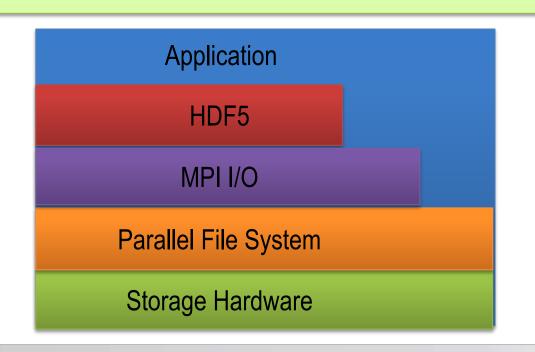


Auto-tuning of Parallel I/O Parameters for HDF5 Applications


Babak Behzad^{1,3}, Joey Huchette^{2,4}, Huong Luu^{1,3}, Ruth Aydt¹, Suren Byna², Mohamad Chaarawi¹, Quincey Koziol¹, Prabhat², Yushu Yao²

¹The HDF Group ²Lawrence Berkeley National Laboratory ³University of Illinois at Urbana-Champaign ⁴ Rice University

MOTIVATION

- I/O performance is a major bottleneck for many HPC applications.
- I/O tuning is a very difficult yet important problem.
- Significant improvement can be achieved when parameters are set appropriately.
- Multiple layers of the I/O stack, each with its own parameters to be tuned, make the search space immense.
- Pruning search space requires expertise and heuristics.

FRAMEWORK DEVELOPED

H5Tuner: Reads configuration file and adjusts I/O parameters without recompiling the application.

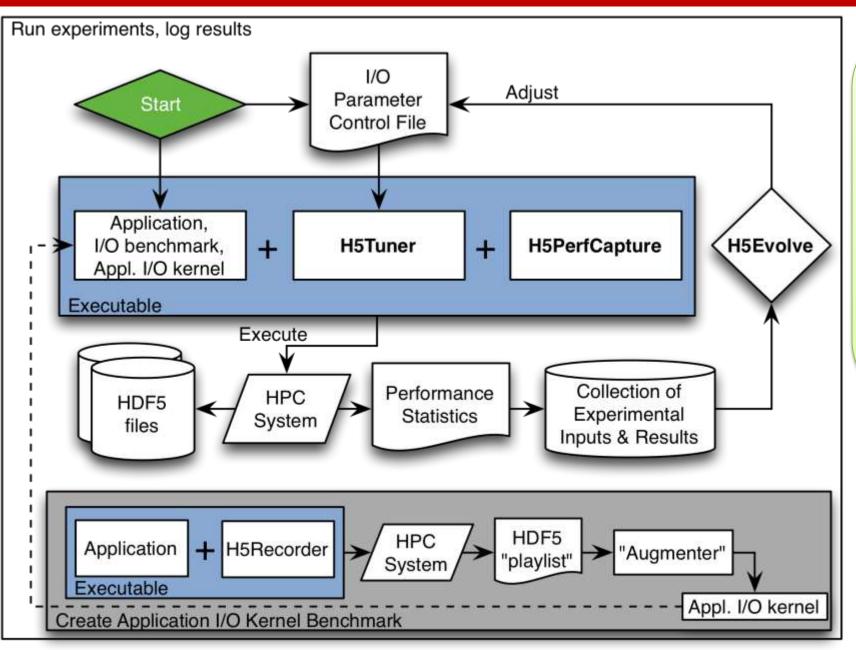
- ♦ Stripe count (Lustre): Number of OSTs over which a file is distributed.
 ✓ 4, 8, 16, 24, 32, 48, 64, 96, 128, -1=all OSTs
- ♦ Stripe size (Lustre): Number of bytes written to an OST before cycling to the next.
 ✓ 1, 2, 4, 8, 16, 32, 64, 128 units = MB
- ◆ CB nodes (MPI-IO): Maximum number of aggregators for collective buffering.
 ✓ 1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256
- ♦ CB Buffer Size (MPI-IO): Size of buffer for collective I/O. Currently set to stripe size.
- ♦ Alignment (threshhold, boundary) (HDF5):
 Objects >= threshhold size aligned to
 N*boundary address in HDF5 file.
 - √ (no alignment), (0,4), (0,16), (0,64), (0,256), (1,4), (1,16), (1,64), (1,256), (4,16), (4,64), (4,256), (16,64), (16,256)
 units = KB

Hopper: 512 cores; 32 nodes

Hopper: 128 GB, 130 GB, 128 GB

Evolution of GA fitness evaluation; VPIC-IO on Ranger

Evolution of CB Nodes parameter; VPIC-IO on Ranger


Configurations used for results shown:

