SR, U.S. DEPARTMENT OF

YW ENERGY
H BERKELEY LAB Office of Science

Bringing Science Solutions to the World

”\

Understanding Parallel I/O Performance and Tuning

Suren Byna

SNTA 2022 Keynote Speech

Contributions from:

- ExaHDF5
» TOKIO - total knowledge of I/O
» Scientific Data Services (SDS)

- ECP ExalO BERKELEY LAB

- EOD-HDF5

Scope of this presentation

-« What is paraIIeI 1/0? » Papers used in this presentation

— Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross,
: Sarp Oral, and Suren Byna, "I/O Bottleneck Detection and Tuning: Connecting the Dots
[
U nderStand | ng I/O performance using Interactive Log Analysis", 6th International Parallel Data Systems Workshop
(PDSW) 2021, held in conjunction with SC21

: — Babak Behzad, Suren Byna, Stefan Wild, Prabhat and Marc Snir, "Dynamic Model-driven
o SyStem_Wlde Parallel /0O Performance Tuning", IEEE Cluster 2015

— B. Behzad, S. Byna, S. Wild, Prabhat, and M. Snir, "Improving Parallel I/O Autotuning
L - - _ with Performance Modeling", The 23rd ACM International Symposium on High-
Appl |Cat|0n Ievel Performance Parallel and Distributed Computing (HPDC) 2014
— B. Behzad, H. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and M. Snir,
"Taming Parallel I/O Complexity with Auto-Tuning", ACM/IEEE Supercomputing 2013

* Tuning I/O performance (SC13)

— Teng Wang, Suren Byna, Glenn Lockwood, Philip Carns, Shane Snyder, Sunggon Kim,
and Nicholas Wright, "A Zoom-in Analysis of 1/0O Logs to Detect Root Causes of I/0

° Rema”'"ng Cha”enges Performance Bottlenecks", IEEE/ACM CCGrid 2019

— Teng Wang, Suren Byna, Glenn Lockwood, Nicholas Wright, Phil Carns, and Shane
Snyder, "IOMiner: Large-scale Analytics Framework for Gaining Knowledge from 1/0
Logs", IEEE Cluster 2018.

— Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas
Wright, "A Year in the Life of a Parallel File System", 2018 International Conference for
High Performance Computing, Networking, and Storage (SC'18)

More related papers from our team ...

Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley, "Access Patterns and Performance
Behaviors of Multi-layer Supercomputer I/0O Subsystems under, production Load", HPDC 2022

Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Hanul Sung, Hyeonsang Eom , "An In-Depth |/O Pattern Analysis in HPC Systems", 28th IEEE
International Conference on High Performance Computing, Data, & Analytics (HiPC 2021)

Bing Xie, Houjun Tang, Suren Byna, Jesse Hanley, Quincey Koziol, Tonglin Li, Sarp Oral, "Battle of the Defaults: Extracting Performance Characteristics of HDF5 under
Production Load", CCGrid 2021

Bing Xie, Houjun Tang, Suren Byna, Quincey Koziol, and Sarp Oral, "Tuning /O Performance on Summit — HDF5 Write Use Case Study", Invited talk at the HPC I/O in
the Data Center Workshop (HPC-IODC) 2020, in conjunction with the ISC High Performance 2020.

Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Yongseok Son, and Hyeonsang Eom, "Towards HPC 1I/O Performance Prediction through Large-scale Log Analysis",
The 29th International Symposium on High-Performance Parallel and Distributed Computing (HPDC) 2020

Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Sunggon Kim, and Hyeonsang Eom, "HPC Workload Characterization Using Feature Selection and
Clustering”, 3rd International Workshop on System and Network Telemetry and Analytics (SNTA'20), 2020

Tirthak Patel, Suren Byna, Glenn K. Lockwood, Nicholas J. Wright, Philip Carns, Rob Ross, and Devesh Tiwari, "Uncovering Access, Reuse, and Sharing Characteristics
of 1/O-Intensive Files on Large-Scale Production HPC Systems", FAST ‘20

Glenn K. Lockwood, Shane Snyder, Suren Byna, Philip Carns, and Nicholas J. Wright, "Understanding Data Motion in the Modern HPC Data Center", PDSW 2019, in
conjunction with SC19.

