
HDF5 Cache VOL: Efficient and Scalable Parallel
I/O through Caching Data on Node-local Storage

Huihuo Zheng
Argonne National Laboratory

huihuo.zheng@anl.gov

Venkatram Vishwanath
Argonne National Laboratory

venkat@anl.gov

Quincey Koziol
Amazon.com, Inc

qkoziol@amazon.com

Houjun Tang
Lawrence Berkeley Laboratory

htang4@lbl.gov

John Ravi
North Carolina State University

jjravi@ncsu.edu

John Mainzer
The HDF Group

mainzer@hdfgroup.org

Suren Byna
Lawrence Berkeley Laboratory

sbyna@lbl.gov

Abstract—Modern-era high performance computing (HPC)
systems are providing multiple levels of memory and storage
layers to bridge the performance gap between fast memory and
slow disk-based storage system managed by Lustre or GPFS.
Several of the recent HPC systems are equipped with SSD
and NVMe-based storage that is attached locally to compute
nodes. A few systems are providing an SSD-based “burst buffer”
intermediate storage layer that is accessible by all compute nodes
as a single file system. Although these hardware layers are
intended to reduce the latency gap between memory and disk-
based long-term storage, how to utilize them has been left to the
users. High-level I/O libraries, such as HDF5 and netCDF, can
potentially take advantage of the node-local storage as a cache
for reducing I/O latency from capacity storage. However, it is
challenging to use node-local storage in parallel I/O especially
for a single shared file.

In this paper, we present an approach to integrate node-
local storage as transparent caching or staging layers in a
high-level parallel I/O library without placing the burden of
managing these layers on users. We designed this to move data
asynchronously between the caching storage layer and a parallel
file system to overlap the data movement overhead in performing
I/O with compute phases. We implement this approach as an
external HDF5 Virtual Object Layer (VOL) connector, named
Cache VOL. HDF5 VOL is a layer of abstraction in HDF5 that
allows intercepting the public HDF5 application programming
interface (API) and performing various optimizations to data
movement after the interception. Existing HDF5 applications can
use Cache VOL with minimal code modifications. We evaluated
the performance of Cache VOL in HPC applications such as
VPIC-IO, and deep learning applications such as ImageNet and
CosmoFlow. We show that using Cache VOL, one can achieve
higher observed I/O performance, more scalable and stable I/O
compared to direct I/O to the parallel file system, thus achieving
faster time-to-solution in scientific simulations. While the caching
approach is implemented in HDF5, the methods are applicable
in other high-level I/O libraries.

Parallel IO, storage hierarchy, node-local storage, HDF5,
Caching, Prefetching, deep learning

I. INTRODUCTION

Large scale scientific simulations usually generate and ana-
lyze massive amounts of data. A critical requirement of these
applications is the capability to move and manage the data ef-
ficiently. To bridge the performance gap between memory and
traditional global disk-based file systems, many pre-exascale

supercomputers have been adding a complex storage hierarchy
including node-local storage (NLS) with SSDs, NVMe, and
burst buffers. It has increasingly become common to include
NLS in modern supercomputer design. We show in Fig. 1
a high-level architecture of compute nodes with NLS and
global (remote) storage using parallel file systems (PFS), such
as Lustre and IBM’s Spectrum Scale (previously known as
GPFS). In Table I, we show a list of recent supercomputers
and their storage options for both NLS and PFS.

Fig. 1. Typical HPC storage hierarchy: node-local storage for short-term and
fast storage of data and a global parallel file system for long-term storage.

TABLE I
STORAGE HIERARCHY OF VARIOUS PRE-EXASCALE SYSTEMS

System file System Node-local storage
Theta/ThetaGPU [1] Lustre 128GB SSD / 15TB NVMe

Sierra [2] GPFS 1.6TB NVMe
Summit [3] GPFS 1.6TB NVMe
Fugaku [4] Lustre 1.6 TB NVMe (per 16 nodes)

The global PFS storage layer managed is separated from
the compute nodes. I/O access thus involves transferring data
through an interconnect. Whereas the NLS devices are directly
attached to compute nodes through SATA or PCIe connections,
offering higher bandwidth. Each host compute node can assess
its own NLS device locally without going through the inter-



connect. Scientific applications and I/O libraries development
has traditionally focused on data movement directly between
the compute nodes memory and the global storage layer, and
has not made full usage of the complex storage hierarchy. It is
thus crucial to study how to integrate other storage layers such
as NLS into the data movement workflow to improve overall
I/O performance at scale.

Compared to a global PFS, NLS has the following prop-
erties: first, because accessing data on the NLS does not
need to go through an external interconnect, it avoids network
contention from other jobs running concurrently on the system,
resulting a much more stable I/O performance with better
scalability. Second, the aggregate I/O bandwidth of all the
NLS in the entire system is typically higher than the peak
bandwidth of the PFS. For example, Theta has an aggregate
write bandwidth of about 3 TB/s for SSDs, which is 5 times of
the Lustre peak bandwidth of about 650 GB/s [1]; Summit has
an aggregate write bandwidth of 9.7 TB/s for NVMe, which
is about 4 times of the GPFS peak bandwidth (2.5 TB/s) [3].
While the global PFS is shared by all concurrently running
jobs, NLS is often exclusively used by the job running on the
compute nodes. This allows using all available bandwidth of
NLS without interference. However, since NLS devices are
not directly connected with each other, it is challenging to
incorporate them into parallel I/O workflow. Besides, NLS
are usually accessible only during job allocation; therefore,
one has to manually move data to the PFS before the job
finishes. Due to these complexity of hardware in storage layers
and the lack of existing software solutions, to the best of our
knowledge, NLS is still used mostly as a local scratch space
for storing data temporarily and serves as a slow memory
extension to DRAM on the compute nodes.

