
Object-focused Storage and Management of Science Data

Suren Byna

Lawrence	Berkeley	National	Laboratory

sbyna@lbl.gov

FlexScience 2022
July	1st,	2022

mailto:sbyna@lbl.gov

Credits

1

• Contributions from:
• PDC (Proactive Data Containers) project team

• Houjun Tang, Kimmy Mu, Jerome Soumagne, Richard Warren, Teng Wang,
Bin Dong, François Tessier, Quincey Koziol, Qiao Kang, Marc Snir, Chen
Wang

• ExaHDF5 / ExaIO team
• Suren Byna, Scot Breitenfeld, Venkat Vishwanath, Houjun Tang, Qiao Kang,

Jean Luca Bez, Huihuo Zheng, John Mainzer, Quincey Koziol*, Neil Fortner,
Dana Robinson, Jordan Henderson, Jerome Soumagne, Richard Warren,
John Mainzer, Neelam Bagha, Elena Pourmal, Michela Becchi, John Ravi,
Wei Zhang, Yong Chen, Kathryn Mohror, Sarp Oral, Adam Moody, Cameron
Stanavige, Michael Brim, Seung-Hwan Lim, Ross Miller, Swen Boehm

Scientific data storage and access - Current scenario

2

Simulations Experiments

Observations

Files

Parallel file systems,
archives

Object stores, Data
lakes, warehouses, etc.

File systems, archives,
etc.

Cloud
High performance
computing (HPC)
centers

Data repositories

Data
producers

Data
movement

Data
storage

Data
movement

Files

HPC centers

Laptops

Data to insight (visualizations, analyses)

Cloud
Inefficiency
and burden

Outline of this talk (focusing on HPC systems)

• Basics, trends, challenges, and requirements

• Object-focused data management

• Optimizations in HDF5

• Proactive Data Containers (PDC) data management runtime system

• Future research directions

3

I/O software stack - Several layers with inter-dependencies

4

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Architectural trends impacting I/O - deep memory and storage hierarchy

5

High bandwidth memory (HBM)

CPU / GPU / FPGA memories

Storage class memory

Node-local SSD storage

SSD-based storage system

HDD-based storage system

Long-term storage (Tape,
remote data repositories)

Ca
pa
ci
ty

Pe
rf
or
m
an
ce

In
 c

om
pu

te
 n

od
e

O
ff

co
m

pu
te

 n
od

e

Ra
nd

om

ac
ce

ss

Fi
le

-b
as

ed
 a

cc
es

s

Co
st

Trends in computing devices

• Heterogeneous processing devices
• CPUs
• GPUs
• FPGAs
• Special purpose accelerators
• …

• Massive concurrency
• Locations of data generation and consumption

• Traditional: In compute nodes
• Trends: In network, in storage, and at the edge

6

Image from D. Vasudeven, via J. Shalf,
Extreme Heterogeneity workshop report

Application I/O Trends

• HPC simulation and analysis
• Parallel applications storing or retrieving data
• checkpoint, restart, and analysis - mostly defensive I/O
• Partitioned regions of data in a large data object
• Each process accesses (writes or reads) a single or multiple regions
• Typically non-overlapping (there may be some overlapping at region boundaries)
• Number of files: Single shared file (N-1), file-per-process (N-N), a few sub-files (M-N)
• APIs: POSIX, MPI-IO, HDF5, etc.

7

P0 P1 Pn-1 Pn…

file.0

1 Writer/Reader, 1 File

P0 P1 Pn-1 Pn…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1 Pn-1 Pn…

n Writers/Readers, 1 File

File.1

P0 P1 Pn-1 Pn
…

M Writers/Readers, 1 File
File.1

P0 P1 Pn-1 Pn
…

file.0

M Writers/Readers, M Files

file.m

Application I/O Trends

• HPC simulation and analysis
• Parallel applications storing or retrieving data
• checkpoint, restart, and analysis - mostly defensive I/O
• Partitioned regions of data in a large data object
• Each process accesses (writes or reads) a single or multiple regions
• Typically non-overlapping (there may be some overlapping at region boundaries)
• Number of files: Single shared file (N-1), file-per-process (N-N), a few sub-files (M-N)
• APIs: POSIX, MPI-IO, HDF5, etc.