Megha Agarwal, Divyansh Singhvi, Preeti Malakar, and Suren Byna, "Active Learning-based Automatic Tuning and Prediction of Parallel I/O Performance", PDSW 2019,
in conjunction with SC19

Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari, "Revisiting I1/0O Behavior in Large-Scale Storage Systems: The Expected and the Unexpected", SC19
Glenn Lockwood, Shane Snyder, et al., "UMAMI: A Recipe for Generating Meaningful Metrics through Holistic 1/0 Performance Analysis", 2nd PDSW-DISCS, 2017 (Held
in conjunction with SC17)

Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkatesan, Philip Carns, Suren Byna, Robert Sisneros, and Kalyana Chadalavada, "DXT: Darshan eXtended
Tracing", Cray User Group Conference 2017 (CUG 2017)

Cong Xu, Suren Byna, Vishwanath Venkatesan, Robert Sisneros, Omkar Kulkarni, Mohamad Chaarawi, and Kalyana Chadalavada, "LIOProf: Exposing Lustre File
System Behavior for I/0O Middleware", CUG 2016

Babak Behzad, Suren Byna, Prabhat and Marc Snir, "Pattern-driven Parallel /O Tuning ", 10th Parallel Data Storage Workshop (PDSW) 2015, in conjunction with SC15,
November 2015

H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, Prabhat, S. Byna, and Y. Yao, "A Multi-platform Study of I/O Behavior on Petascale Supercomputers”, The
24th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC) 2015 4

Fast I/O of data is critical for science on HPC systems

Scientific simulations, experiments, and observations are producing
terabytes to petabytes of data

Chemistry Molecular Cosmology
(1.3PB/job) (818TB/job) (462TB/job)

» Understanding and optimizing data movement performance is crucial
in high performance computing

HPC Storage architectures are diverse

Cori with Aries Network

PR

Milan CPUs

AMD EPYC™

Perimutter storage

‘Ampere” NVIU
Tensor Cores

IDIA GPUs

o
Nel
=)
3]
Q
§
O g
- U
v c
c c
5 O
[
Eg
[l
E =
L =
o
£
7
oo
=
o

Partly Phase 1
Partly Phase 2

Workflow Nodes
High-memory Nodes

User Access (Login) Nodes

130
35 PB, 5+ TB/s
248 ; ’h::;;"’"‘"' Mia2021
1 primary MDS,
248 2 4 additional MDS

Each OSS controls one OST. The Infiniband connects the MDS,
ADUs and OSSs to the LNET routers on the Cray XC System. The
OSTs are configured with GridRAID, similar to RAID6, (8+2), but
can restore failure 3.5 times faster than traditional RAID6. Each
OST consists of 41 disks, and can deliver 240TB capacity.

Cori’s storage

Summit’s storage

N

it

What is parallel I/O

» Types of parallel I1/O
— 1 writer/reader, 1 file
— N writers/readers, N files
(File-per-process)
— N writers/readers, 1 file
— M writers/readers, 1 file

- Aggregators
- Two-phase I/O

— M writers/readers, M files
(file-per-aggregator)

I/O software stack - Several layers with inter-dependencies

Applications

High-level I/O libraries
(HDFs5, NetCDF, etc.)