To take full advantage of the NLS layer, there is a necessity
for simple software solutions that are transparent in using NLS
for caching data both in the write and read directions and
for moving the data between the NLS and the PFS without
user involvement. To achieve this goal, we present in this
paper an approach to integrate NLS as an intermediate storage
layer for caching data temporarily in parallel I/O workflows.
Specifically, for write, we stage the data to the NLS, and then
migrate them to the PFS asynchronously using background
threads. This allows the data migration from NLS to PFS to
overlap with the computation, resulting in reducing a large
portion of I/O overhead. For parallel read, we cache the data
to the NLS when first time they are read from the PFS and
read them directly from the NLS for future requests.

One challenge in using NLS is how to unify all the
storage devices into a single piece of storage layer to allow
efficient remote access of other compute nodes’ storage. This
is crucial especially for the read direction. Many approaches
were proposed to address this challenge. BurstFS [5] and
a follow-up library called UnifyFS [6] are user-level file
systems proposed for unifying NLS, both of which require a
separate file system installation. In UniviStor [7], the authors
proposed an MPI-IO abstraction layer (ADIO) [8] for handling
NLS as a single layer. However, both UnifyFS and UniviStor

intercept the POSIX IO or MPI-IO interfaces and require
users to launch servers as another job running concurrently on
separate CPU cores to instantiate the user-level file systems.
Many supercomputers unfortunately do not support such a
framework. In this paper, we proposed a shared memory-
mapped approach. We create files on each NLS device and
map them into the processes virtual memory using mmap; we
then expose that local memory-mapped storage space to all
the compute nodes through an MPI Window, which allow us
to perform I/O operations on the shared storage space through
one-sided remote memory access (RMA). There is no need to
run a separate file system server in this approach.

We implement the whole framework in the HDF5 [9]
library as an external passthrough Virtual Object Layer (VOL)
connector named Cache VOL [10]. The VOL is an abstraction
layer within the HDF5 library that intercepts object-level
API operations on HDF5 files (such as “file open”, “dataset
write”, “group create”, etc) and forwards those operations to
plugins, called “VOL connectors” [11]. These connectors are
dynamically loadable at runtime using environment variables
and enable third-party developers to build customized storage
solutions for HDF5 users without having to change application
code. Using the VOL framework, we hide all the complexity
of intermediate data movement inside the library, such as data
caching and staging, data migration between the NLS and the
PFS. Specifically, data staging is performed within Cache VOL
itself, whereas the asynchronous data migration is performed
by stacking Cache VOL with another VOL connector, Async
VOL [12], [13].

Cache VOL will benefit applications with heavy check-
pointing I/O, as well as applications that involves repetitive
intensive read, such as machine learning and deep learning
applications. We demonstrated the benefits of using Cache
VOL in three applications, VPIC-IO [14] for check-pointing
I/O, AlexNet and CosmoFlow [15] for deep learning train-
ing. With Cache VOL, we achieve higher and more scalable
observed I/O rate and reduce the overall time-to-solution.

Major contributions of this work are summarized as follows:

• We propose a framework to combine caching with asyn-
chronous data migration to hide I/O overhead behind the
computation and achieve efficient parallel I/O at scale.

• We propose a memory-mapped share file system to unify
all the NLS devices into a single piece of storage layer,
allowing easy and efficient access of remote nodes’ NLS.

• We implement the framework in an HDF5 VOL connec-
tor, deploying which requires no change or very minimal
changes of the code.

• We demonstrate the effectiveness of caching and asyn-
chronous data migration framework in traditional HPC
simulation applications and deep learning applications.

The remainder of the paper is organized as follows. We
first discuss the background on the HDF5 library and VOL in
Section II. We then outline the design and implementation of
Cache VOL in Section III, and present performance evaluations
on leadership-class supercomputers such as Theta/ThetaGPU



and Summit, in Section IV. Finally, we discuss related works
in Section VI and conclude the paper in Section VII.

II. BACKGROUND

A. HDF5 and Virtual Object Layer (VOL)

HDF5 is a popular high-level I/O library that provides
an API to store and retrieve data [9], [16]. HDF5 uses
principles of a self-describing file format, where metadata that
describes the data is also stored with the data. The data objects
(called Datasets) are “decorated” with metadata objects (called
Attributes). The objects are stored in Groups in a hierarchy
that is similar to those on Unix file systems, with a “Root”
directory as the top directory. HDF5 has been used heavily
by scientific applications at various supercomputing facilities
[17]. HDF5 provides parallel I/O using MPI-IO [18], [8].
Using the optimizations provided by MPI-IO, HDF5 provides
a portable file format for parallel applications on HPC systems.

While HDF5 is heavily used, storage hardware architectures
as well as software systems such as object data management
systems (i.e., Amazon S3) have been transforming scientific
data management. To allow HDF5 users to take advantage
these advancements, HDF5 library recently added a new
feature, called Virtual Object Layer (VOL). The VOL infras-
tructure allows external library developers to intercept the
HDF5 API and redirect I/O calls to use alternate storage
methods. For instance, HDF5 VOL “connectors” are available
to access a new HPC-oriented object data management system
called DAOS [19]. Another connector is available to perform
I/O asynchronously, which allows overlapping I/O with com-
putation phases using background threads [13].

HDF5 VOL connectors can be categorized as to types:
terminal and passthrough. The terminal VOL connectors in-
tercept the API and then store data on hardware, typically
in a different file format than that of HDF5. For instance,
the DAOS VOL connector is terminal, that uses DAOS ob-
ject format to store HDF5 objects. On the other hand, the
asynchronous I/O VOL connector is a passthrough VOL that
uses the HDF5 “native” VOL connector as the terminal VOL
for storing the data in the HDF5 file format. Similar to the
asynchronous I/O VOL connector can use the native VOL
connector, multiple VOL connectors can be stacked one top
of another. In this paper, we introduce Cache VOL stacking on
top of the asynchronous I/O VOL connector, which then uses
the native VOL connector maintaining the HDF5 file format
to store the data on PFS.

