
Understanding Parallel I/O Performance and Tuning
Suren Byna

SNTA 2022 Keynote Speech

Contributions from:

• ExaHDF5

• TOKIO - total knowledge of I/O

• Scientific Data Services (SDS)

• ECP ExaIO

• EOD-HDF5

2

Scope of this presentation

• What is parallel I/O?

• Understanding I/O performance

– System-wide

– Application-level

• Tuning I/O performance

• Remaining challenges

3

• Papers used in this presentation

– Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross,
Sarp Oral, and Suren Byna, "I/O Bottleneck Detection and Tuning: Connecting the Dots
using Interactive Log Analysis", 6th International Parallel Data Systems Workshop
(PDSW) 2021, held in conjunction with SC21

– Babak Behzad, Suren Byna, Stefan Wild, Prabhat and Marc Snir, "Dynamic Model-driven
Parallel I/O Performance Tuning", IEEE Cluster 2015

– B. Behzad, S. Byna, S. Wild, Prabhat, and M. Snir, "Improving Parallel I/O Autotuning
with Performance Modeling", The 23rd ACM International Symposium on High-
Performance Parallel and Distributed Computing (HPDC) 2014

– B. Behzad, H. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and M. Snir,
"Taming Parallel I/O Complexity with Auto-Tuning", ACM/IEEE Supercomputing 2013
(SC13)

– Teng Wang, Suren Byna, Glenn Lockwood, Philip Carns, Shane Snyder, Sunggon Kim,
and Nicholas Wright, "A Zoom-in Analysis of I/O Logs to Detect Root Causes of I/O
Performance Bottlenecks", IEEE/ACM CCGrid 2019

– Teng Wang, Suren Byna, Glenn Lockwood, Nicholas Wright, Phil Carns, and Shane
Snyder, "IOMiner: Large-scale Analytics Framework for Gaining Knowledge from I/O
Logs", IEEE Cluster 2018.

– Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas
Wright, "A Year in the Life of a Parallel File System", 2018 International Conference for
High Performance Computing, Networking, and Storage (SC'18)

More related papers from our team …

4

• Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley, "Access Patterns and Performance
Behaviors of Multi-layer Supercomputer I/O Subsystems under, production Load", HPDC 2022

• Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Hanul Sung, Hyeonsang Eom , "An In-Depth I/O Pattern Analysis in HPC Systems", 28th IEEE
International Conference on High Performance Computing, Data, & Analytics (HiPC 2021)

• Bing Xie, Houjun Tang, Suren Byna, Jesse Hanley, Quincey Koziol, Tonglin Li, Sarp Oral, "Battle of the Defaults: Extracting Performance Characteristics of HDF5 under
Production Load", CCGrid 2021

• Bing Xie, Houjun Tang, Suren Byna, Quincey Koziol, and Sarp Oral, "Tuning I/O Performance on Summit – HDF5 Write Use Case Study", Invited talk at the HPC I/O in
the Data Center Workshop (HPC-IODC) 2020, in conjunction with the ISC High Performance 2020.

• Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Yongseok Son, and Hyeonsang Eom, "Towards HPC I/O Performance Prediction through Large-scale Log Analysis",
The 29th International Symposium on High-Performance Parallel and Distributed Computing (HPDC) 2020

• Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Sunggon Kim, and Hyeonsang Eom, "HPC Workload Characterization Using Feature Selection and
Clustering", 3rd International Workshop on System and Network Telemetry and Analytics (SNTA'20), 2020

• Tirthak Patel, Suren Byna, Glenn K. Lockwood, Nicholas J. Wright, Philip Carns, Rob Ross, and Devesh Tiwari, "Uncovering Access, Reuse, and Sharing Characteristics
of I/O-Intensive Files on Large-Scale Production HPC Systems", FAST ‘20

• Glenn K. Lockwood, Shane Snyder, Suren Byna, Philip Carns, and Nicholas J. Wright, "Understanding Data Motion in the Modern HPC Data Center", PDSW 2019, in
conjunction with SC19.