Parallel I/O
middleware (MPI-IO)

3 ¢

Low-level 1/0O libraries (POSIX-IO)

¢

Parallel File Systems (Lustre, GPFS)

Storage hardware

I/O software stack - Several layers with inter-dependencies

Logical view

- Parallel file systems
— Lustre and Spectrum Scale (GPFS)

» Typical building blocks of parallel file systems
— Storage hardware — HDD or SSD RAID

— Storage servers (in Lustre, Object Storage Servers
[OSS], and object storage targets [OST]

— Metadata servers

Phyg#Cal view o a paraelxsystem

OSTO OST 1 OST 2 OST 3

— Client-side processes and interfaces

- Management
— Stripe files for parallelism

— Tolerate failures
€ File >

9

Why is my |/O slow?

« Another application is interfering with your application

* File system is doing something wrong

* Your application is doing something wrong

10

Why is my |/O slow?

« Another application is interfering with your application

* File system is doing something wrong

* Your application is doing something wrong

11

I/O performance variation in production

* Year-long study of same I/O kernels running on two systems
* Mira at Argonne (GPFS) and Cori at NERSC (Lustre)

Mira, VPIC(W) | , | | I ~| | ||
Mira, IOR/shared(W){ Il | | '
Mira, IOR/shared(R) N UL U LR . |

Mira, IOR/fpp(W) I
Mira, IOR/fpp(R) I I
Mira, HACC(W) | , 1
Mira, HACC(R)1 ll H‘ '
Mira, BD-CATS(R) — ‘ || | |
)
) I |
H

Cori, VPIC(W , Rl |
| H]|I ,\IIIIII B NN NIEEINEEIEEE

Cori, IOR/shared(W
Cori, IOR/shared(R)

Cori, IOR/fpp(W |"‘ | I [
o YRR R L L S

~

v

Cori, BD CATS(R

O N O S M O Y s T L S\
Q’\n Q’\«‘ Q'\n 0’\,\ Q’\,\ 0’\,\ Q’\«‘ Q'\n A\ \ v A\
X g\aﬂ \\)(\ \\)\

X, 1
RENY *

poo e o¢ © <P

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

o =
0 o

o
o

Fraction Peak Perf

o
>

o
N

Performance varies over the long term

1.0
VPIC(W)

IOR/shared(W) 0.8,
IOR/shared(R) E
IOR/fpp(W) 0.6
IOR/fpp(R) p
HACC(W) 0.45
HACC(R) I

BD-CATS(R) 0.2

ISystematic, long-term problem for one 1/O patterr{

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18) 13

Performance varies over the short term

1.0
VPIC(W)

|IOR/shared(W) 0.8,
|IOR/shared(R) &
IOR/fpp(W) 0.6
IOR/fpp(R) =
HACC(W) 0.48
HACC(R) g

BD-CATS(R) 0.2

Transient bad I/O day for all jobs

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18) 14

Performance also experiences transient losses

(a) Mira RO Cori

VPIC(W)
IOR/shared(W)
IOR/shared(R)

IOR/fpp(W)
IOR/fpp(R)
HACC(W)
HACC(R)
BD-CATS(R)

‘ Transient I/O problems \

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

15

Umami: meaningful metrics for understanding I/O load

* Metrics based on Darshan and file

50 - et e P =
system logs o P RS 25 M\/ | =
—Job performance 100- T

, . Max Ioosasd(%‘l;l; fw—')\/\
— Coverage factors - how’s my job 207 v —

doing on the system? _100- .
J Y spaceuses on | Lo ||

— Historical measurements of the 751 ol s
sSame appllcatlon Coverage Factor 109 WW-**-"
I 0.8 1 I : : : : 1 :
— Plots to show variance of current T o e b -

W 2 O 0 P A A
TSR TSRO NN SR AR BTN (X
values]

https://github.com/nersc/pytokio

Glenn Lockwood, Shane Snyder, Wucherl Yoo, Kevin Harms, Zachary Nault, Suren Byna, Philip Carns, Nicholas Wright, "UMAMI: A Recipe for
Generating Meaningful Metrics through Holistic 1/0 Performance Analysis", 2nd Joint International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), 2017 (Held in conjunction with SC17) 16

Why is my |/O slow?