III. DESIGN AND IMPLEMENTATION OF Cache VOL

We have a set of design goals for Cache VOL:
• The application shall be able to call the same I/O func-

tions in a similar way as if it was directly dealing with
memory and global storage. All the complexity such as
data caching and data movement between the NLS and
PFS should be done inside the I/O library and be hidden
from the users.

• The need for additional hardware resource inside the li-
brary should be kept minimal and controllable if possible.

For example, one should avoid hidden memory allocation
and memory copy as much as possible. We also would
like to avoid running any kinds of background server as
that may need dedicated computing resource. The appli-
cation should be able to run with similar configurations
as before.

• The application should be able to adopt the framework
with minimal code change, even without recompiling
the code. This will significantly reduce the amount of
efforts in software development and maintenance, partic-
ular for those applications with multiple layers of I/O
software stack. For example, E3SM [20] uses netCDF
[21] which then calls HDF5 as a lower level backend;
Python workloads typically use h5py [22] which is a
Pythonic interface for HDF5.

• The framework should be portable to all architecture
platforms. Different systems may have different hardware
configurations. The framework shall depend only on
universal properties, such as namespace and capacity of
NLS. This information should be easily obtainable.

• The framework shall, to large extent, also be detached
from the lower level I/O library. In the context of HDF5,
we choose to implement the framework as an external
VOL plugin rather than integrating it into the HDF5
library. From the developer perspective, this makes li-
brary maintenance easier; from the user perspective, the
framework is less dependent on the version of the HDF5
library pre-installed in the system.

In the following, we will discuss the details of our design
and implementation. Even though our actual implementation
is done in the context of HDF5, the framework can be
implemented in other generic I/O libraries as well; except that
in HDF5, the VOL framework provides us an easy way to
achieve all the design goals above.

A. Parallel write

In the write direction, data is transferred from the compute
node memory to the PFS storage. We use the NLS as a
cache to the PFS. Specifically, for each write request, data is
written to the NLS and then flushed to the PFS storage. The
flushing process (data migration) shall be done asynchronously
in the background to allow hiding majority of the I/O overhead
behind the computation. If there is enough computation to
overlap with the data migration, the whole process shall appear
as if the application is written data to a low latency PFS. The
whole process is schematically shown in Fig. 2, where the red
solid arrows denote writing data to the NLS cache; and the
blue dash arrows denote the background data migration.

Regarding the background data migration, there are two
potential options: (1) using an asynchronous write function
from the I/O library, such as MPI File iwrite in MPI-IO;
(2) using background threads to perform I/O while the main
threads are doing computation. One can have a task pool. For
each write request, the application writes the data to the NLS
and adds a data migration task to the pool; the library then
executes the data migration tasks from the pool one by one in



Fig. 2. Dataset write in Cache VOL. The data in the write buffers are copied
to the node-local storage first, and then migrated to the parallel file system
asynchronously by background threads in Async VOL. Data migration overlaps
with the compute work right after data has been staged to the node-local
storage, resulting a higher observed write rate.

the background. The write function call returns right after the
data has been written to the NLS cache without waiting for
the data migration to finish. In this sense, the write function
call appears as a semi-blocking call. The write buffers are
immediately reusable for other purposes after the function
returns.

The above framework can be implemented in any I/O
libraries through intercepting the write function. In the case
of HDF5, we implement the whole process in Cache VOL as
follows:

Data staging: Each process creates a file on the NLS for
staging data. When a dataset write function (H5Dwrite) is
called, each process writes the data to the file on the NLS
through POSIX I/O and adds a data migration task to the task
pool. The task contains relevant information such as the file
space ID, memory space ID as well as the offset of the staging
file at which data was written. The task pool is managed in a
first-in-first-out fashion.

Data migration: HDF5 Async VOL provides an asyn-
chronous dataset write function implemented through back-
ground threads. We directly use the asynchronous dataset write
function to perform the data migration (see Fig. 2). The VOL
framework allows us easily to adopt Async VOL into the
workflow simply through stacking it under Cache VOL.

In order to avoid uncontrollable increase of the memory
footprint, we use memory map to avoid explicit extra memory
allocation. We use mmap to map the files on the NLS into
the virtual memory of the system, and then use a pointer to
address the data on the NLS (pmmap in Fig. 2), without reading
the data into a memory buffer. With mmap, memory mapped
files are loaded into memory one entire page at a time. The
system will dynamically evict data in previous pages if the
memory is not enough.

To guarantee all the data are flushed to the PFS before the
application ends, we wait for all the asynchronous tasks to
finish in the close functions such as dataset close, group close,
and file close.

Finally, we want to point out that with the background
threads approach, the data migration might potentially compete
with other parts of the simulation for computing resource.

However, given the fact that modern supercomputers are
mostly heterogeneous, if majority of the compute works can
be offloaded into accelerators, dedicating one thread for each
process on the host for I/O shall not be an issue. Data
migration involves MPI I/O which uses the interconnect re-
source. This might potentially interfere with any concurrent
MPI communication in the simulation. Understanding the
potential performance impact because of resource contention
in asynchronous I/O is one of our future research topic.

B. Parallel read

In the read direction, data is transferred from the PFS to
the compute node memory. To incorporate the NLS into the
workflow, one can prefetch the data from the PFS and cache
it to the NLS, so that the application can read data directly
from the NLS when actual read happens. However, this generic
case requires us to be able to efficiently predict what data
the future requests will read, which is a very challenging
research topic. While we intend to support this generic case
in Cache VOL, in this paper, we limit our study to a simpler
repetitive read scenario, in which the application reads the
same dataset multiple times, and we focus on improving the
I/O performance for the read in second and onward iterations.