• ML / AI
• Read-heavy
• Random accesses to different parts of a file or multiple files (due to shuffling between epochs)
• Small I/O requests to batches of data, metadata accesses
• Large numbers of files - O (100,000)
• APIs: Python, ML/AI frameworks (TensorFlow, PyTorch, Caffe, etc.)

• Experimental and observational facilities, Edge computing, etc.
• Large numbers of small files, streaming data, sparse data, remote file accesses

8

P0 P1 Pn-1 Pn…

file.0

1 Writer/Reader, 1 File

P0 P1 Pn-1 Pn…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1 Pn-1 Pn…

n Writers/Readers, 1 File

File.1

P0 P1 Pn-1 Pn
…

M Writers/Readers, 1 File
File.1

P0 P1 Pn-1 Pn
…

file.0

M Writers/Readers, M Files

file.m

What do users want?

9

Use case Domain Sim/EOD/analysis Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable I/O
interfaces, correlation among
simulation and experimental data

CMB / Planck Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam & LSST Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces, efficient
and automatic data movement

Easy interfaces to complex systems

Autonomous data movement and performance tuning

Information capture, management, and search

Users:
• Scientists
• App developers
• Supercomputing

facilities
• System designers

Storage and I/O challenges

• Poor performance
• POSIX semantics
• Tuning options at different software layers

• Complexity with deep storage hierarchy
• Using the performance and capacity storage layers efficiently and transparently

• Heterogeneity of storage devices
• From memory-class to hard-disks to tape

• Variability of performance on HPC systems
• Some part of the storage system is concurrently shared by multiple users

• New classes of applications
• ML / AI applications are read-heavy with random access patterns
• EOD and Edge computing applications

• New high-level programming models
• Performance AND Productivity

10

Object-focused data management to the rescue?

11

Object storage
• Designed for unstructured data

such as media, documents, logs,
backups, application binaries and
VM images

• Data objects are associated with
metadata descriptions

• Common API: REST
• Examples: Ceph, Swift, Amazon

S3, etc.

Image source: https://ubuntu.com/blog/what-are-the-different-types-of-storage-block-object-and-file

Objects - An overloaded term

Object management system What does object mean?

Parallel file systems (Lustre, etc.) Chunks of a file (block storage)

Cloud object storage (S3, etc.)
OpenStack Swift, MarFS, Ceph, etc.

Files (images, videos, etc.) + metadata

HDF5 datasets Multi-dimensional arrays, images, any type of data

DAOS Multi-dimensional arrays, files

12

HDF5 self-describing file format and API for science apps

13

HDF5

• HDF5 is a self-describing file format, API, and tools designed to
store, access, analyze, share, and preserve diverse, complex
data in continuously evolving heterogeneous computing and
storage environments
– Maintained by The HDF Group (THG)

• Heavily used on DOE supercomputing systems and diverse
science applications across the world

• Many ECP applications have dependency on HDF5-based I/O
– 17 critical
– 11 important
– 8 interested

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

gcc
	

atp
	

mp
ich
	

da
rsh
an
	

int
el	

lib
sci
	
HD
F5
	

7
w	 mk

l	

bo
os
t	

N
o.
	o
f	l
in
ki
ng
	in
st
an

ce
s	

1	

10	

100	

1000	

10000	

gc
c	

mp
ich
	

atp
	

int
el	

da
rsh
an
	

lib
sci
	

hd
f5	 mk

l	
6
w	

ne
tcd
f	

N
um

be
r	o

f	u
ni
qu

e	
us
er
s	

a. Number of linking instances on Edison (NERSC) b. Number of unique users on Edison (NERSC) c. Number of linking instances on Mira (ALCF)

HDF5 Containers (Files), and Data / Metadata objects

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

Parameters
10;100;1000

Time-step
36,000

HDF5 files, groups,
and links
organize
data objects.