« Another application is interfering with your application

* File system is doing something wrong

* Your application is doing something wrong

17

Quantitatively bound long-term problems

* Goal: Numerically distinguish

=
o

time-dependent variation

« Simple moving averages

o
o))

(SMAs) from financial market
technical analysis

o
N

* Where short-term average

Fraction Peak Performance

performance diverges from £0.0

overall average (o

- Example: Bug in a specific file
system client version

o
o)

o
IN

HACC Write on Cori

SMA
—— Global mean

\\)

'\ '\ '\ ’\ ’\ ’\ ‘?3
,LQ'\« ,LQ'\« ,LQ'\« ,LQ'\« ,LQ'\ < ,LQ'\) © ,LQ'\
Y,

Glenn Lockwood, Shane Snyder, Teng Wang, Suren Byna, Phil Carns, and Nicholas Wright, "A Year in the Life of a Parallel
File System", 2018 International Conference for High Performance Computing, Networking, and Storage (SC'18)

Why is my |/O slow?

« Another application is interfering with your application

* File system is doing something wrong

* Your application is doing something wrong

19

Process to find and solve I/O problems

1/0
Problems
Trace
Collection

* Collect logs / traces

* Analyze for finding problems

* Find tuning options

* Apply tuning solutions

nteractive
ation .
Mapping to
Solutions

Trace _/

Analysis
Applying
1/0 Tuning

20

Process to find and solve I/O problems

* Collect logs / traces

Ilo nieractive
Problems /v xploration

Mapping to
7 Solutions
Trace
Collection —/
Trace
) Analysis
Applying
1/0 Tuning

* Analyze for finding problems

* Find tuning options

* Apply tuning solutions

Logs at different layers

[Compute Nodes

A
l 1

CN CN CN

K Parallel File System

Job-Level I/O
Instrumentation

System-Level I/O
Instrumentation

Application logs

-

Job scheduler logs

>File system logs

22

Logs at different layers

Example instrumentation tools:

| ”top’ Co”ectd, Darahar. 1PM. IB fabric
Procmon, RUR Recorder, lota counters : :

[
Yoo $Z00 U = T \
=il | [(.
Compute = | I
Nodes I/O Forwarders o " !
N wi— or Burst Buffers Storage arrays
Application

File Servers

Auxilliary Nodes
(Login, Wide area, etc.)

Image from Phil Carns, Argonne National Lab

What’s in those logs?

 Analytics based on application logs (Darshan)

« Job-level 1/O statistics: read/write size, read/write time, process count, O

bandwidth, and other metrics on each job and each file.

* Analytics based on scheduler logs (Slurm)
+ Job-level I/O statistics: Finding the number of nodes used by a job.
 Analytics based on file system logs (Lustre — LMT)

- System-level I/O statistics: Calculating the amount of data written to/read from on

the parallel file system during a given period, etc.

24

Process to find and solve I/O problems

* Collect logs / traces

1/0 .
nteractive
Problems ‘ TG
Mapping to
Solutions

* Analyze for finding problems

* Find tuning options

Trace
Collection
Analysis
Applying
1/0 Tuning

* Apply tuning solutions

We have logs, then what?

 Understand the timeline

—When did I/O occur
- File open / close
- 1/O requests
- File size, request size, and various characteristics
- Which storage servers / targets?

26

Sweep-line analysis

— Sweep-line analysis to extract files on the /O covering set and focus on
analyzing these files

—1/0O covering set: the minimum set of files whose |/O times cover the whole job

File4
File3

File1

File2

Q —]

12

Teng Wang, Suren Byna, Glenn Lockwood, Philip Carns, Shane Snyder, Sunggon Kim, and Nicholas Wright, "A Zoom-in Analysis
of I/O Logs to Detect Root Causes of I/O Performance Bottlenecks", IEEE/ACM CCGrid 2019 27