Repetitive read is a typical I/O pattern in machine learning
applications which involve reading the same dataset tens of or
hundreds of or thousands of times. In the first iteration, as the
data is being read from the parallel file system, we cache a
copy to the NLS; then at later iterations, the application will
directly read data from the NLS. The read function call will
check whether the requested data has already been cached or
not. If so, it will read directly from the NLS; otherwise, it will
go to the PFS to get the data and then cache a copy to the
NLS. The whole process is schematically shown in Fig. 3.

The caching process can be done either synchronously
by the main threads, or asynchronous through background
threads. The latter might have less overhead for the first
iteration compared to the former, as it allows hiding the
caching behind the computation.

Compared to parallel write, the implementation for parallel
read requires more complex management of the NLS since
it generally involves accessing data from the remote node’s
storage. For example, in the case of machine learning, during
the training process, if data shuffling is used, each worker
will process different subsets of dataset at different epochs.
An epoch is defined as an iteration at which the application
reads through the entire training dataset once. Therefore, each
worker might need to read data which was previously cached
to a remote node’s storage. We have to address the following
two questions: (1) how to distribute the entire dataset among
all the NLS on different compute nodes; (2) how to efficiently
store (and load) the data to (and from) the NLS.

Regarding distributing the dataset, we simply divide the
dataset into equal partitions among all the MPI processes. Each
process will manage caching for one of the partitions.

Regarding the store and load, one can potentially use
MPI point-to-point communications, such as MPI Send and



MPI Recv to transfer data among the process. For example,
as shown in Fig. 3(a), if Process A reads in data (highlighted
as green in Process A’s RAM) that is supposed to be cached
to Process B’s NLS storage space, Process A can send the
data to Process B. Process B then writes data to its own NLS.
Likewise, if Process A needs data (highlighted as green in
Process A’s RAM)from Process B’s NLS storage space as
shown in Fig 3(b), Process B can read the data from its own
NLS storage space and send the data to Process A. However,
this might be very inefficient, since each read request needs
to involve two processes.

We propose a more efficient approach which involves mmap
and one-sided MPI communication such as MPI Put for store
and MPI Get for load. We call the whole system, a memory-
mapped shared file system. First, memory-mapped files are
created on each NLS drive. The size of each file is equal to
the size of the dataset partition to be cached. We then associate
the mmap buffer to an MPI Window, through which each
process exposes part of the NLS space to be shared to all the
other processes. All the processes can then access the shared
NLS storage space through RMA calls such as MPI Put and
MPI Get. The framework proposed here is similar to other
approaches proposed in the literature [23], [24], [25].

(a)

(b)

Fig. 3. Cache VOL parallel read. (a) on-the-fly caching data to the NLS.
Once any new data are read from the parallel file system, we cache them to
the NLS with MPI Put; (b) prefetching the entire dataset to the NLS at once;
(c) reading data from NLS with MPI Get.

Similar to the parallel write, because of the use of memory
map, no explicit memory allocation is needed. The overall
memory footprint is thus under control without incurring
an out-of-memory issue due to caching. What is more, if
the entire dataset can fit into the aggregate DRAM, all the
future reads will involve only MPI communication with no
I/O overhead. Without caching data to the NLS, however, the
future reads will still involve I/O overhead from the PFS since

a single process does not cache the entire dataset in DRAM
and it has to read data from the PFS if it is not cached already
on the RAM. This is a side benefit of using memory map,
which will be discussed in more details in Section IV.

The above whole framework of read caching can be easily
implemented in any other I/O libraries through intercepting the
read call. For HDF5, we intercept the dataset read function at
the VOL level.

C. Cache space management

When there are more than one file using the NLS, it is
important to manage the space in an optimal way to avoid any
data overriding among different files. We manage the cache
replacement in granularity of a file. Specifically, when a file is
created or opened, Cache VOL will attempt to reserve a portion
of NLS space according to the size of the dataset. If there is not
enough space available, it will attempt to remove caches from
other files to free up space according to the specified cache
replacement policy, based on the history of cache accesses
recorded. We support LRU (least recently used), LFU (least
frequently used), and FIFO (first in first out). After a cache is
removed, the next I/O requests associated to that file will be
directed to the PFS. Caches will also automatically be removed
once the file or the dataset is closed.

D. Enabling Cache VOL in an application

With the VOL framework, it is very easy for existing HDF5
applications to adopt Cache VOL without too much code
modification. One simply needs to set environment variables
HDF5 PLUGIN PATH and HDF5 VOL CONNECTOR to
specify the location of the connector(s) and which connector(s)
to be loaded in runtime and their relative order in the stacking
chain. In the example below, three connectors are stacked,
Cache, Async, and the native terminal VOL.

HDF5_PLUGIN_PATH=$HDF5_ROOT/../vol/lib
HDF5_VOL_CONNECTOR="cache_ext config=SSD.cfg;

under_vol=512;under_info={under_vol=0;under_info={}}"

The information of the NLS, such as the size and path, is
provided through a configure file, SSD.cfg in this case.