• Megha Agarwal, Divyansh Singhvi, Preeti Malakar, and Suren Byna, "Active Learning-based Automatic Tuning and Prediction of Parallel I/O Performance", PDSW 2019,
in conjunction with SC19

• Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari, "Revisiting I/O Behavior in Large-Scale Storage Systems: The Expected and the Unexpected", SC19
• Glenn Lockwood, Shane Snyder, et al., "UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis", 2nd PDSW-DISCS, 2017 (Held

in conjunction with SC17)
• Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkatesan, Philip Carns, Suren Byna, Robert Sisneros, and Kalyana Chadalavada, "DXT: Darshan eXtended

Tracing", Cray User Group Conference 2017 (CUG 2017)
• Cong Xu, Suren Byna, Vishwanath Venkatesan, Robert Sisneros, Omkar Kulkarni, Mohamad Chaarawi, and Kalyana Chadalavada, "LIOProf: Exposing Lustre File

System Behavior for I/O Middleware", CUG 2016
• Babak Behzad, Suren Byna, Prabhat and Marc Snir, "Pattern-driven Parallel I/O Tuning ", 10th Parallel Data Storage Workshop (PDSW) 2015, in conjunction with SC15,

November 2015
• H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, Prabhat, S. Byna, and Y. Yao, "A Multi-platform Study of I/O Behavior on Petascale Supercomputers", The

24th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC) 2015

Fast I/O of data is critical for science on HPC systems

5

• Scientific simulations, experiments, and observations are producing

terabytes to petabytes of data

• Understanding and optimizing data movement performance is crucial

in high performance computing

Chemistry
(1.3PB/job)

Molecular
(818TB/job)

Cosmology
(462TB/job)

HPC Storage architectures are diverse

6

Cori’s storage

Summit’s storage

Perlmutter storage

What is parallel I/O

7

P0 P1 Pn-
1

Pn…

file.0

1 Writer/Reader, 1 File

P0 P1 Pn-
1

Pn…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1 Pn-
1

Pn…

n Writers/Readers, 1 File
File.1

P0 P1 Pn-
1

Pn…

file.0

M Writers/Readers, M Files

file.m

P0 P1 Pn-
1

Pn…

M Writers/Readers, 1 File
File.1

• Types of parallel I/O
– 1 writer/reader, 1 file
– N writers/readers, N files

(File-per-process)
– N writers/readers, 1 file
– M writers/readers, 1 file
• Aggregators
• Two-phase I/O

– M writers/readers, M files
(file-per-aggregator)

I/O software stack - Several layers with inter-dependencies

8

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	
middleware	(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

I/O software stack - Several layers with inter-dependencies

9

OST 0 OST 1 OST 2 OST 3

File

File

Physical view on a parallel file system

Logical view

Communication
network

• Parallel file systems

– Lustre and Spectrum Scale (GPFS)

• Typical building blocks of parallel file systems

– Storage hardware – HDD or SSD RAID
– Storage servers (in Lustre, Object Storage Servers

[OSS], and object storage targets [OST]
– Metadata servers
– Client-side processes and interfaces

• Management

– Stripe files for parallelism
– Tolerate failures

Why is my I/O slow?

• Another application is interfering with your application

• File system is doing something wrong

• Your application is doing something wrong

10

Why is my I/O slow?

• Another application is interfering with your application

• File system is doing something wrong

• Your application is doing something wrong

11

I/O performance variation in production

12

• Year-long study of same I/O kernels running on two systems

• Mira at Argonne (GPFS) and Cori at NERSC (Lustre)

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Performance varies over the long term

13

Systematic, long-term problem for one I/O pattern

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Performance varies over the short term

14

Transient bad I/O day for all jobs

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Performance also experiences transient losses

15

Transient I/O problems

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Umami: meaningful metrics for understanding I/O load

• Metrics based on Darshan and file

system logs

– Job performance

– Coverage factors - how’s my job

doing on the system?

– Historical measurements of the

same application

– Plots to show variance of current

values

16

Glenn Lockwood, Shane Snyder, Wucherl Yoo, Kevin Harms, Zachary Nault, Suren Byna, Philip Carns, Nicholas Wright, "UMAMI: A Recipe for
Generating Meaningful Metrics through Holistic I/O Performance Analysis", 2nd Joint International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), 2017 (Held in conjunction with SC17)

https://github.com/nersc/pytokio

Why is my I/O slow?