HDF5 datasets
and attributes

store
application data.

Adapted from THG and Quincey Koziol
14

HDF5 Attributes

• Typically contain user metadata

• Have a name and a value

• Attributes “decorate” HDF5 objects

• Value is described by a datatype and a dataspace
• Analogous to a dataset, but do not support partial

I/O operations
• Nor can they be compressed or extended

HDF5 Home Page

HDF5 home page: http://www.hdfgroup.org/solutions/hdf5/
• Latest releases: HDF5 1.12.1 and 1.13.1

HDF5 source code:
• Written in C, and includes optional C++, Fortran, and Java APIs
• Along with “High Level” APIs

• Contains command-line utilities (h5dump, h5repack, h5diff, ..) and
compile scripts

• https://github.com/HDFGroup/hdf5

HDF5 pre-built binaries:
• When possible, include C, C++, Fortran, Java and High Level libraries.

• Check ./lib/libhdf5.settings file.
• Built with and require the SZIP and ZLIB external libraries

https://www.hdfgroup.org/solutions/hdf5/
https://github.com/HDFGroup/hdf5

ExaHDF5 - Our enhancements to HDF5 and beyond

17

High bandwidth memory (HBM)

CPU / GPU / FPGA memories

Storage class memory

Node-local SSD storage

SSD-based storage system

HDD-based storage system

Long-term storage (Tape,
remote data repositories)

Ca
pa
ci
ty

Pe
rf
or
m
an
ce

In
 c

om
pu

te
 n

od
e

O
ff

co
m

pu
te

 n
od

e

Ra
nd

om

ac
ce

ss

Fi
le

-b
as

ed
 a

cc
es

s

Co
st

Deep hierarchy of memory and storageMassive concurrency, abundant computing power

Easy interfaces to complex systems

Autonomous data movement and performance tuning

Information capture, management, and search

Goals

• Asynchronous I/O
• Caching
• GPU I/O
• Subfiling (in development)
• Multi-dataset I/O (in development)
• Data reduction with parallel compression
• Understanding parallel I/O performance
• Autotuning parallel I/O
• Performance tuning for applications
• Next generation data management systems

18

Our enhancements to HDF5 and beyond

Asynchronous I/O

• HPC simulations and several analysis have iterative I/O phases
• Computation phase and I/O phase
• I/O phase is typically to perform checkpointing or storing the current state of the

simulation

• Asynchronous I/O: Overlap I/O phase with compute phase

19

Async

Sync

Slide from Houjun Tang

Asynchronous I/O

20

Async

Sync

Slide from Houjun Tang

• HPC simulations and several analysis have iterative I/O phases
• Computation phase and I/O phase
• I/O phase is typically to perform checkpointing or storing the current state of the

simulation

• Asynchronous I/O: Overlap I/O phase with compute phase

Asynchronous I/O

21

Async

Sync

Slide from Houjun Tang

• HPC simulations and several analysis have iterative I/O phases
• Computation phase and I/O phase
• I/O phase is typically to perform checkpointing or storing the current state of the

simulation

• Asynchronous I/O: Overlap I/O phase with compute phase

HDF5 Async I/O Implementation

• Using background threads
• Asynchronous task queue
• Uses an “event set” to manage async operations
• Transparent background thread execution

22
Slide from Houjun Tang

Transparent Task Dependency Management

• All I/O operations can only be executed after a successful file
create/open.

• A file close operation can only be executed after all previous
operations in the file have been completed.

• All read or write operations must be executed after a prior write
operation to the same object.

• All write operations must be executed after a prior read
operation to the same object.

• All collective operations must be executed in the same order
with regard to other collective operations.

• Only one collective operation may be in execution at any time.

23
Slide from Houjun Tang

Challenge: How to perform asynchronous I/O transparently from the user?