Darshan log analysis

» 88,000 Darshan logs gathered
during two-month period.
* read/write < 1GB and run < 5 minutes

- Selected the top 15 applications with high

node hour consumption

35000

300001
25000

S 200001

(@]

Q

2 150001

(@]
10000
5000

21.9%

Climatel
uantuml

8.2%

3.8%

1.4%

R 2
& = 3 & ~ ¥ ® 2 82 ¥
¥ & U ¥ > M S ~ o <« <
@m‘-v'm' M - o - -
| FEag | R T ol T T
A L wm Y ETISISIBIT & ©
< © = 35|92 = ‘=
ol< EQ € 2|9 YE5le 58
= '-:m-CrotUJu_Etu-—m
o Os0a 35 s5|Le s @ is
o = 3
o o
) 8 @)

28

Application-level analysis with parallel coordinates

* Cosmology1’s IO is well-formed: all jobs have high sequential IO (>75%), low small 10

ratio (< 5%). Low metadata and storage server CPU utilization (<4% and <33%), etc.

* However, 10 bandwidth varies between [1,10) GB/s and [10,100)GB/s, which needs

a job-level analysis.

UserNo

JobNo
0ssAvVgCPU(%%)
ostAvglO(MB)
Datasize (GB)
nprocs

OST #

Seq (%)

Small (26) -

MdsAvgCPU(%)

MTime (%)

MaxRanklO (%)

o

1 : ‘ . 7 8 lq
———— = S
23 38 52 e —so—— 94 108 12
97 i ‘ ; ‘ ‘ 294‘- 32?
96 ‘ 178 219 269 30].. 342. 384.-
14 47‘) ; ‘ 214 248
L W o——80_—9er —83 a5 o7
O el e a 5
s = . 33
0 1
q 1

BW (GB/s)
[1,10)

[10,100)

29

Job-level analysis

- Jobs with [1,10) GB/s is due to its frequent I/O phases, I/O time of each I/O phase is

bottlenecked by the slowest rank (a rank is a process).

& (@) (o]
o (@) o

Rank Number

N
o

(@)

10 activities
=== |0 covering set |

4.5
Time (s)

(a) Job with [1, 10) GBI/s

(o))} (00
o o

Rank Number
N
Q

10 activities
=== |O covering set

5.3
Time (s)

(b) Job with [10, 100) GB/s

1356.4

30

Application-level analysis - Combustion app

° There are 59 jobs belonging to 3 users.

« User O’s jobs (red) are all bottlenecked by too many small 1/0O (100%).

- User 1's jobs (green) fall in both [0, 1) GB/s and [1,10) GB/s.

serNo l
9 J— \‘\-\{
JobNo -
—=— : 5
0ssAvgCPU(%) ‘
o 61/}50\ - =~
ostAvglO(MB) I ‘
. 3 10063 11740
Datasize (GB) . . .
100 Q28600 33300
NProcs - l 7 l . I
56 = uz 24
OST # . A
o e
Sed (%) |1
Q. 5
Small (%)) I
6 :
MdsAvgCPU(%)
i 9 5 :
MTIme (%) 1 . .
34 -~
MaxRanklO (%) - . .
k”"<

BW (GB/s)
(0,1

)

[1,10) [10,100)

31

Job-level analysis - Combustion app

- Zoom-in one representative User 1's job in each bandwidth category.
* [0, 1)GB/s job is bottlenecked by rank 0 undertaking excessively higher |O workload.