To enable caching for all the HDF5 files, one can
set the environment variables HDF5 CACHE WR and
HDF5 CACHE RD to yes. To enable it only for a spe-
cific file, one can set the values of HDF5 CACHE WR or
HDF5 CACHE RD to true in the file access property list as
follows:

/* enabling Caching VOL in parallel write */
...
hid_t pls_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(pls_id, comm, info);
H5Pset_fapl_cache(pls_id, "HDF5_CACHE_WR", True);
H5Fcreate(..., pls_id)
for(int iter=0; iter < nw; nw++) {

H5Dcreate();
H5Dwrite();
... // compute works
H5Dclose();

}
H5Fclose();



/* enabling Caching VOL in parallel read */
...
hid_t pls_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(pls_id, comm, info);
H5Pset_fapl_cache(pls_id, "HDF5_CACHE_WR", True);
H5Fopen(..., plist);
H5Dopen(...);
// prefetch the dataset
H5Dprefetch(...);
for(int iw=0; iw < nw; nw++) {

... // some works before I/O
H5Dread();
... // compute works

}
H5Dclose();
H5Fclose();

To take full advantage, it is important to insert compute
work between the dataset write call and the dataset close call to
overlap with the background data migration. This can be done
by postponing dataset close calls. Best practices are provided
in the user documentation [26].

IV. EXPERIMENTAL SETUP

We conducted performance evaluations of Cache VOL on
pre-exascale supercomputers, Theta/ThetaGPU [1] and Sum-
mit [3]. Theta is a Cray XC40, 11.7 petaflops system at
Argonne Leadership Computing Facility (ALCF), based on
the second-generation Intel Xeon PhiTM processor. The whole
system contains 4,392 Intel Knights Landing nodes intercon-
nected with Cray Aries Dragonfly. Each node has 16 GB of
MCDRAM, 192 GB of DDR4 memory, and 128 GB of SSD.
ThetaGPU is an extension of Theta. It is a 3.9 petaflops system
comprised of 24 NVIDIA DGX A100 nodes. Each node has
eight A100 GPUs, with 1 TB of DDR4 memory, 320 GB of
GPU memory, and 4 NVMe drives each of 3.84 TB.

Theta and ThetaGPU are connected to three Lustre file
systems at ALCF, including Eagle which was used for our
evaluation [27]. Eagle is a Lustre file system residing on an
HPE ClusterStor E1000 platform equipped with 100 Petabytes
of usable capacity across 8480 disk drives. It has 160 Object
Storage Targets and 40 Metadata Targets with an aggregate
data transfer rate of 650 GB/s. In our experiment, we set the
Lustre stripe size to be 16 MB, and the stripe count to be 64.

Summit is an IBM AC922, 200 petaflops system at Oak
Ridge Leadership Computing Facility (OLCF), comprised of
4,608 nodes, each contains two 22-core IBM Power9 proces-
sors and six NVIDIA Tesla V100 GPUs interconnected with
dual-rail Mellanox EDR 100Gb/s InfiniBand. Most Summit
nodes contain 512 GB of DDR4 memory for CPUs, 96 GB of
High Bandwidth Memory (HBM2) for GPUs, and 1.6TB of
NVMe that can be used as a burst buffer. Summit is connected
to an IBM Spectrum Scale filesystem providing 250PB of
storage capacity with a peak write speed of 2.5 TB/s.

We first demonstrate the benefit of using Cache VOL
in different situations using a set of microbenchmarks. We
then select three workloads to evaluate the benefits of using
Cache VOL in real applications, including a traditional HPC
application, VPIC-IO [14], with heavy check-pointing I/O, and
two deep learning applications, AlexNet [28] and CosmoFlow
[15]. Both involve intensively reading of large among of

datasets repetitively. The experiments for VPIC-IO were done
on all three systems, and the experiments for AlexNet and
CosmoFlow were done on ThetaGPU.

We run the applications with 16 MPI processes per node
on Theta and Summit, up to 2048 and 256 nodes respectively,
and 8 MPI processes per node on ThetaGPU up to 16 nodes.

A. Mircobenchmarks

1) Check-pointing microbenchmark: In the check-pointing
microbenchmark, each process writes 16 MB of data to a
shared HDF5 file at each iteration. At each iteration, we
emulate the computation by having the main threads sleep. We
vary different amount of emulated computation and measure
the observed write bandwidth:

Observed bandwidth =
Amount of data

Observed I/O time
, (1)

where the observed I/O time is the total time from creating
the file to closing the file, excluding the emulated computation
time with sleep operation. With this benchmark, we can
investigate the benefit of hidden I/O behind the compute.

2) Read streaming microbenchmark: In this read mi-
crobenchmark, we are trying to mimic the machine learning
workloads, where each process reads data from a shared HDF5
file in one batch per step. All the processes together read
through the entire dataset in one iteration which might consist
of multiple steps. The read pattern can be either sequential or
random. In the sequential case, each process will be reading
the same data in different iterations; whereas in the random
case, each process will be reading different data in different
iterations. We consider different scenarios: (1) the size of
dataset is larger than the aggregate DRAM, so that no DRAM
caching effect exists; (2) the size of the dataset is smaller
than the aggregate DRAM, so that in the second and onward
iterations, data will be directly read from the DRAM cache;
(3) the size of the dataset is smaller than the aggregate DRAM,
but there are other parts of the simulation occupy the DRAM,
resulting no DRAM caching effect.

B. Scientific Applications

1) VPIC-IO: VPIC-IO is an I/O kernel extracted from
VPIC [29], a plasma physics application for simulating the
dynamics of plasma particles. The benchmark is currently
included in h5bench [14], a suite of parallel I/O benchmarks
or kernels representing I/O patterns that are commonly used in
HDF5 applications on high performance computing systems.
During the simulation, the application iteratively writes a large
amount of check pointing data with a regular I/O pattern. There
are a total of 8 million particles per process. Each process
writes 8 properties associated with each particle, with a total
of 256 MB, to a single shared HDF5 file.

