
Battle of the Defaults: Extracting Performance
Characteristics of HDF5 under Production Load

Bing Xie∗†, Houjun Tang∗‡, Suren Byna‡, Jesse Hanley†, Quincey Koziol‡, Tonglin Li‡, Sarp Oral†
† Oak Ridge National Laboratory

‡ Lawrence Berkeley National Laboratory

Abstract—Popular parallel I/O libraries, such as HDF5, pro-
vide tuning parameters to obtain superior performance. However,
the selection of effective parameters on production systems is
complex due to the interdependence of I/O software and file
system layers. Hence, application developers typically use the
default parameters and often experience poor I/O performance.
This work conducts a benchmarking-based analysis on the
HDF5 behaviors with a wide variety of I/O patterns to extract
performance characteristics under the production workload. To
make the analysis well controlled, we exercise I/O benchmarks
on POSIX-IO, MPI-IO, and HDF5 using the same I/O patterns
and in the same jobs. To address high performance variability
in production environments, we repeat the benchmarks across
I/O patterns, storage devices, and time intervals. Based on the
results, we identified consistent HDF5 behaviors that appropriate
configurations and operations on dataset layout and file-metadata
placement can improve performance significantly. We apply our
findings and evaluate the tuned I/O library on two supercomput-
ers: Summit and Cori. The results show that our solution can
achieve more than 10× performance speedup than the default
for both of the systems, suggesting the effectiveness, stability, and
generality of our solution.

I. INTRODUCTION

In high-performance computing (HPC), many domain sci-
entists manage their data via I/O libraries, such as HDF5 [1],
ADIOS [2], PnetCDF [3], etc. These libraries sit between
applications and the underlying storage systems, support a va-
riety of data structures, and maneuver toward high throughput
across multiple I/O layers. For instance, HDF5 provides par-
allel I/O services via MPI-IO interfaces, stores files on large-
scale parallel file systems such as Lustre [4] and GPFS [5],
and allows end users to handpick the specific configurations
for HDF5 internal operations (e.g. HDF5 metadata cache size
and management), MPI-IO operations (e.g. through MPI Info
object), and file systems (e.g. data layout properties). We
discuss the tunable parameters in details in Section II.

Although given the tuning options, most users still adhere
to the default configurations set by the libraries and systems,
due to a lack of expert knowledge on I/O middleware layers.
Unfortunately, such configurations, typically selected based on
heuristics rather than performance perspectives from applica-
tions, can hardly address the needs of specific applications,
especially for those that demand high performance. Instead
of delegating the performance-tuning tasks to the end users,
we choose to set the default configurations agilely rather

∗Equal contribution.

than heuristically. To this end, we study how the applications
behave via I/O libraries and how the I/O middleware layers
interact with each other and with the underlying file systems.

To achieve this overarching goal, we take HDF5 as an exam-
ple to characterize the behavior of I/O libraries in production
HPC environments. As a popular parallel I/O library, HDF5
organizes application data as datasets and metadata attributes
describing the datasets together. The layout and placement
of HDF5 datasets and metadata are configurable parameters.
In this work, we profile the performance of these generic
tuning parameters in HDF5, identify the best configurations
across I/O patterns, and implement our solution as the default
configurations in the HDF5 library. Different from previous
works on tuning I/O performance of specific systems and/or
specific applications [6], [7], [8], [9], [10], [11], we profile
the behaviors of the target I/O library based on its design
principles and search for the solution generally applicable to
various I/O patterns and supercomputer systems.

This work takes a benchmarking approach to extract the
HDF5 behaviors on the Summit and Cori supercomputers. We
conduct controlled experiments for I/O benchmarks, exercise
various I/O patterns on POSIX-IO, MPI-IO, and HDF5, and
profile I/O performance across compute nodes, storage devices
and time intervals. In the approach, we swept the parame-
ter space using 3, 328 benchmark settings with above 100
repetitions each, and eventually identified a set of effective
tuning parameters in HDF5 on dataset layout and placement,
and operations on file metadata. Based on our empirical
study of measurements, we updated HDF5 with new system-
specific parameters that lead to superior I/O performance. We
summarize the contributions below:

• We introduced a benchmarking approach to understand the
I/O performance of large-scale production systems.