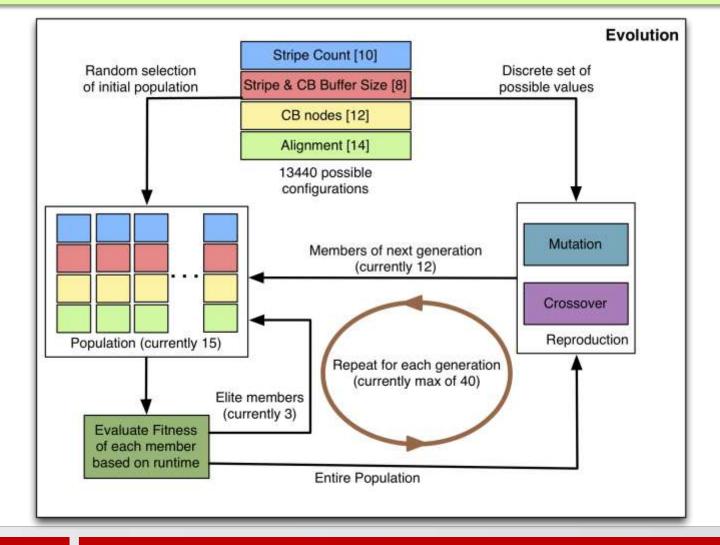
Amount of data written: (VPIC, GCRM, VORPAL)

Ranger: 512 cores; 32 nodes;

Ranger: 128 GB, 163 GB, 61 GB

224

H5PerfCapture: An extension to Darshan* that records performance data for application, HDF5, and MPI-IO.


*www.mcs.anl.gov/research/projects/darshan/

Results used to further investigate I/O performance.

H5Evolve: An application built on Pyevolve* that uses Genetic Algorithms to narrow the huge space of possible configurations.

http://pyevolve.sourceforge.net

- Uses crossover and mutation functions to intelligently search for well-performing I/O parameter sets.
- Other approaches for pruning space could be plugged into framework.

EXPERIMENTAL SETUP

- Hopper: NERSC's Cray XE6 system peak performance of 1.28 PFLOPS/sec, 153,216 compute cores, 156 OSTs

 ✓ Peak I/O Bandwidth: 35 GB/sec
- Ranger: TACC's Sun Constellation Cluster peak performance of 579 TFLOPS,
 62,976 compute cores, 160 OSTs
 ✓ Peak I/O Bandwidth: 35 GB/sec
- VPIC-IO: I/O replay of Vector Particle-In-Cell (VPIC), a plasma physics code with 1D
- VORPAL-IO: I/O replay of VORPAL, a particle accelerator code with structured
 I/O with different dimensions on each rank.
- GCRM-IO: I/O benchmark for Global Cloud Resolving Model (GCRM), a global atmospheric model with structured I/O with the same dimensions on all ranks.

RESULTS

Tuned Parameters, Runtimes, and Speedup of Tuned over Default

System	Ranger			Hopper		
Application	VPIC-IO	GCRM-IO	VORPAL-IO	VPIC-IO	GCRM-IO	VORPAL-IO
Parameter	Tuned Sets of Parameters Identified by H5Evolve					
Stripe Count	96	96	32	64	96	96
Stripe Size CB Buffer Size	128 MB	1 MB	8 MB	2 MB	4 MB	32 MB
CB Nodes	48	64	64	24	128	48
Alignment (thrsh, bndry)	4 KB, 16 KB	0 KB, 64 KB	0 KB, 256 KB	0 KB, 64 KB	0 KB, 4 KB	16 KB, 256 KB
Description	Measured Runtime (seconds)					
Default Parameters	417.50	498.21	391.72	320.32	472.18	425.76
Minimum Observed	127.92	84.29	103.99	18.84	54.99	68.37
Maximum Observed	1205.89	1485.36	959.51	1183.63	1968.91	1277.85
Tuned Set	127.92	84.29	103.99	19.23	55.61	68.37

Contact Information: koziol@hdfgroup.org

3.77x

5.91x

16.66x

8.49x

6.23x

CONCLUSIONS AND FUTURE WORK

Conclusions:

- Speedups of 3.3x 16.7x were measured using auto-tuned I/O parameters compared to default values for three application-based I/O benchmarks on two HPC systems
- Converged parameter sets differ across applications and systems.
- Auto-tuning can improve parallel I/O performance without hands-on optimization

Future Work:

- Conduct additional experiments with more codes
- Further refinement of GA methods used
- Automatically create I/O kernel benchmarks from full applications by developing H5Recorder

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some architectural concepts were drawn from I/O benchmarking work with LLNL under Contract B592421. H. Luu is partially supported by NSF grant 0938064. This research used resources of the National Energy Research Scientific Computing Center.

Speedup

3.26x