Async I/O – Low overhead and efficient hiding of I/O latency

24 Adapted from Houjun Tang’s slide

AMReX: A software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications

Nyx: An adaptive mesh, cosmological
hydrodynamics simulation code (left)

Castro: An adaptive mesh, astrophysical
radiation/MHD/hydrodynamics simulation code

Async I/O VOL Connector

25

● Available now:
● Source: https://github.com/hpc-io/vol-async
● Docs: https://hdf5-vol-async.readthedocs.io/en/latest

● Future work:
● Merge compatible VOL operations

○ If two async dataset write operations are putting data into same dataset, can merge into only one call to
underlying VOL connector

○ Turn multiple ‘normal’ group create operations into a single ‘multi’ group create operation

● Use multiple background threads
○ Needs HDF5 library thread-safety work, to drop global mutex

● Switch to TaskWorks thread engine
○ A portable, high-level, task engine designed for HPC workloads
○ Task dependency management, background thread execution.

Slide from Houjun Tang
Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna, "Transparent Asynchronous Parallel I/O using Background
Threads", IEEE TPDS - Special Section on Innovative R&D toward the Exascale Era, 2021

https://github.com/hpc-io/vol-async
https://hdf5-vol-async.readthedocs.io/en/latest/

Cache VOL Connector - Integrating node-local storage into parallel I/O

26

Cache VOL
• Using node-local storage for caching / staging

data for fast and scalable I/O.
• Data migration to and from the remote storage is

performed in the background.
• Managing data movement in multi-tiered

memory / storage through stacking multiple VOL
connectors (async -> cache -> async)

• All complexity is hidden from the users
Node-local storage (SSD, NVMe, etc)

Remote storage

Typical HPC storage hierarchy

Theta @ ALCF: Lustre + SSD (128 GB / node),
ThetaGPU (DGX-3) @ ALCF: NVMe (15.4 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)

Repo: https://github.com/hpc-io/vol-cache

Slide from Huihuo Zhang

https://github.com/hpc-io/vol-cache

Parallel Write (H5Dwrite) with cache VOL

27

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously by calling the dataset
write function from the Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute

I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

Slide from Huihuo Zhang

Parallel Read (H5Dread) w/ cache VOL

28

Single shared HDF5 file

MPI_Win

Parallel file system

Compute
node RAM

MPI_Put

Create memory mapped files and attached them
to a MPI_Win for one-sided remote access

1. Reading data
from parallel file
system

2. Caching data
using MPI_Put

Node-local
storage

One-sided communication for accessing remote
node storage.
• Each process exposes a part of its memory to other

processes (MPI Window)
• Other processes can directly read from or write to this

memory, without requiring that the remote process
synchronize (MPI_Put, MPI_Get)

MPI_Get

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

Slide from Huihuo Zhang

HDF5 Cache VOL uses node-local SSDs as cache à 2X to 3X faster

29
Slide from Huihuo Zhang

Huihuo Zheng, Venkat Vishwanath, Quincey Koziol, Houjun Tang, John Ravi, John Mainzer, Suren Byna, “HDF5 Cache
VOL: Efficient and Scalable Parallel I/O through Caching Data on Node-local Storage”, Accepted to CCGrid 2022

VPIC-IO is a kernel derived from a plasma physics simulation
of solar weather interacting with the earth’s magnetosphere.
The simulation writes particle data to HDF5 file, where each
variable is mapped to a HDF5 dataset

CosmoFlow is a 3D convolutional neural network
model for learning the universe at scale. The model
is implemented in TensorFlow with Horovod for data
parallel training at scale.

Lustre and node-local SSDs on Theta

What do users want?