• We identified efficient HDF5 alignment and file metadata
optimizations and built the chosen configurations as the
default in HDF5. Our solution is adopted by OLCF for
production use and is publicly available1.

• We evaluated the tuned HDF5 on Summit and Cori. The
results show that the tuned HDF5 achieves more than 10×
performance speedup on both Summit and Cori, suggesting
that our solution is consistently effective across systems.

1https://github.com/xiexbing/hdf5-work

https://github.com/xiexbing/hdf5-work


II. BACKGROUND

A. Parallel I/O in HDF5

The Hierarchical Data Format version 5 (HDF5) [1] is
a self-describing file format and the supporting library. By
using HDF5, scientists can manage various data structures
or objects and their corresponding metadata within a single
HDF5 container or file. Across HPC facilities, HDF5 is widely
used in scientific applications [6]. This work is built upon the
HDF5-1.10.6 release, which is the default module version on
Summit and Cori at the time of this writing.

1) HDF5 file: Each HDF5 file contains two types of data:
application data and file metadata. Typically, application data
are organized and stored as datasets, with each dataset having
its own data structure. Besides datasets, the file also contains
file metadata, including application metadata (e.g., groups and
attributes), file infrastructure information, dataset metadata
(e.g., B-trees maintaining dataset locations) and a superblock
(e.g., file identifier). In this work, we categorize file metadata
into two classes: superblock and descriptive metadata. In an
HDF5 file, when more datasets are created, the total size of
file metadata increases. Specifically, the size of superblock is
96 bytes; in typical uses (1—100 datasets in a file), the total
size of file metadata is less than 100KB.

Moreover, in a file, the locations of the superblock, the
descriptive metadata and datasets can be calculated before file
creation. In particular, the superblock is always located at the
beginning of a file and the locations of the descriptive metadata
and datasets are both configurable. This tuning allows aligning
the metadata and data with file system page boundaries,
leading to better performance on some file systems. To set
the location of datasets, users can set an alignment value. At
runtime, HDF5 places a dataset starting from the alignment
value or from its multiples depending on the lengths of datasets
in the file. By default, the alignment value is set as 2KB
to avoid file fragmentation. However, we find that, from the
performance perspective, this default setting is not optimal for
larger datasets (§III and §IV).

For the descriptive metadata, users may configure a file in
the way that the entirety of this metadata is placed after the
superblock of an HDF5 file and before all of the datasets, or
by default, let the datasets interleaved with the metadata, such
as shown in Figure 1. Moreover, HDF5 caches the entire file
metadata and offers end users the option to defer the metadata
flushing till file close.

2) HDF5 parallel write operations: In Figure 1(a), we
show an example of writing to an HDF5 file in parallel with 9
MPI processes. In particular, the file contains three datasets, in
which each of the 9 concurrent processes (Rank 0 - 8) write a
different data block in one of the three datasets of the file. The
write operation progresses in three steps. At first, each process
writes its data block in its dataset. In the 2nd and the 3rd steps,
the processes write the descriptive metadata and superblock.

Specifically, in the last two steps, users may choose to
write the metadata with multiple processes (default option),
or alternatively, with collective MPI-IO calls and write with

one process. In particular, with multi-process metadata write
option, after the slowest process completes the last byte of
its data chunk, a subgroup of the 9 processes each update
a different part of the descriptive metadata with independent
write calls. The group size is determined by the data size of
the overall dataset metadata in an HDF5 file. In Figure 1(a),
Rank 0 - 5 write dataset metadata. And after the slowest
process completes its write on its corresponding metadata,
Rank 0 updates the superblock independently indicating the
completion of the write operation. On the other hand, when
HDF5 collective metadata I/O is enabled, all 9 processes
participate in a single collective MPI write call to update the
descriptive metadata and superblock in a sequence, with only
Rank 0 performing the write.

3) HDF5 parallel read operations: As is shown in Fig-
ure 1(b), we illustrate HDF5 read operations using the file dis-
cussed in §II-A2. In summary, a parallel HDF5 read operation
progresses in three steps; the first two steps read the superblock
and the metadata; in the 3rd step, the 9 participating processes
each read its data chunk from the parallel file system.