• Another application is interfering with your application

• File system is doing something wrong

• Your application is doing something wrong

17

Quantitatively bound long-term problems

18

• Goal: Numerically distinguish

time-dependent variation

• Simple moving averages

(SMAs) from financial market

technical analysis

• Where short-term average

performance diverges from

overall average

• Example: Bug in a specific file

system client version

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Why is my I/O slow?

• Another application is interfering with your application

• File system is doing something wrong

• Your application is doing something wrong

19

Process to find and solve I/O problems

20

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

• Collect logs / traces

• Analyze for finding problems

• Find tuning options

• Apply tuning solutions

Process to find and solve I/O problems

21

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

• Collect logs / traces

• Analyze for finding problems

• Find tuning options

• Apply tuning solutions

Logs at different layers

22

CN CN

CN CN

BB

Compute Nodes

CN CN

CN CN

Job-Level I/O
Instrumentation

System-Level I/O
Instrumentation

BB
ION

ION

Parallel File System

Burst Buffer IO Node

Logs at different layers

23

$SSOLFDWLRQ

&RPSXWH
1RGHV ,�2�)RUZDUGHUV

RU�%XUVW�%XIIHUV

$X[LOOLDU\�1RGHV
�/RJLQ��:LGH�DUHD��HWF��

)LOH�6HUYHUV
6WRUDJH�DUUD\V

'DUVKDQ��,30��
5HFRUGHU��,RWD

OOWRS��&ROOHFWG��
3URFPRQ��585 /07 ''17RRO��'LUHFW0RQ��,RVWDW,%�IDEULF

FRXQWHUV

([DPSOH�LQVWUXPHQWDWLRQ�WRROV�

Image from Phil Carns, Argonne National Lab

What’s in those logs?

24

• Analytics based on application logs (Darshan)

• Job-level I/O statistics: read/write size, read/write time, process count, IO

bandwidth, and other metrics on each job and each file.

• Analytics based on scheduler logs (Slurm)

• Job-level I/O statistics: Finding the number of nodes used by a job.

• Analytics based on file system logs (Lustre – LMT)

• System-level I/O statistics: Calculating the amount of data written to/read from on

the parallel file system during a given period, etc.

Process to find and solve I/O problems

25

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

• Collect logs / traces

• Analyze for finding problems

• Find tuning options

• Apply tuning solutions

We have logs, then what?

26

• Understand the timeline

– When did I/O occur

• File open / close

• I/O requests

• File size, request size, and various characteristics

• Which storage servers / targets?

Sweep-line analysis

27

0 104 6 8 12

File1
File3

File4

File2

– Sweep-line analysis to extract files on the I/O covering set and focus on

analyzing these files

– I/O covering set: the minimum set of files whose I/O times cover the whole job

Teng Wang, Suren Byna, Glenn Lockwood, Philip Carns, Shane Snyder, Sunggon Kim, and Nicholas Wright, "A Zoom-in Analysis
of I/O Logs to Detect Root Causes of I/O Performance Bottlenecks", IEEE/ACM CCGrid 2019

Darshan log analysis

28

• 88,000 Darshan logs gathered

during two-month period.

• read/write < 1GB and run < 5 minutes

• Selected the top 15 applications with high

node hour consumption

Application-level analysis with parallel coordinates

29

• Cosmology1’s IO is well-formed: all jobs have high sequential IO (>75%), low small IO

ratio (< 5%). Low metadata and storage server CPU utilization (<4% and <33%), etc.

• However, IO bandwidth varies between [1,10) GB/s and [10,100)GB/s, which needs

a job-level analysis.

Job-level analysis

30

• Jobs with [1,10) GB/s is due to its frequent I/O phases, I/O time of each I/O phase is

bottlenecked by the slowest rank (a rank is a process).

(a) Job with [1, 10) GB/s (b) Job with [10, 100) GB/s

Application-level analysis - Combustion app

31

• There are 59 jobs belonging to 3 users.

• User 0’s jobs (red) are all bottlenecked by too many small I/O (100%).

• User 1’s jobs (green) fall in both [0, 1) GB/s and [1,10) GB/s.