2) AlexNet: AlexNet is a 2D convolutional neural network
model, which was one of the first deep networks proposed
for ImageNet classification [28]. The network contains eight
layers, five convolutional layers with filters of size 11 × 11,
5 × 5 and 3 × 3, and three fully connected layers of size
4096. The datasets contain about 1.2 million images of 1000



categories. The goal is to train the CNN model to be able to
classify the images. The datasets are stored as raw images.
We preprocessed and stored them in single HDF5 file as a
multiple dimensional array (1281167, 224, 224, 3) of uint8
datatype. The HDF5 file is about 180 GB. The AlexNet model
is implemented using TensorFlow [30] with Horovod [31] for
data parallel training at scale. The dataset is loaded from the
HDF5 file with h5py and fed to the model through tf.data
Pipeline [32] during the training. The entire dataset is loaded
multiple times repetitively, one per epoch.

3) CosmoFlow: CosmoFlow is a 3D convolutional neural
network model for learning the universe at scale [15], [33].
The model is implemented in TensorFlow Keras [30] with
Horovod [31] for data parallel training at scale. The datasets
contain 524288 samples for training and 65536 samples for
validation. Each sample is a four dimensional array of size
(128, 128, 128, 4) which is a subset crop of a full universe
image (512, 512, 512, 4). The samples are initially stored in
TFRecord format. We stored all of them in single shared HDF5
files as multiple dimensional arrays. The sizes of the HDF5
files are 8 TB and 1 TB respectively for training and validation.
We also added support to the data loader allowing loading
data from the HDF5 files with h5py and feeding to the model
through tf.data Pipeline [32] during the training.

V. RESULTS

To demonstrate the benefit of using Cache VOL, we compare
the performance of Cache VOL with baseline HDF5. We report
either the observed I/O rate or the overall time-to-solution.

A. Microbenchmarks

1) Check-pointing benchmark: We run the benchmark on
Theta with 8 nodes, 16 processes per node. Each process is
writing 16 MB data to a shared HDF5 file 8 times per iteration.
The total number of iterations is 32. We vary the amount of
compute per iteration. The baseline for writing this amount
of data directly to the PFS is 112.35 seconds. It is shown
in Table II that as we increase the amount of compute time,
there is more overlap between the data migration and compute;
the observed write time thus decreases. In particular, if the
compute / IO ratio is larger than 1, the data migration is
completely hidden behind the compute, resulting an observed
write bandwidth, 4330 MiB/sec, which is close to the pure
SSD write bandwidth, 4420 MiB/sec. Therefore, in order for
Cache VOL to perform well, the application needs to have
sufficient compute to overlap with data migration.

2) Data streaming benchmark: The results in Table III
show performance improvement with Cache VOL in different
scenarios compare to the baseline. With Cache VOL, data is
cached to the NLS at first iteration, and read directly from
there; with baseline, data is read directly from the PFS.

The experiments in (a) were performed on a single-gpu
node on ThetaGPU, which has 128 GB DRAM and 15.36
TB NVMe. First, even with 256 GB dataset which is larger
than the size of DRAM, Cache VOL still functions well. This
shows that mmap is indeed able to map files larger than the

DRAM into the virtual memory. In this case, there is no
DRAM caching and data is read from the PFS at each iteration
for the baseline, or read from the NVMe drive if Cache VOL
is used. With Cache VOL, one achieves 1.5 - 2x higher read
bandwidth than the baseline because NVMe has a higher read
bandwidth than Lustre for both sequential and random read.

The experiments in (b) and (c) were performed on four
Theta nodes, each node has 192 GB DRAM and 128 GB SSD.
The size of the dataset is 64 GB which can be cached entirely
into DRAM if no other parts of the application are competing
for the memory. This is exactly the case for (b). DRAM
caching effect exists in the second and onward iterations, in
which the sequential read is essentially reading data from
the DRAM cache. For the random read in the baseline case,
majority of data is still read from the PFS, whereas in the
Cache VOL case, data is obtained either from the local node’s
DRAM through memory copy or from remote node’s DRAM
through MPI Get, resulting a read rate of 13.5GB/sec much
higher than the baseline read rate. Therefore, Cache VOL can
take better advantage of the DRAM caching effect for the
random read when the dataset is small. This is the reason we
see improved performance in AlexNet and CosmoFlow when
Cache VOL is used.

In (c), we purposely read a lot of dummy files at each
iteration to evict the cached data on the DRAM. This is to
mimic the case where other parts of the application consume
the DRAM so that the dataset cannot be cached entirely into
the DRAM even if it is smaller than the size of DRAM. We
again see higher random read rate in Cache VOL because the
data is read from SSD and transferred to remote nodes through
MPI. This is faster than reading from the PFS.

B. VPIC-IO

We calculate the observed write rate of VPIC-IO according
to Eq. 1. We configured VPIC-IO to write 20 timesteps of
data, all to a single HDF5 file with each time step in a
different HDF5 group. We added sleep time which represents
the computation time in real application runs, that is sufficient
for the data migration from NLS to PFS to fully overlap with,
which is typical with the VPIC application. In these experi-
ments, we have set the sleep time to be 200 seconds on Theta
and 20 seconds on Summit. In an actual VPIC simulation,
computation time is typically more than 1000 seconds per
iteration [29]. It is a future research topic to see whether
the sleep function is a good substitute for computation. Real
computation could impact the work of background threads
that are being used for data migration as we have mentioned
in III. Where the background threads are placed will also
possibly be an important parameter to tune in the context of
real simulations.

In Fig. 4, we find that with caching data on the NLS, the
observed I/O rate scales linearly and eventually outperforms
the write rate of the baseline. On Summit, with caching on
NVMe, we achieved about 2 GB/sec per node with almost
linear scaling efficiency. At small scale (<128 nodes), this
is lower than the baseline, because of the lower per node



TABLE II
OBSERVED WRITE BANDWIDTH FOR THE CHECK-POINTING MICROBENCHMARK. THE TEST IS DONE ON 8 THETA NODES WITH 16 PROCESSES PER NODE.

