPI derived datatypes, the data is directly copied from 
the various addresses dynamically. In user packing, the 
user packs all the non-contiguous data into one buffer and 
sends it. All the counters, (cycles, graduated instructions, 
loads and store instructions) are very high for derived 
datatypes method. Moreover the overhead is increasing 
with the stride (16, 32, and 64) gradually. This increment 
factor depends on cache size and its block size. With the 
user packing the increase is very small, which is almost 
negligible. According to our measurements, the ratio of 
performance with MPI derived datatypes and user packing 
is at least 4. This increases with the stride, as the user 
packing doesn’t cost any further increase with the stride. 
This is mainly due to the excessive cost to compute the 
next data block in non-contiguous data using derived 
datatypes. This is the tradeoff between the user’s effort to 
pack and the performance. The measurements for larger 
message sizes proved the same, that the derived data 
communication cost is far greater than the user packing 
method, for fixed block size and varying message size 
non-contiguous data. Based on these results we state that 

the time to traverse the tree data type to obtain the 
displacements is pretty high. If the data structure that stores 
the displacements is made simple, then the performance 
could become as good as that of the user pack/unpack 
method. In both cases the number of memory references is 
very high compared to that of sending a contiguous 
message. This incites a necessity of a communication model 
that is aware of memory references. A further study is in 
progress to break down the overhead costs, which enables 
to observe the distribution of tree traversal cost. 
 
 
7. Conclusion 

 
It was believed that data allocation is not a noticeable 

factor of communication in a cluster-computing 
environment. All the existing parallel programming models 
consider cost of memory access either constant or 
negligible. Through our experimental testing, and case 
studies, in this research we have shown that memory 
operations are a major factor in communication cost at a 
sender or a receiver, especially when data is non-
contiguous. In blocking communication, the number of 
memory operations increase proportionately with message 
size and non-contiguity until there is no blocking. With the 
added blocking the overhead cost increases drastically. 
Experimental results show that non-contiguous data 
allocation can increase communication overhead ranging 
from 4 to 10 times. The ratio of blocking to non-blocking 
communication overheads is 3 to 10. Performance with user 
packing is better than MPI derived datatypes by 3 to 8 
times. This is proved by the variation of number of cycles, 
cache misses, load/store instructions. As the performance 
evaluation of parallel applications give great insight into its 
design to parallel programmers, it is important to project the 
communication overhead at seder/receiver, so that the 
design can be improved.  

This drastic performance degradation of MPI leads many 
programmers to use their own functions instead of using 
MPI. It's the responsibility of performance analysts to 
provide convenience to the programmers, so that a 
consistent performance is achieved and the cost of hiring 
highly knowledgeable programmers. We have introduced 
the concept of memory-aware communication to emphasize 
the data allocation effect on communication. This study 
proves that there is a necessity of introducing a new 
communication model that deals with these memory 
references. MPI implementation is a major success for the 
message-passing paradigm. MPI provides a convenient way 
to handle the non-contiguous messages. The current MPI 
implementations do not fully aware the data access factor in 
communication. These need to be re-engineered and 
improved by using better flattening techniques. 



8. Future work 
 
 We are currently developing memory aware 

communication model for parallel computing. We 
practically applied our techniques to two architecturally 
distinct systems, an IA32 Beowulf and the MIPS-based 
SGI Origin 2000.  Using that model we accurately (within 
+80% and –60%) predicted the cost of regular packing 
and unpacking algorithms for varying data types and 
architectures. Our other objective is to improve the 
performance of MPI derived datatypes implementation, by 
observing memory operations. This work is progressing in 
collaboration with Argonne National Laboratory. 
Currently we are working on breaking down the costs 
defined in equation (1). Based on these observations of 
our experiments we have developed Memory-logP model, 
which predicts parallel application communication latency 
considering data access delay. l parameter of Memory-
logP model is the additional cost caused due to the non-
contiguous accesses. More details about this model can be 
found in [21].   
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Stride Cycles Graduated 
Instructions 

Loads Stores L1 Misses 

16 570,943 651,383 114,292 55,886 5,954 
32 712,683 726,577 132,641 132,577 8,190 

64 1,018,968 874,800 167,225 76,208 12,688 

Table. 1 Hardware counter values for non-contiguous messages sent using 
derived datatypes 

Stride Cycles Graduated 
Instructions 

Loads Stores L1 Misses 

16 145,963 128,106 32,132 18,839 1,779 
32 140,150 128,292 32,063 18,903 1,797 

64 149,629 128,782 31,438 19,031 1,947 

Table. 2 Hardware counter values for non-contiguous messages sent using 
user pack/unpack 