Similar to the write operation, users can choose to read the
metadata with multiple processes (default) or a single process.
With the default mode, Rank 0 first reads the superblock with
an independent MPI-IO read call and broadcasts its completion
to the other 8 processes. Next, the 9 processes each initiate an
independent MPI-IO read call to retrieve a specific portion of
the metadata, describing the file infrastructure and the dataset
that contains its data chunk. Alternatively, when users choose
collective metadata I/O, Rank 0 reads both the superblock and
the metadata, and broadcasts the completion about the entire
file metadata to the other 8 processes.

B. I/O Systems on Production HPC Systems

1) GPFS on Summit: Summit, the fastest supercomputer
in the world between 2018 and June 2020, is an IBM-
built supercomputer and housed at the Oak Ridge Leadership
Computing Facility (OLCF). It consists of 4,608 compute
nodes, with each node containing 2 IBM POWER9 processors
(2×22 CPUs) and 6 NVIDIA V100 accelerators (6 GPUs).
Summit is connected to Alpine, the center-wide IBM Spectrum
Scale file system (GPFS). Alpine provides roughly 250 PB
of usable storage capacity and 2.5TB/s peak I/O bandwidth.
Each Summit node runs a GPFS client software stack and
provides I/O services for both metadata and data. Alpine is a
single POSIX namespace comprised of 154 Network Shared
Disk (NSD) servers. Each NSD server manages one GPFS
Native RAID (GNR) and serves as both a storage server and
a metadata server. As a GPFS deployment, Alpine absorbs
file data in parallel. Shown as Figure 2(a), for each file, GPFS
partitions its data into a sequence of equal-size data blocks
and distributes the block-sequence across an NSD-sequence
in a round-robin way. Users have no control on the block size
(GPFS block size) nor the NSD sequence. Instead, a default
GPFS block size is determined at the creation time of a GPFS
filesystem. The NSD sequence starts from a randomly-chosen
NSD server and may span over the entire server pool by



data in dataset

Rank 0 – Rank 8 
write dataset data

Rank 0 – Rank 5 
write descriptive metadata

Rank 0
writes superblock 

data in dataset data in dataset

descriptive metadata descriptive metadatadescriptive metadata

superblock

An HDF5 file resided
in application cache

(a) HDF5 write

data in dataset

Rank 0 
reads superblock

Rank 0 – Rank 8
read descriptive metadata

Rank 0 – Rank 8 
read dataset data

data in dataset data in dataset

descriptive metadata descriptive metadatadescriptive metadata

superblock

An HDF5 file resided
on a parallel file system

(b) HDF5 read

Fig. 1: Simple examples of parallel HDF5 write and read operations with 9 MPI processes

A file 

Data block 
sequence

NSD server 
sequence

b1 b2 b3 b4 b5 b6 b7 b8

b1 b2 b3 b4 b5 b6 b7 b8

GPFS block size

NSD22 NSD23 NSD24 NSD25 NSD26 NSD27 NSD28 NSD29

(a) GPFS striping policy

A file 

Lustre objects

OST sequence

b1 b2 b3 b4 b5 b6 b7 b8

Stripe Size

OST25OST24OST23

b1
b4
b7

b2
b5
b8

b3
b6

(b) Lustre striping policy

Fig. 2: Data striping policies on GPFS and Lustre deployments.

following the system-configured NSD order. In Alpine, the
default GPFS block size is configured as 16MB.

We find that when issuing large bursts (≥16MB) to write-
share an HDF5 file in parallel, the write performance is
sensitive to the dataset layout on disks: the inappropriate
configurations on alignment settings may cause a mismatch
and lead to the significant performance loss (§III-C).

Moreover, GPFS manages file system fragmentation with
subblocks. When a file size is smaller than or is not multiples
of the GPFS block size, the file will be stored in one/more
subblocks or in a number of full blocks plus some subblocks.
At the system side, GPFS merges/migrates the subblocks to
the local and/or remote NSDs to form full blocks and alleviate
the fragmentation accordingly. In Alpine, the subblock size
is 16KB. In our benchmarking analysis, we find that, for
some small writes (256KB), the appropriate configurations on
alignment values may benefit significantly from the subblock
arrangement in Alpine. We return to this issue in §III-C.

2) Lustre on Cori: We evaluate our benchmarking results
on Cori. Cori is a Cray XC40 supercomputer launched at
NERSC, comprised of 2,338 Haswell compute nodes, and
connected to a Lustre-based file store, called Cori Scratch.
Cori Scratch provides I/O services to Cori and the other
computational systems at NERSC, with 30 PB of usable disk
space and above 700GB/s peak I/O bandwidth.