30

Use case Domain Sim/EOD/analy
sis

Data
size

I/O Requirements

FLASH High-energy
density physics

Simulation ~1PB Data transformations, scalable I/O
interfaces, correlation among
simulation and experimental data

CMB / Planck Cosmology Simulation,
EOD/Analysis

10PB Automatic data movement
optimizations

DECam & LSST Cosmology EOD/Analysis ~10TB Easy interfaces, data
transformations

ACME Climate Simulation ~10PB Async I/O, derived variables,
automatic data movement

TECA Climate Analysis ~10PB Data organization and efficient
data movement

HipMer Genomics EOD/Analysis ~100TB Scalable I/O interfaces, efficient
and automatic data movement

Easy interfaces to complex systems

Autonomous data movement and performance tuning

Information capture, management, and search

Users:
• Scientists
• App developers
• Supercomputing

facilities
• System designers

Current file-based approach is still burdensome

31

Software

High-level lib
(HDF5, etc.)

IO middleware
(POSIX, MPI-IO)

IO forwarding

Parallel file
systems

Applications

Usage

… Memory objects

IO software

… Files in file system

Tune middleware
Tune file systems

Memory

Parallel file system
(Lustre, GPFS)

Archival storage (HPSS tape)

SSD-based Node-local
storage

Hardware

HBM GPU
memory

SSD-based Parallel File System

• Challenges
– Multi-level hierarchy complicates data movement, especially if user has to be involved
– POSIX-IO semantics hinder scalability and performance of file systems and IO software

Object-centric data management

32

Software
High-level API Applications

Usage

… Data (in memory)

Memory

Parallel file system
(Lustre, GPFS)

Archival storage (HPSS tape)

SSD-based Node-local
storage

Hardware

HBM GPU
memory

SSD-based Parallel File System

Transparent

Asynchronous

High performant

Scalable
I/O, data, and knowledge management

Fault tolerant
Autonomous

Proactive Data Containers (PDC) - An object-focused data
movement runtime system - Abstractions

• Container – special case of object,

metadata only

– For grouping objects

• Object - metadata and data payload

– Multi-dimensional arrays

• Regions

– A logical region in a multi-dimensional array

– expressed with offsets, sizes, and strides

– multi-dimensional

Container

Objects

33

Proactive Data Containers (PDC) - An object-focused data
movement runtime system

• Advantages with PDC
– Application-level object abstractions -

Freedom from file management
– Transparent utilization of storage

hierarchy and data movement
– Superior and scalable performance
– Live system for data management

services
• Metadata management, analysis,

indexing and querying services,
consistency, data placement, etc.

HDF5

Ap
p

Ap
p

Ap
p…

PDC API MPI-IO

Ap
p

Ap
p

PDC client interface

PDC Runtime services

M
et

ad
at

a
M

an
ag

er

D
at

a
o
b

je
ct

 &

fi
le

 m
an

ag
er

D
a
ta

 a
cc

es
s

a
n
a
ly

z
er

D
a
ta

 p
la

ce
m

en
t

m
a
n
a
g
er

D
a
ta

 p
re

fe
tc

h
er

D
at

a
tr

an
sf

o
rm

an

d
 a

n
al

y
si

s

Ap
p

Q
u

er
y
 m

an
ag

er

Lustre GPFS Remote DAOS Object stores…

C
on

si
st

en
cy

m

a
n
a
g
er

Object APIs

numpy, PyTorch, TensorFlow, etc.

B
yt

e
a
d
d
re

ss

m
a
p
p
er

LLVM, PGAS

D
a
ta

 a
n
a
ly

si
s

sc
h
ed

u
le

r

O
b
je

ct
 s

to
re

in

te
rf

a
ce

s

E
n

h
a

n
ce

d

a
n

a
ly

si
s

 s
er

v
ic

es

34

PDC Services

• Metadata management - to store and query objects’ metadata

• Data management - to move data efficiently and asynchronously using
multi-tier storage

• Data transformation and analysis - Perform data transformations or
analysis while data is in flight

35

PDC metadata management

• Metadata is critical for finding objects
previously written

• Predefined tags must be filled - either by users
(using API) or by extracting from system