Job-level analysis - Combustion app

32

• Zoom-in one representative User 1’s job in each bandwidth category.
• [0, 1)GB/s job is bottlenecked by rank 0 undertaking excessively higher IO workload.
• [1, 10) GB/s jobs is bottlenecked by all ranks reading a shared file, but Darshan log

indicates only one rank performs actual read

(a) Job with [0, 1) GB/s (b) Job with [1, 10) GB/s

Teng Wang, Suren Byna, Glenn
Lockwood, Philip Carns, Shane Snyder,
Sunggon Kim, and Nicholas Wright, "A
Zoom-in Analysis of I/O Logs to Detect
Root Causes of I/O Performance
Bottlenecks", IEEE/ACM CCGrid 2019

Interactive visualization of I/O timeline

33

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

usage: dxt-explorer [-h] [-o OUTPUT] [-t] [-s] [-d] [-l] [--start START] [--end END] [--from START_RANK] [--to END_RANK] darshan

DXT Explorer:

positional arguments:

darshan Input .darshan file

optional arguments:

-h, --help show this help message and exit

-o OUTPUT, --output OUTPUT

Name of the output file

-t, --transfer Generate an interactive data transfer explorer

-s, --spatiality Generate an interactive spatiality explorer

-d, --debug Enable debug mode

-l, --list List all the files with trace

--start START Report starts from X seconds (e.g., 3.7) from beginning of the job

--end END Report ends at X seconds (e.g., 3.9) from beginning of the job

--from START_RANK Report start from rank N

--to END_RANK Report up to rank M

Explore I/O operations by zooming in

34

Explore the timeline by zooming in and out and observing how the MPI-IO calls are
translated to the POSIX layer. For instance, you can use this feature to detect stragglers.

Hover over to find contextual informaion

35

Visualize relevant information in the context of each I/O call (rank, operation, duration,
request size, and OSTs if Lustre) by hovering over a given operation.

Jean Luca Bez, Houjun
Tang, Bing Xie, David
Williams-Young, Rob
Latham, Rob Ross, Sarp
Oral, and Suren Byna,
"I/O Bottleneck Detection
and Tuning: Connecting
the Dots using Interactive
Log Analysis", 6th
International Parallel
Data Systems Workshop
(PDSW) 2021, held in
conjunction with SC21

Process to find and solve I/O problems

36

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

• Collect logs / traces

• Analyze for finding problems

• Find tuning options

• Apply tuning solutions

Common causes of poor I/O performance

37

• One rank undertaking excessive workload is a common I/O bottleneck

• Using default stripe count of 1 causing I/O bottleneck (on Lustre)

• Unbalanced IO distribution across storage servers

• Transient system weather change.

• Frequent I/O phases

• Read-after-write yielding good I/O bandwidth

Application-level analysis - Quantum1 app

38

• One user’s job’s I/O bandwidth spans across 4 ranges, and the I/O bottlenecks of each

range is not directly perceivable from the parallel coordinate plot.

Job-Level Analysis of Quantum1 IO

39

(0, 1]GB/s job

(1, 10]GB/s job

(10, 100]GB/s job

(100, 1000]GB/s
job

One rank IO suffers from transient
metadata load change

Rank 0 writes a large number of configuration files

Rank 0 takes more time than others
due to its larger workload, but bandwidth is still

good as other ranks also write a lot of data

There are four I/O phases, each I/O
phase follows read after write pattern

What can we see with OpenPMD?

collective calls
translate into several

POSIX calls

same amount of
data in each

timestep

some stragglers
make the collective

calls take longer

stragglers observed
in different ranks

Rank: 25
Operation: write
Duration: 12.07 seconds
Size: 32768 KB
Offset: 16273899520

OST information will
show up if available

(e.g. Lustre)

github.com/hpc-io/dxt-explorer

OpenPMD use case

● Collective I/O using ROMIO: 1.54x speedup

● GPFS large block I/O + HDF5 collective metadata: +3.8x speedup

○ Discovered an issue with collective metadata introduced in HDF5 1.10.5

● Fix combined with previous optimizations gives a total of 6.8x speedup from baseline

110.6s

BASELINE

16.1s

OPTIMIZED

6.8x

FLASH use case

● 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each)

● FLASH was not using collective MPI-IO calls

● Optimizations: collective I/O, HDF5 alignment, and defer metadata flush

1495s

BASELINE

361s

OPTIMIZED

4.1x

How to automate the tuning process?