On Cori, each compute node runs a Linux operating system,
which invokes the local Lustre kernel modules for two file

system services, Object Storage Client (OSC) and Metadata
Client (MDC). At the file system side, Cori Scratch is a single
POSIX namespace with five Metadata Servers (MDSes) and
248 Object Storage Servers (OSSes). In particular, each MDS
hosts a different part of the namespace; each OSS manages
one Object Storage Target (OST), with each OST configured
as a Grid-RAID. For the Lustre on Cori Scratch, each client
is configured to connect to a single MDS and 248 OSSes.

Different from GPFS, Lustre allows users to set its data
layout on disks with configurable parameters. Figure 2(b)
presents a simple example about the Lustre striping policy
on a single-shared file. In summary, a file is partitioned into
a sequence of equal-sized data blocks; the data blocks are
distributed across a sequence of OSTs in a round-robin way.
Here, the block size, the length of the OST sequence, and
the OST start index are the three configurable parameters in
Lustre, called stripe size, stripe count and starting OST.

On Cori Scratch, the default stripe count is 1 and the
stripe size is 1MB. This setting works well for small files
writing by serial programs, but parallel programs accessing
the same file from multiple processes could result in poor
performance. NERSC allows users to set their own striping and
provides a set of recommendations. In particular, for single-
shared files, the NERSC categorizes the files into five groups
based on file size and recommends each group 1 out of 4
striping configurations [12]. We discuss the impact of these
recommendations for different I/O patterns in §IV.



III. HDF5 I/O PROFILING ON SUMMIT

A. Overview

This work profiles the I/O performance of Summit super-
computer and builds the analysis upon two groups of IOR
benchmarks: dataset-layout and file-metadata experiments.
The first group studies the HDF5 performance with various
dataset layouts, i.e. various alignment settings on a file system;
the second group focuses on understanding HDF5 behavior
with various file metadata configurations. Since HDF5 uses
MPI-IO API for parallel I/O and MPI-IO in turn uses POSIX-
IO API for performing I/O operations, we measure perfor-
mance of all these layers. We chose IOR because it allows
testing POSIX-IO and MPI-IO directly. Comparing HDF5
with other APIs shows its overhead to write self-describing
metadata as well as any other overheads in writing HDF5
datasets. Our I/O profiling is done primarily on Summit,
we do see similar trends with the Lustre parallel system on
Cori, and verified the tuning parameters are effective with
applications runs on it. In summary, we design the experiments
by following three strategies.
• To ensure the experiments are well controlled, we run

IOR with consistent and strategically chosen I/O patterns.
In particular, in the dataset-layout experiments, the same
patterns exercise the POSIX-IO, MPI-IO, and HDF5 APIs
within the same job submissions. We create job scripts to
run the IOR benchmark with different I/O APIs and various
HDF5 configurations that perform a set of I/O patterns. As
they run on the same groups of compute nodes and expe-
rience similar system conditions, their relative performance
provides insights on HDF5 I/O performance tuning.

• To obtain good coverage of the I/O behaviors of scientific
applications, in the two groups of experiments, we vary
the IOR parameters on compute nodes, processes per node
(PPN), I/O burst sizes, and I/O configurations such as
alignment size, metadata modes, and stripe settings.

• To address high variability on the target supercomputing
systems, we run each experiment repeatedly for at least 100
times in multiple job submissions, across different compute
nodes, storage devices, and time intervals.

B. Benchmarking Method

We develop a performance analysis method using a statisti-
cal benchmarking methodology proposed for supercomputer
I/O systems under production load [13], [14], [15], [16],
[17]. Specifically, we design the controlled experiments on
POSIX-IO, MPI-IO, and HDF5 with various configurations for
performance tuning. We performed two groups of experiments
that each executes IOR within a benchmarking harness to
coordinate simultaneous I/O bursts from multiple cores and
nodes. Each experiment produces a set of I/O sampling data.

After the job starts, it reads a job description file, which
specifies the IOR executions with a multi-level for-loop. Each
loop varies the values of an IOR parameter on I/O APIs (in the
data-set layout experiments), or I/O patterns (e.g., read/write
data sizes, number of cores in use), or HDF5 configurations.