• User-defined tags improve findability of objects
- KV pairs

• Unique IDs for metadata objects

• Querying for objects using tags
• Exact match
• Partial match

36

Object-centric PDC API

▪ No explicit data movement
▪ Container

• create container
• delete container
• add / delete objects

▪ Objects
• create object
• add metadata
• create regions
• map objects / regions from source to destination
– Source and destinations can be memory or PDC spaces

• lock when updating an object
• release informs PDC runtime for implicit data movement
• find object (followed by “map” for reading)
• Explicit put and get object functions are also available

Release

Runtime
System

37

• Usage of compute resources for I/O
• Shared mode – Compute nodes are shared

between applications and I/O services
• Dedicated mode – I/O services on separate

nodes

• Users start PDC server and
application links with the PDC client
library

• Set environment variables for informing PDC
about the memory and storage locations

• Transparent data movement by PDC
servers

• Apps map data buffers to objects and PDC
servers place and manage data

• Apps query for data objects using attributes

Transparent data movement in storage hierarchy

… … ……

Application core

PDC service core

…

…

Shared mode

… … ……

Application core

PDC service core

…

…

Dedicated mode

38

• Cori at NERSC
• 1600 “Haswell” compute nodes
• 128 GB DRAM/node
• 32 cores/node

• SSD-based “Burst Buffer”
• HDD-based shared file system Lustre

• Shared mode: One PDC server on each node, the remaining 31cores for user application
execution.

• Dedicated mode: PDC servers and user’s application are on separate nodes

• Mercury Remote Procedure Calls (RPCs), as the communication mechanism
between client and server and between servers - TCP and Cray GNI

• Benchmarks
• VPIC-IO: I/O of a large-scale plasma physics simulation code
• BD-CATS-IO: I/O kernel of a big data clustering analysis code

Experimental setup

39

VPIC-IO (Weak Scaling) Multi-timestep Write

Total time to write 5 timesteps from the VPIC-IO kernel to Lustre and Burst Buffer
on Cori. PDC is up to 5x faster than HDF5 and 23x over PLFS.

40

BD-CATS-IO (Weak scaling) Multi-timestep Read

Total time for reading data of 5 timesteps from the BD-CATS-IO kernel from the
Lustre and from the burst buffer. PDC is up to 11X faster than PLFS and HDF5.

41

PDC analysis service - Traditional analysis

● Traditional data analysis - store data in disks or tapes and access it later for analysis
(high latency in moving data)

● In-situ analysis reduces data access latency, but coordination between simulations and
analysis codes is required

● User-Defined Functions (UDF) reduces user involvement - current solutions are
designed for post-processing

• Requirements for transparent
analysis strategy:

• Reduce user involvement and
data production and
consumption stages

• Analyze data transparently
while the data is in movement

42

PDC analysis service - “In-locus” analysis

PDC API to register
analysis functions and
transforms

43Richard Warren, Jerome Soumagne, Jingqing Mu, Houjun Tang, Suren Byna, Bin Dong, and Quincey Koziol, "Analysis in the Data Path of an Object-
centric Data Management System ", 26th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC) 2019

PDC VOL Connector for HDF5 Applications

• Currently only implements a subset of

the HDF5 API
• HDF5 files mapped to PDC containers

• HDF5 datasets mapped to PDC objects

• PDC regions similar to HDF5 selections

• File create, open, and close
operations are a direct match to PDC
container operations

HDF5 API

VOL Layer

VFD Layer

Native VOL

PDC VOLNetwork
VOL

SE
C2

M
PI

O

… …

Storage Network PDC

44Jingqing Mu, Jerome Soumagne, Suren Byna, Quincey Koziol, Houjun Tang, and Richard Warren, "Interfacing HDF5 with A Scalable
Object-centric Storage System on Hierarchical Storage", Journal of Concurrency and Computation: Practice and Experience