43

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

Challenges in auto-tuning I/O performance

44

• Options for performance optimization

• Complex inter-dependencies among

layers

• Performance is dependent on

application, HPC platform, and

problem size/concurrency

• Achieving peak I/O performance often

requires significant I/O subsystem

expertise

HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size,
collective buffer size, collective buffer nodes, etc.)

Application

Parallel File System
(Number of I/O nodes, stripe size, enabling prefetching

buffer, etc.)

Storage HardwareStorage Hardware

Tuning combinations are abundant

45

• A sample space of optimization parameters

• HDF5 alignment: (1,1) to (16KB, 32KB) à 14 samples

• Lustre stripe count: 1 to 156 à 10 samples

• Lustre stripe size = MPI collective buffer size: 1MB to 128MB à 8 samples

• MPI Collective buffer nodes: 1 to 256 à 12 samples

• Total search space: > 13,000 combinations

• Searching through all combinations manually is impractical

• Users, typically domain scientists, should not be burdened with tuning

I/O auto-tuning

46

• Auto-tuning framework to search the

parameter space with reduced number

of combinations

• HDF5 I/O library sets the optimization

parameters

• H5Tuner: Dynamic interception of

HDF5 calls

• H5Evolve: Genetic algorithm based

selection

B. Behzad, H. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and M. Snir, "Taming
Parallel I/O Complexity with Auto-Tuning", ACM/IEEE Supercomputing 2013 (SC13)

Genetic Algorithm-based search space

47

• GA evaluates fitness (I/O performance) and selects members based on

least runtime and on mutation of various optimization parameters

• Problems

• Long search time

(more than 12 hours)

• Limited general purpose applicability

for different problem sizes

Model-driven Auto-tuning

48

• Replaced GA-based H5Evolve with I/O

performance predictor

• Using empirical models of the I/O performance

• Search Strategy

• Step 1 (Pruning): Use an empirical model to
reduce the search space of interest

• Step 2 (Exploration): Search a smaller space

• Step 3 (optional): Refit the model and repeat
Steps 1 and 2

Overall Architecture
of I/O Autotuning

Exploration

I/O Autotuning
Framework

HPC
System

Optimize I/O

Storage
System

I/O Kernel

Top k
Configurations Re

fit
 th

e
m

od
el

(C
on

tro
le

d
by

 u
se

r)

Performance Results
Select the Best

Performing Configuration

All Possible
Configuratinos

Refitting

Executable

H5Tuner

I/O
Benchmark

XML File

Babak Behzad, Suren Byna, Stefan Wild, Prabhat and Marc Snir, "Dynamic Model-driven
Parallel I/O Performance Tuning", IEEE Cluster 2015

Performance Model

49

• Non-linear regression model

• Linear combinations of nb non-linear basis functions (ϕk), and hyper-parameters

β (selected by standard regression approach) for a parameter configuration of x

• f: file size

• a: number of aggregators

• c: stripe count

• s: stripe size

m(x;β) = βkφk (x)
k=1

nb

∑

m (x) = β1+β2 f +β3
f
a
+β4

a
c
+β5

a
s
+β6

cs
a
+β7

cf
a

Performance Results – VPIC-IO

50

of cores File Size
(GB)

Modeling
Bandwidth (MB/s)

GA Bandwidth
(MB/s)

Default
Bandwidth (MB/s)

Speedup

128 32 2075 3034 472 4.4X

512 128 5185 - 409 12X

1024 256 6182 - 337 18X

2048 512 11422 14900 412 28X

4096 1024 14892 17620 365 41X

8192 2048 18857 - 345 54X

Future: Automating the tuning process

51

• Trace collection

– Dynamic adjustment of tracing granularity at runtime

• Trace analysis and problem identification are currently

manual

– Need pattern detection for performance issuess

• Application of I/O tuning options is still manual

– I/O libraries should allow application of tuning parameters at
runtime

– File systems could be designed to be adjusting to traffic from
many applications

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

Conclusions

52

Contact: Suren Byna (SByna@lbl.gov)

• I/O problems can be due to file system issues or application issues

– Transient or long-term issues

• Automatic tuning is complex due to interdependencies among multiple

software layers

– Too many combinations

• Open research problem - automating I/O performance tuning