AT EACH ITERATION (32 IN TOTAL), EACH PROCESS WRITES 16 MB × TO A SHARED HDF5 FILE 8 TIMES. THE BASELINE FOR WRITING THE SAME
AMOUNT OF DATA DIRECTLY TO THE PARALLEL FILE SYSTEM IS 112.35 SECONDS. THE COMPUTE / IO RATIO IS CALCULATED AS THE RATIO BETWEEN

THE EMULATED COMPUTE TIME AND THE BASELINE WRITE TIME. THE AGGREGATE SSD WRITE BANDWIDTH IS 4420 MIB/SEC.

Compute time (sec) 0 32 64 96 128 160 192 224
Compute / IO ratio 0 0.28 0.57 0.85 1.14 1.42 1.71 2.00

Total time (sec) 175.16 199.24 216.58 228.34 249.40 280.56 312.97 344.92
Observed wrt time (sec) 175.16 167.24 152.58 132.34 121.40 120.50 120.97 120.92

Observed wrt bandwidth (MiB/sec) 2993.63 3134.97 3436.28 3961.74 4318.86 4349.03 4333.96 4336.00

TABLE III
READ BANDWIDTH (MIB/SEC) FOR THE STREAMING MICROBENCHMARK.

EACH PROCESS READ DATA FROM A SHARED HDF5 FILE BATCH BY
BATCH. AT ONE ITERATION, ALL THE PROCESSES TOGETHER READ

THROUGH THE ENTIRE DATASET ONCE. FOR BASELINE, DATA IS READ
DIRECTLY FROM THE PARALLEL SYSTEM; FOR CACHE VOL, AT FIRST

ITERATION, DATA IS READ FROM THE PARALLEL FILE SYSTEM AND
CACHED ON THE NODE-LOCAL STORAGE, AND AT LATER ITERATIONS,

DATA IS READ DIRECTLY FROM THE NODE-LOCAL STORAGE

(a) 256 GB dataset on a single-gpu node
iteration 1 2 3 4

baseline (seq) 1648.83 1879.51 2044.39 1873.59
baseline (rnd) 1194.52 1300.26 1261.07 1285.54

Cache VOL (seq) 889.16 2684.45 3287.66 3318.28
Cache VOL (rnd) 759.74 2956.41 3372.95 3389.87

(b) 64 GB dataset on 4 KNL nodes (w/ DRAM cache)
iteration 1 2 3 4

baseline (seq) 7333.41 43543.90 108265.64 108278.99
baseline (rnd) 2761.32 2982.64 3129.56 3249.07

Cache VOL (seq) 6934.20 96640.38 95646.93 100286.40
Cache VOL (rnd) 1894.40 13568.01 13588.03 13472.66

(c) 64 GB dataset on 4 KNL nodes (w/o DRAM cache)
iteration 1 2 3 4

baseline (seq) 9136.53 9874.35 10937.79 10710.01
baseline (rnd) 2273.24 2058.01 2219.96 2167.5s

Cache VOL (seq) 3686.85 6469.02 7341.70 8122.71
Cache VOL (rnd) 1560.31 6140.09 3913.69 4398.17

bandwidth on NVMe (2 GB/sec) compared to GPFS (12
GB/sec). At large scale (> 128 nodes), however, baseline
HDF5 does not scale due to interconnect contention from
other jobs as well as the scaling bottleneck of a single HDF5
file. Caching data on NVMe, thus eventually outperforms the
baseline at large scale.

Similarly, on Theta with caching data on SSD, the observed
write rate scales linearly and achieves a write rate about 500
MB/sec per node close to the 700 MB/sec peak performance
of SSD; the baseline write rate, however, saturates at about
100 GB/sec at around 128 nodes and does not scale beyond
that. On ThetaGPU, Cache VOL already shows benefit even
at one node, because of the high bandwidth of NVMe.

C. AlexNet and CosmoFlow

AlexNet and CosmoFlow are two read-intensive deep learn-
ing applications. At each training step, each process reads
a random batch of samples from a shared HDF5 file and
performs training. All the processes together read the entire
dataset in one epoch. Data is shuffled at the end of each epoch,
resulting a random I/O access pattern. Different data are read
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Fig. 4. VPIC-IO observed write rate on (a) Summit, (b) Theta, and (c)
ThetaGPU. The number of time steps is 20. The write rate reported here
is the average over the 20 time steps. The emulated time is 20 seconds per
time step on Summit and ThetaGPU, and 200 seconds per time step on Theta.

in different epoch for each process. This minimizes the DRAM
caching effect. The training was performed on ThetaGPU with
128 Nvidia A100 GPUs. We measure the time for each training
epoch.

In Fig. 5, we show the training time per epoch for AlexNet
and CosmoFlow. We see that loading data directly from



the NLS cache reduces overall time-to-solution significantly.
Except the first epoch which involves loading data from PFS
and caching it to the NLS, the training time for later epochs is
reduced to 1/3 - 1/2. As the training typically takes hundreds of
epochs to finish, the overhead from the first epoch is negligible.
The overhead in the first iteration can potentially be removed
by performing caching asynchronously which is part of our
future work.
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Fig. 5. Improvement of training throughput by caching data on the node-local
storage: (a) AlexNet and (b) CosmoFlow. The training were done on 16 DGX
nodes with 128 Nvidia A100 GPUs.

VI. RELATED WORK

There have been many software developments for trans-
parent data movement in multiple levels of storage hierarchy,
such as Data Elevator [34], UniviStor [7]. Data Elevator uses
an HDF5 VOL plugin to intercept the I/O calls from the
application and redirects them to the burst buffer. A Data
Mover then moves the data from the burst buffer to a PFS in
the background. Data Elevator relies on a shared burst buffer
unlike Cache VOL developed in this work which is targeted at
NLS. The Data Mover runs concurrently either on a separate
set of nodes or on the same set of nodes but different cores.