We submit each such job many times and execute one at a time
through job dependency setting to avoid self-interference.

Each job includes several IOR executions. Each execution
simulates a typical I/O pattern: in a job, the synchronous pro-
cesses read/write a single shared file. In particular,a number of
benchmark processes each issue a file open(), a read or write
system call, and a file close() in a sequence. The processes are
synchronized with MPI barriers before file open() and after
file close(). To avoid read-cache effects in I/O reads, each
of the read calls changes its ordering for readback. To avoid
write-cache effects in I/O writes, each of the write calls is
followed by an fsync() to flush data to the disks.

For each IOR execution, we report the end-to-end perfor-
mance from the minimum of file open() to the maximum of
file close() among the bursts; for each process in an IOR
execution, we analyze the I/O bandwidths and the times on
file open() and file close(). In addition, for each process in an
IOR execution, we also measure the times of the HDF5 I/O
calls about dataset and file metadata operations. We extract
these times from Darshan DXT logs.

C. Dataset Layouts and File System Defaults

1) Experimental Setup: We first perform the dataset layout
experiments, in which we search for the best file data layout
and parallel I/O settings in HDF5 by exercising IOR with
POSIX, MPI-IO, and HDF5. We used the default spectrum-
mpi/10.3.1.2-20200121 MPI module and HDF5 1.10.6 version
on Summit.

As a high-level I/O library, HDF5 implements parallel I/O
services using the lower-level MPI-IO operations and MPI-
IO internally uses POSIX calls. In this group of experiments,
we profile the performance of these three I/O APIs under
the same I/O patterns and in the same IOR jobs. We use
the performance measurements of POSIX and MPI-IO as the
baseline to evaluate the effectiveness of different alignment
settings on HDF5.

To identify the best dataset layout, we conduct three experi-
ments: baseline experiment, multi-block experiment, and multi-
core experiment. Each experiment evaluates the efficiency of
the parallel I/O pipelines with a different type of I/O pattern
observed in production use. Table I presents the experiments
and their parameters in detail. Specifically, in each experiment,
we vary the number of compute nodes in use (N ), processes
per node (PPN), the number of data blocks in each read/write
burst (T ), and the aggregate data size per node.
• Baseline experiment. N coordinated processes each run on

a single core from a single node and write an equal-sized
single data block with data size of W -bytes.

• Multi-block experiment. N processes each run on a single
node and in write T equal-sized blocks (in the same system
call) sequentially with W -bytes of aggregate data per node.

• Multi-core experiment. PPN × N processes each write
a single block. We use PPN cores per node and produce
W -bytes of aggregate data per node.
For each setting in an experiment, we collect 102–157

sample points across compute nodes, storage devices and



hhhhhhhhhhhExperiment
Parameter N PPN T Aggregate data size per node (W)

Baseline experiment 1 1 1KB, 16KB, 256KB, 1MB, 16MB, 256MB, 1GB
Multi-block experiment 1 4, 8, 16
Multi-core experiment

2, 8, 32, 128
4, 8, 16 1 16KB, 256KB, 16MB, 256MB, 1GB

TABLE I: Parameters and Values used in the dataset-layout experiments III-C.

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0.000

0.002

0.004

0.006

0.008

0.010

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

(a) W=16KB baseline

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0.00

0.02

0.04

0.06

0.08

0.10

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

(b) W=256KB baseline

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0

50

100

150

200

250

300

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

(c) W=1GB baseline

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0.000

0.002

0.004

0.006

0.008

0.010

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

4 blocks
8 blocks
16 blocks

(d) W=16KB multi-block

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0.00

0.02

0.04

0.06

0.08

0.10

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

4 blocks
8 blocks
16 blocks

(e) W=256KB multi-block

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0

50

100

150

200

250

300

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

4 blocks
8 blocks
16 blocks

(f) W=1GB multi-block

Fig. 3: Aggregate Bandwidths observed from the baseline and multi-block experiments using 128 nodes. We report the HDF5 results based on the specific
alignment values. For example, HD means the HDF5 runs with the default alignment setting; H16M means the HDF5 runs with alignment value set as 16MB.

time intervals. Due to the space limitation, this work mainly
presents the figures generated by the IOR instances executed
on 128 nodes and application performance on 512 nodes. For
all experiments with all settings, we see consistent and stable
patterns when scaling out. We provide all of the experimental
results in a GitHub repository1.