Current status of PDC
▪ Current achievements in a next

generation intelligent data
management framework
• Transparent
• Asynchronous

• High performance and scalable
• Partial autonomy in utilizing storage

hierarchy

HDF5

Ap
p

Ap
p

Ap
p…

PDC API
Ap

p
Ap

p
PDC client interface

PDC Runtime services

M
et

ad
at

a
M

an
ag

er

D
at

a
ob

je
ct

 &

fi
le

 m
an

ag
er

D
at

a
tr

an
sf

or
m

an

d
 a

n
al

ys
is

Ap
p

Q
u

er
y

m
an

ag
er

Lustre GPFS

https://github.com/hpc-io/pdc

https://sdm.lbl.gov/pdc/
Publications

Source code:

45

Proactive Data Containers (PDC) - Ongoing and future work

• Interface with Python and object (put and

get) interfaces

• Extend to KV stores abstractions

• Data reorganization and placement based

on access history

• Dynamic consistency

• Byte address mapping with PDC storage

objects - working with John Shalf et al.

• Analysis on storage and network computing

resources

• Federated data objects - remote access

across multiple file systems at a site,

multiple HPC sites, and cloud environments

HDF5

Ap
p

Ap
p

Ap
p…

PDC API MPI-IO
Ap

p
Ap

p
PDC client interface

PDC Runtime services

M
et

ad
at

a
M

an
ag

er

D
at

a
o
b

je
ct

 &

fi
le

 m
an

ag
er

D
a
ta

 a
cc

es
s

a
n
a
ly

z
er

D
a
ta

 p
la

ce
m

en
t

m
a
n
a
g
er

D
a
ta

 p
re

fe
tc

h
er

D
at

a
tr

an
sf

o
rm

an

d
 a

n
al

y
si

s

Ap
p

Q
u

er
y
 m

an
ag

er

Lustre GPFS Remote DAOS Object stores…

C
on

si
st

en
cy

m

a
n
a
g
er

Object APIs

numpy, PyTorch, TensorFlow, etc.

B
yt

e
a
d
d
re

ss

m
a
p
p
er

LLVM, PGAS

D
a
ta

 a
n
a
ly

si
s

sc
h
ed

u
le

r

O
b
je

ct
 s

to
re

in

te
rf

a
ce

s

E
n

h
a

n
ce

d

a
n

a
ly

si
s

 s
er

v
ic

es

46

Scientific data storage and access - Looking into future

47

Simulations Experiments

Observations

Files

Parallel file systems,
archives

Object stores, Data
lakes, warehouses, etc.

File systems, archives,
etc.

Cloud HPC centers Data repositories

Data
producers

Data
movement

Data
storage

Data
movement

Files

HPC centers

Laptops

Data to insight (visualizations, analyses)

Cloud
Inefficiency
and burden

Future research to achieve autonomous, object-focused data management

Interfaces

D
at

a M
an

ag
em

en
t

In
fo

rm
at

io
n

m
an

ag
em

en
t

Storage systems

* High-productivity interfaces for accessing data fast and easy
* Support for heterogeneous data models
* Unified access to memory and storage system access

(in-system and remote)

* Seamless, high-performance access
to data and information

* Metadata and provenance
management to support FAIR+

* Using AI for efficient data movement

* In-flight data transformations
feature extraction using in-
storage, in-network computing

* Quantitative metrics for the
FAIR principles and data quality

* Recommendation systems for
relevant data using AI methods

* Autonomic and reconfigurable storage
and I/O systems based on application needs

* Lightweight monitoring of storage systems

Deployment
in software
libraries

(e.g., HDF5)

48

Conclusions
• Trends

• Architecture - deepening hierarchy, high concurrency

• Applications - increasing diversity (exascale, EOD, ML/AI, etc.)
• User requirements - productivity and performance, knowledge management

• Our recent solutions at the I/O software level
• Asynchronous I/O
• Caching

• Object-centric data management runtime system

• Domain scientists should not be burdened with data (I/O and other data movement)
and metadata management tasks

• Achieving autonomous storage and I/O requires novel high-productivity interfaces, information
extraction and management, automatic data movement, reconfigurable storage, etc.

49Suren Byna: sbyna@lbl.gov

