

BERKELEY LAB Towards A Practical Provenance Framework for Scientific Data on HPC Systems

Runzhou Han, Suren Byna* and Mai Zheng

Dept of Electrical and Computer Engineering, Iowa State University * Lawrence Berkeley National Labs

20th USENIX Conference on File and Storage Technologies

> FEBRUARY 22-24, 2022 SANTA CLARA, CA, USA

www.usenix.org/fast22

Motivation

- A need for data provenance in HPC scientific workflows
 - Workflow & scientific data reusability, scientific data lineage tracking, workflow optimization
- Challenges
 - The scientists' diverse needs is unclear
 - The variety of the workflow characteristics (e.g., different I/O interfaces and file formats)

Example 1: DASSA, an acoustic sensing workflow [1]

Example 2: Top Reco, an ML workflow for top quark reconstruction [2]

• A gap between the HPC data provenance and existing solutions

Figure 2: PROV-IO framework

Preliminary Results

- Vague provenance model
- Incompatible provenance software on HPC environment
- Limited transparency

Software	Туре	Base Model	Environment	Language	Transparent?
Karma	Middleware	OPM	Cloud	Java	Yes
Komadu	Provenance system	W3C PROV-DM	Cloud	Java	No
Tanerna	Workflow system	W3C PROV-DM	Desktop	Java	Hybrid
ProvLake	Provenance system	W3C PROV-DM	Cloud	Python	No

Table 1: Existing Provenance Software for Scientific Workflows

Methodology

- Study variant workflows and their providers' provenance needs
- Propose a provenance model for HPC data provenance
- Build a provenance framework
- Provenance Tracking for capturing diverse I/O operations
- Provenance Storage for persisting the captured provenance information as standard RDF triples [3]

Lineage Lineage (a)

Number of Epochs

(b)

Figure 3: Performance of Provenance Tracking. (a) Tracking performance of DASSA. (c) Tracking performance of Top Reco. In the two figures, tracking performance is measured with normalized workflow completion time with a baseline of 1

- In DASSA workflow, the maximum provenance tracking overhead is about 5.2% when tracking the provenance of the most fine-grained data object in HDF5 (Attribute lineage)
- In Top Reco workflow, the maximum provenance tracking overhead is 13.2% when the number of epochs is 30. With more training epochs, provenance tracking overhead becomes negligible

Future Work

- Fully implement PROV-IO Syscall Wrapper
- Improve PDB & User engine
 - Optimization existing database solutions and PROV-IO user APIs

• User Engine for querying and visualizing provenance

Figure 1: PROV-IO Model. An extension of W3C PROV-DM

Acknowledgements

 This work was supported in part by NSF under grant CCF-1910747. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of NSF

References

[1] Bin Dong, Verónica R. Tribaldos, Xin Xing, Suren Byna, Jonathan Ajo-Franklin, Kesheng Wu. DASSA: Parallel DAS Data Storage and Analysis for Subsurface Event Detection. In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2020.

[2] A graph neural network-based top quark reconstruction package.

https://indico.cern.ch/event/932415/contributions/3918265/attachments/2086561/3505362/GN N Top Reco - Allison Xu.pdf

[3] Resource description framework. <u>https://www.w3.org/RDF/</u>

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