2) Write Performance Analysis: We summarize and re-
port the results in Figures 3, 5(a), 4 5(d). As is shown
in Figures 3(c) and 3(f), for large writes (W ≥ 16MB),
HDF5 reports two types of performance patterns: the low-
bandwidth pattern (for ≤ 4MB alignment settings, e.g.
HDF51m, HDF54m) and the high-bandwidth pattern (for
≥ 16MB alignment settings, e.g. HDF516m, HDF564m, and
HDF5256m). Specifically, for the large bursts on all write
experiments, the high-bandwidth patterns report 3×—13×
speedup. To gain a better understanding of the root causes of
the results, we look into the write-call internals: for the base-
line and multi-core experiments, we focus on the write time
of each burst generated by each participating core/process; for
the multi-block experiment, we analyze the write time of the
data block generated by each of the write calls from an MPI
rank (extracted from Darshan DXT logs).

Figure 4(c) reports the cumulative distribution function

(CDF) of the performance of 1GB bursts with one process per
node on 128 nodes (“baseline” experiment), representing the
results of individual processes/blocks on ≥16MB bursts across
write scales and three experiments. It is clear that, for the
low-bandwidth settings, each burst/block of a process reports
a longer write time. Relative to the GPFS striping policy, a
burst/block is a sequence of 16MB data chunks, when the
starting offset of the first chunk mismatches to the GPFS block
size. Each of the 16MB data chunks might be considered as
a full block and accordingly be placed on two NSD servers
and its performance is determined by the slower server. Or,
relative to the GPFS subblock policy, each 16MB chunk might
be considered as two non-full blocks and accordingly be
partitioned into a number of 16KB subblocks and distribute
among the NSDs in the system. In both of the cases, the layout
mismatch leads to the poor write performance.

As is shown in Figures 3(a), 3(b), 3(d) and 3(e), for small
writes (W > 16MB), HDF5 also delivers two types of
performance patterns, one for burst sizes 1KB, 16KB and
1MB, the other one for burst size 256KB. Specifically, for
1KB, 16KB and 1MB bursts, all of the alignment settings
report similar write performance; for 256KB bursts, 1MB,
4MB and 16MB alignment settings deliver better performance.



0.0 0.2 0.4 0.6 0.8 1.0
Write Time, Unit:Second

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

POSIX
MPIIO
HDF5
HDF51m
HDF54m
HDF516m
HDF564m
HDF5256m

(a) W=16KB baseline

0.0 0.2 0.4 0.6 0.8 1.0
Write Time, Unit:Second

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

POSIX
MPIIO
HDF5
HDF51m
HDF54m
HDF516m
HDF564m
HDF5256m

(b) W=256KB baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Write Time, Unit:Second

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

POSIX
MPIIO
HDF5
HDF51m
HDF54m
HDF516m
HDF564m
HDF5256m

(c) W=1GB baseline

Fig. 4: CDFs of the write times of a specific process in the baseline experiments. Each figure reports the write times of Rank 12 across the runs for
W=16KB, 256KB and 1GB, respectively.

Similar to the analysis of large writes, we look into the write
time of each burst/block of each process. Figures 4(a) and 4(b)
report the CDFs of 16KB and 256KB bursts on a single pro-
cess from the baseline experiments on 128 nodes, representing
the results of individual processes on 16KB and 256KB
bursts across write scales and experiments. Specifically, the
performance behaviors of 256KB bursts are similar to the
large bursts discussed above: each block/process associated
with the 1MB—16MB alignment settings delivers similarly
high performance as POSIX and MPI-IO do.

It implies that the 256KB bursts might hit another layout
mismatch issue on GPFS subblocks. We conclude that, in
HDF5, small writes (< 16MB) benefit most from the 1MB—
16MB alignment settings. We leave further study on the small-
size alignment settings around GPFS subblock size (e.g., 8KB,
16KB, 32KB, etc.) as our future work.