* [1, 10) GB/s jobs is bottlenecked by all ranks reading a shared file, but Darshan log
indicates only one rank performs actual read

8000 1 10 activities 8000 1 10 activities
=== |O covering set === |O covering set
5 6000 5 6000 -
Q Q
€ £
> 4000 >
i = 4000 Teng Wang, Suren Byna, Glenn
c < Lockwood, Philip Carns, Shane Snyder,
© © Sunggon Kim, and Nicholas Wright, "A
m | 1 ’
2000 2000 Zoom-in Analysis of /0 Logs to Detect
Root Causes of I/0O Performance
0] = —= = = = = = 0 Bottlenecks", IEEE/ACM CCGrid 2019
5.8 84298.9 7.3 57354.4
Time (s) Time (s)

(a) Job with [0, 1) GB/s (b) Job with [1, 10) GB/s

32

Interactive visualization of I/O timeline

github.com/hpc-io/dxt-explorer

SEXXPLQRER
D ke AN N X docker pull hpcio/dxt-explorer
usage: dxt-explorer [-h] [-o OUTPUT] [-t] [-s] [-d] [-1] [--start START] [--end END] [--from START_RANK] [--to END_RANK] darshan

DXT Explorer:

positional arguments:
darshan Input .darshan file

optional arguments:
-h, --help show this help message and exit
-0 OUTPUT, --output OUTPUT
Name of the output file
-t, --transfer Generate an interactive data transfer explorer
-s, --spatiality Generate an interactive spatiality explorer
-d, --debug Enable debug mode
-1, --list List all the files with trace
--start START Report starts from X seconds (e.g., 3.7) from beginning of the job
--end END Report ends at X seconds (e.g., 3.9) from beginning of the job
--from START_RANK Report start from rank N
--to END_RANK Report up to rank M

Explore I/O operations by zooming in

—— write DXT Explorer Operation

T T T T T T T T
6.990109 13.980218 20.970327 27.960436 34.950545 41.940654 48.930763 55.920872

400

3

=]
=]

Rank
N
8

OIldW

-
1<)
=]

0

400

[
XISOd

Runtime (seconds)

Explore the timeline by zooming in and out and observing how the MPI-IO calls are
translated to the POSIX layer. For instance, you can use this feature to detect stragglers.

34

Hover over to find contextual informaion

—— write DXT Explorer Operation

T T T = T T T T
6.990109 13.980218 20.970327 27.960436 34.950545 41.940654 48.930763 55.920872

Runtime (seconds)

Visualize relevant information in the context of each 1/0 call (rank, operation, duration,
request size, and OSTs if Lustre) by hovering over a given operation.

Jean Luca Bez, Houjun
Tang, Bing Xie, David
Williams-Young, Rob
Latham, Rob Ross, Sarp
Oral, and Suren Byna,
"1/O Bottleneck Detection
and Tuning: Connecting
the Dots using Interactive
Log Analysis", 6th
International Parallel
Data Systems Workshop
(PDSW) 2021, held in
conjunction with SC21

35

Process to find and solve I/O problems

1/0
Problems

* Collect logs / traces

-

Mapping to
Solutions

~

* Analyze for finding problems

nteractive
Xptloration
Trace
Collection
Analysis |

* Find tuning options

Applying
1/0 Tuning

* Apply tuning solutions

Common causes of poor I/O performance

* One rank undertaking excessive workload is a common |/O bottleneck
 Using default stripe count of 1 causing I/O bottleneck (on Lustre)

« Unbalanced IO distribution across storage servers

» Transient system weather change.

* Frequent I/O phases

- Read-after-write yielding good I/O bandwidth

37

Application-level analysis - Quantum1 app

° One user’s job’s I/O bandwidth spans across 4 ranges, and the |/O bottlenecks of each

range is not directly perceivable from the parallel coordinate plot.