UniviStor [7] was developed to efficiently manage data
movement across distributed and hierarchical storage. It in-
tegrates node-local and shared storage devices into a unified
storage space using a distributed metadata service to manage
the address space. UniviStor also supports data caching at the
fast storage and flushing them to the persistent PFS storage
at file close. Similar to the Data Elevator, a UniviStor server
needs to be started before launching the client applications
on the same set of nodes. This increases the computing

resources needed for running the application. Running Data
Mover or UniviStor server together with the application on
the same set of nodes might not be supported by the job
schedule in some systems such as Theta. In contrast to Data
Elevator and UniviStor, Cache VOL uses background threads
for data migration, which can be deployed in all platforms.
The background threads are put into sleep when there is no
I/O to avoid occupying extra hardware resources.

There are many file systems designed for shared or local
burst buffers. DataWarp [35] is an infrastructure for managing
the PCI-attached SSDs located on the service nodes as a
shared burst buffer. With DataWarp, the shared burst buffer
can be used as a cache to the PFS, a scratch space to the
application, or swap for the compute nodes [36]. BurstFS [5]
and UnifyFS [6] on the other hand, are user level file systems
which unify the NLS on all compute nodes and present a
shared namespace, enabling the applications to use NLS for
shared files. Common features for these user-level file systems
contain: intercepting the applications I/O calls and send them
to a server; a server running on the compute nodes for efficient
metadata service to locate the data segments. Besides, DAOS
(Distributed Application Object Storage) [37], [19] is an object
storage system that encapsulates data of storage stack in DAOS
containers and provides distributed transactional object store.
Cache VOL currently does not rely on any underlying unify
file system for NLS. For parallel write, the data staging process
is local to each compute node; for parallel read, we used
memory map files together with one-sided RMA to achieve
efficient remote data access. Since we only focus on sample-
based datasets and each read will select complete samples, it is
relatively simple for locating the data. However, in future, we
plan to support more generic read, which need more complex
metadata service. Cache VOL can potentially benefit from the
user-level shared file systems mentioned above.

Regarding caching data to the NLS, tf.data pipeline library
also supports caching dataset either in memory or on local
storage on the first epoch [38]. The later epoch will then
automatically read data from the cache, similar to Cache VOL.
However, the caching scheme provided by tf.data pipeline
library is local to each process. Each process also read data
only from the its own cache. Hence, it does not support remote
cache access, and cannot support generic shuffling within the
entire dataset. Insufficient shuffling might lead to potential
degradation of training accuracy, the impact of which has yet
to be investigated. Meanwhile, tf.data caching is restricted to
TensorFlow but not other frameworks such as PyTorch [39].
Cache VOL however support all frameworks as long as the
datasets are stored in HDF5 format. It is also rather straight
forward to convert other formats to HDF5.

VII. CONCLUSION

We designed and implemented an HDF5 external VOL
connector, Cache VOL, which incorporates node-local storage
into the parallel I/O workflow for data caching / staging. This
significantly improves the overall I/O performance. Specifi-
cally, we have demonstrated in various real applications that



by using the Cache VOL, one achieve higher and more scalable
I/O performance over the direct I/O to the parallel file system.
The VOL connector is designed in a way that is easy to be
adopted by application developers with minimal code change.

ACKNOWLEDGMENTS

We thank Scot Breitenfeld and Elena Pourmal from the
HDF Group for helpful discussion. This work was supported
by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under contract
number DE-AC02-05CH11231 (Project: Exascale Computing
Project [ECP] - ExaHDF5 project). This research used re-
sources of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357, as well as the Oak Ridge
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-
00OR22725.

REFERENCES

[1] “Theta/thetaGPU machine overview.” https://www.alcf.anl.gov/support-
center/theta/theta-thetagpu-overview, accessed on September 25, 2020.

[2] “Using lc’s sierra systems.” https://hpc.llnl.gov/training/tutorials/using-
lcs-sierra-system#NVMe, accessed on October 16, 2020.

[3] “Summit system overview.” https://postk-web.r-ccs.riken.jp/spec.html,
accessed on October 16, 2020.

[4] “Post-K (Fugaku) information.” https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/, accessed on September 25, 2020.

[5] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An Ephemeral
Burst-Buffer File System for Scientific Applications,” in SC ’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 807–818, 2016.

[6] “UnifyFS: A file system for burst buffers.”
https://unifyfs.readthedocs.io/en/latest/, accessed on October 18,
2020.

[7] T. Wang, S. Byna, B. Dong, and H. Tang, “UniviStor: Integrated hier-
archical and distributed storage for HPC,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 134–144, 2018.

[8] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces,” in Frontiers of Massively
Parallel Computing, 1996. Proceedings Frontiers’ 96., Sixth Symposium
on the, pp. 180–187, IEEE, 1996.

[9] The HDF Group, “Hierarchical Data Format, version 5,” 1997.
http://www.hdfgroup.org/HDF5.

[10] “Reference omitted for review purpose.” Reference omitted for review
purpose.

[11] The HDF Group, “HDF5 VOL user guide.”
https://bitbucket.hdfgroup.org/scm/hdffv/hdf5doc.git, accessed on
September 25, 2020.

[12] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li, “Enabling Transpar-
ent Asynchronous I/O using Background Threads,” in 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW), pp. 11–
19, IEEE, 2019.

[13] H. Tang, Q. Koziol, J. Ravi, and S. Byna, “Transparent asynchronous
parallel I/O using background threads,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 891–902, 2022.

[14] “H5bench: a parallel i/o benchmark suite for HDF5.”
https://github.com/hpc-io/h5bench.git.

[15] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
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