Moreover, we find that, for I/O writes with 128 nodes, MPI-
IO and HDF5 receive higher peak bandwidth than POSIX
does. We find that the root cause is on file open and close.
Figures 5(a) and 5(d) report the performance for the three
I/O APIS on different write scales. It suggests that, when the
concurrent file open/close scales out, POSIX reports progres-
sively poorer performance. It might originate from the file
locking in NFSv4 adopted by the GPFS file system deployed
on Alpine. In the NFSv4 semantics, MPI-IO and HDF5 may
benefit from the share reservation mechanism, which is not
supported in POSIX calls in the default implementation. We
plan to investigate this further in the near future.

In summary, we conclude that, HDF5 write performance is
sensitive to the alignment setting. Specifically, in consideration
of the performance of the file fragmentation risk in HDF5 files,
we conclude that large bursts (≥16MB) bursts benefit most
from 16MB alignment setting and small write bursts benefit
most from 1MB alignment setting on Alpine.

3) Read Performance Analysis: We report the read per-
formance in Figure 5, 5(b) shows that for the 1KB—
256MB bursts across the target read scales and experiments,
the HDF5 runs with all alignment settings reach the similar
median and peak performance as POSIX and MPI-IO do with
< 15% variances. Moreover, 1GB bursts with 64MB and
256MB alignment settings report >30% better median and

peak performance than the other settings (Figure 5(e)), but
the advantage decreases when a core initiates more read calls
(Figure 5(c)) or when more cores are used per node (Fig-
ure 5(f)). Relative to the tight boxplots shown in Figure 5(b),
we conclude that, the good performance on 64MB and 256MB
alignment settings in the baseline experiment may indicate
read bottlenecks within Summit, which is irrelevant to the
dataset layout on Alpine. In summary, we conclude that the
read performance of HDF5 is insensitive to dataset layout.

D. Tuning File Metadata Operations

We design this experiment to search for the best con-
figurations on file metadata by varying the HDF5 default
configurations and burst sizes.

1) Experimental Setup: Table II presents the parameters
and values used in this experiment. Specifically, we fix the
alignment settings as 1MB and 16MB for small (<16MB)
and large (≥16MB) bursts (discussed in §III-C), respectively.
N coordinated processes read/write D datasets in an HDF5

file. Each process runs on a single core from one node and
reads/writes a W -bytes data block in each of the D datasets.
Thus, the total data size per node/core is W×D; the total data
size of a file is W ×D×N . Moreover, in each IOR execution,
we vary the locations of the descriptive metadata in HDF5 files
(§II-A1). We alternate the options on file-metadata read/write
between default and collective metadata I/O. For HDF5 write,
we enable and disable the option of flushing the file-metadata
cache at file close.

2) Performance Analysis: We first analyze the time con-
sumption on file-metadata in HDF5 read and write. Specifi-
cally, across HDF5 configurations and read/write scales, su-
perblock read consumes ≤ 0.03 seconds; more than 76% and
82% of the superblock writes complete within 1 and 2 seconds,
respectively. It suggests when reading/writing large bursts, the
performance impact from superblock is relatively small.

To investigate the descriptive metadata cost, we take the de-
fault configuration on metadata cache (for HDF5 write), vary
the metadata locations, and alternate the read/write between
default and collective metadata I/O. Figures 6(b) summarizes
the read cost. In particular, for the descriptive metadata on
read, the read cost increases with the number of datasets; for



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
File Open Time, Unit:Second

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

POSIX_node2
POSIX_node8
POSIX_node32
POSIX_node128
MPIIO_node2
MPIIO_node8
MPIIO_node32
MPIIO_node128
HDF5_node2
HDF5_node8
HDF5_node32
HDF5_node128

(a) file open

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

(b) W=16KB baseline

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0

200

400

600

800

1000

1200

Ag
gr

eg
at

e 
Ba

nd
wi

dt
h,

 U
ni

t:G
B/

s

4 blocks
8 blocks
16 blocks

(c) W=1GB multi-block

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
File Close Time, Unit:Second

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

POSIX_node2
POSIX_node8
POSIX_node32
POSIX_node128
MPIIO_node2
MPIIO_node8
MPIIO_node32
MPIIO_node128
HDF5_node2
HDF5_node8
HDF5_node32
HDF5_node128