19 20
UserNo :
JobNC} 721 ‘ ; ﬂ_ 1732
1 6
0ssAvgCPU(%) . . .
1 141 266 391 2 767 893
ostAvglO(MB) -

. 228 3192

Datasize (GB)
256 W2044

nprocs
247 244

OST #
66 95

Seq (%) ' : : .
1) 65
Small (%) -
4 51 59
mdsAvgCPU(%) +— - - :
. () 22 77
MTime (%) : S - : s :
0 1
MaxRanklO (%) §—
P

BW (GB A\ ; ;
(({gt)/ [110)) [10,100) >@

Job-Level Analysis of Quantum1 10

2501 10 activities

=== |O covering set

100 ~ /
50 -

Rank Number

o
RN
G)
o
S~
w
5
O
o

(

0.0 688.9
Time (s)

One rank 10 suffers from transient
metadata load change

10004 = !0 act ivities
m—|O covering set
. 8001
]
E 600
=
< 400 /
g]
2001
0 =
(10, 100]GB/s joly” T s

Rank 0 takes more time than others
due to its larger workload, but bandwidth is still
good as other ranks also write a lot of data

2501 10 activiifies

= |O covering set

N
o
(@)

(1, 10]GB/s job

=
ul
o

=
o
o

Rank Number

Ul
o

0L — .
0.0 339.9

Time (s)

Rank 0 writes a large number of configuration files

(100, 1000]GB/s
job

Rank Number
|_I
o
(@)
o

1.2 10670.9
Time (s)

There are four I/O phases, each I/O

phase follows read after write pattern
39

What can we see with OpenPMD? E}{P LQRER
*

/ github.com/hpc-io/dxt-explorer
/ same amount of

data in each
| —— read —— write timeAStep DXT Explorer Operation

open

PM

————— v =
% % Rank: 25
collective calls = = gﬁgggs'r]:l;\lg;eseconds
translate into several e
POSIX call o] Size: 32768 KB
calls Offset: 16273899520
E 30 — T —4——
0 ‘] k i ' | i |
0 \W 0
straaalers observed Runtime (seconds) some stragglers OST information will
in%?ﬁerent ranks make the collective show up if available

calls take longer (e.g. Lustre)

OpenPMD use case

e Collective I/O using ROMIO: 1.54x speedup

GPFS large block I/0 + HDF5 collective metadata: +3.8x speedup

o Discovered an issue with collective metadata introduced in HDF5 1.10.5

Fix combined with previous optimizations gives a total of 6.8x speedup from baseline

400

300

200

— read — write

L R R

1 || AP

PP || T

E B ; = =
30 60 90
Time (seconds)

OlldiN

X1SOd

400

300

— read — write

30

60
Time (seconds)

90

OlldiN

X1SOd

BASELINE

110.6s

6.8x

16.1s

FLASH use case

e 2 checkpoint files (=2.3TB each) and 2 plot file (=14GB each)
e FLASH was not using collective MPI-IO calls

e Optimizations: collective I/O, HDF5 alignment, and defer metadata flush

— read — write — read — write
400 : — 400
300+ 300+
BASELINE
= =
200+ 3 200+ T
O O
1001 1001 1495s
1+ 1+
£ 4001 £ 4001
3+ | 3+
S | S 4.1x
3001 fi 3001
[8 8 OPTIMIZED
200+ “ & 200+ &
X <
100 E 100 361s
|
0_ . oz g ? i " W i\ it i) y i 1 " i 4 ‘. 0. T T I T
0 500 1000 1500 0 500 1000 1500

Time (seconds) Time (seconds)

How to automate the tuning process?

1/0
Problems
Trace
Collection

nteractive
ation
Mapping to
Solutions

Trace _/

Analysis
Applying
1/0 Tuning

43

Challenges in auto-tuning I/O performance

» Options for performance optimization

« Complex inter-dependencies among
layers

» Performance is dependent on
application, HPC platform, and
problem size/concurrency

* Achieving peak |/O performance often
requires significant 1/O subsystem
expertise

HDF5
(Alignment, Chunking, etc.)

MPI /O

(Enabling collective buffering, Sieving buffer size,
collective buffer size, collective buffer nodes, etc.)

Parallel File System
(Number of I/0 nodes, stripe size, enabling prefetching
buffer, etc.)

44

Tuning combinations are abundant

* A sample space of optimization parameters
- HDF5 alignment: (1,1) to (16KB, 32KB) - 14 samples

Lustre stripe count: 1 to 156 = 10 samples

Lustre stripe size = MPI collective buffer size: 1MB to 128MB - 8 samples
MPI Collective buffer nodes: 1 to 256 > 12 samples

Total search space: > 13,000 combinations

« Searching through all combinations manually is impractical

» Users, typically domain scientists, should not be burdened with tuning

45

I/O auto-tuning

 Auto-tuning framework to search the
parameter space with reduced number
of combinations

* HDF5 1/O library sets the optimization
parameters

* H5Tuner: Dynamic interception of
HDF5 calls

- H5Evolve: Genetic algorithm based
selection

B. Behzad, H. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol, and M. Snir, "Taming
Parallel I/O Complexity with Auto-Tuning", ACM/IEEE Supercomputing 2013 (SC13)

Auto-tuning System

Parameter
Space
Parameter Settings
(XML File)

1/0 Benchmark

Executable
=
HDFS5 file

Experiment Database:
Parameter Settings &
Performance Results

46

Genetic Algorithm-based search space

* GA evaluates fitness (I/O performance) and selects members based on

least runtime and on mutation of various optimization parameters

* Problems
* Long search time
(more than 12 hours)
* Limited general purpose applicability

for different problem sizes

Evolution

Random selection Filesystem Parameters Discrete set of

of initial population

MPI Parameters

|

possible values

HDF5 Parameters

Parameter Space

Members of next generation

Population

l

Evaluate Fitness
of each member
based on runtime

Repeat for each generation

Elite members

Reproduction

A

Entire Population

47

Model-driven Auto-tuning

Overall Architecture
(I/0O Kernel) of I/0 Autotuning

1/0 Autotuning Refitting

- Replaced GA-based H5Evolve with 1/0 Frameork
performance predictor

 Using empirical models of the I/O performance

Top k

() Sea rCh Strategy Configurations

_ _ Refitthe model __
(Controled by user)

« Step 1 (Pruning): Use an empirical model to

reduce the search space of interest o
« Step 2 (Exploration): Search a smaller space |
Exploration \
« Step 3 (optional): Refit the model and repeat e

Steps 1 and 2

Babak Behzad, Suren Byna, Stefan Wild, Prabhat and Marc Snir, "Dynamic Model-driven

Parallel /0 Performance Tuning", IEEE Cluster 2015 48

Performance Model

* Non-linear regression model
m(x;) = Eﬁk¢k(x)
k=1
* Linear combinations of n, non-linear basis functions (¢,), and hyper-parameters
B (selected by standard regression approach) for a parameter configuration of x

of

a

m (x) = ﬁ1+ﬁ2f+ﬁ3£+ﬁ4ﬁ +ﬁ5g +ﬁ6% +p;

* f: file size ¢

* a: number of aggregators
* C: stripe count

* s: stripe size

49

Performance Results — VPIC-IO

of cores File Size Modeling GA Bandwidth Default Speedup
(GB) Bandwidth (MB/s) (MB/s) Bandwidth (MB/s)

2075 3034
512 128 5185 - 409 12X
1024 256 6182 - 337 18X
2048 512 11422 14900 412 28X
4096 1024 14892 17620 365 41X

8192 2048 18857 - 345 54X

Future: Automating the tuning process

* Trace collection
— Dynamic adjustment of tracing granularity at runtime

1/0

 Trace analysis and problem identification are currently
manual
— Need pattern detection for performance issuess

Applying
1/O Tuning

 Application of I/O tuning options is still manual
— 1/O libraries should allow application of tuning parameters at
runtime

— File systems could be designed to be adjusting to traffic from
many applications

51

Conclusions

* |/O problems can be due to file system issues or application issues
— Transient or long-term issues

« Automatic tuning is complex due to interdependencies among multiple
software layers

— Too many combinations

* Open research problem - automating 1/O performance tuning

Contact: Suren Byna (SByna@Ilbl.gov)

52