(d) file close

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0

200

400

600

800

1000

1200
Ag

gr
eg

at
e 

Ba
nd

wi
dt

h,
 U

ni
t:G

B/
s

(e) W=1GB baseline

POSIX MPIIO HD H1M H4M H16M H64M H256M
I/O APIs Used for Write System Calls

0

200

400

600

800

1000

1200

Ob
se

rv
ed

 R
at

e,
 U

ni
t:G

B/
s

4 cores
8 cores
16 cores

(f) W=1GB multi-core

Fig. 5: CDFs of file open and file close (5(a) and 5(d)) and Aggregate read performance for 16KB and 1GB bursts in the baseline and multi-core
experiments (5(b), 5(c), 5(e), 5(f)). In Figures 5(a) and 5(d), we combine the HDF5 performance across different alignment configurations as different alignment
settings do not affect the performance of file open and close.

hhhhhhhhhhhExperiment
Parameter

N D Aggregate data size per node (W) L C F

Fie-metadata experiment 2, 8, 32, 128 2, 8, 32, 128
16KB, 256KB, 1MB, 16MB, 64MB

0, 1 0, 1 0, 1alignment setting
1MB 16MB

TABLE II: Parameters and values used in the file-metadata experiment. We define N , W , D in Section III-D. Moreover, L presents the locations of the
other metadata in an HDF5 file; 0 means the default configuration where the other metadata is interleaved with datasets; 1 means the configuration where the
entire file metadata is placed at the file start. C suggests the use of collective I/O on file metadata; 0 is the default configuration with collective I/O disabled;
1 means collective I/O is enabled. F denotes the option on deferring the file-metadata cache flushing in HDF5 write; 0 means flushing the cache in the HDF5
write calls; 1 means flushing the cache at file close.

any given number of datasets, better performance is observed
with configurations that place the all file metadata at the
beginning of the file and use collective I/O on metadata read.

Relative to the HDF5 read process (§II-A3), when reading
the descriptive metadata with multiple processes, the coordi-
nated MPI ranks form groups, and each process group shares
the metadata about a dataset. This sharing results in worse
performance when more datasets are created or more ranks
participate in the read. Comparatively, when using collective
I/O on this metadata read, Rank 0 fetches the metadata with
a sequence of read calls, which avoids the locking conflicts
on read-sharing and benefits further on requesting fewer NSD
handlers when the entire metadata is placed at the file start
and on the same GPFS block.

Figure 6(a) presents the write cost on the descriptive
metadata. Similar to the read performance analysis, collective
metadata I/O delivers better performance on the small writes
about the descriptive metadata than the default option. This

advantage is further improved when the entire metadata is
placed at the beginning of the file.

Next, we evaluate the operations on the metadata-cache
management in HDF5 write. Specifically, we alternate the
operations on the metadata cache flushing together with the
other HDF5 configurations and measure the end-to-end per-
formance variations across the number of datasets, burst sizes
and read/write scales. Figure 6(c) reports the aggregate write
performance of 64MB bursts on 128 nodes, representing the
results of all bursts across all scales. It shows that the HDF5
write benefits from the write cache flushing at file close.

In summary, we conclude that enabling collective I/O on
file metadata write, placing the metadata at the file start, and
flushing the metadata cache at file close, delivers the best
HDF5 write performance. Moreover, placing the file metadata
at the file start and using collective I/O on metadata read
operations provides optimized HDF5 read performance.



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Write Time for Dataset Metadata, Unit: Second

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

2 ind interleaved
2 col at start
8 ind interleaved
8 col at start
32 ind interleaved
32 col at start
128 ind interleaved
128 col at start

(a) CDFs of the write cost on the descriptive
metadata

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Read Time for Dataset Metadata, Unit: Second

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 ind interleaved
2 col start
8 ind interleaved
8 col start
32 ind interleaved
32 col start
128 ind interleaved
128 col start

(b) CDFs of the read cost on the descriptive
metadata

2 8 32 128
Number of Datasets in a File

0

20

40

60

80

100

120

140

160

Ob
se

rv
ed

 W
rit

e 
Ra

te
 U

ni
t: 

GB
/s

default
non-def, ind, interleaved
non-def col front
def col front

(c) Aggregate write bandwidth observed from
64MB dataset writes on 128 nodes

Fig. 6: CDFs of the write and read cost on the descriptive metadata (6(a) and 6(b)) and Aggregate write bandwidth observed from 64MB dataset
on 128 nodes (6(c)). In Figures 6(a) and 6(b), each line presents the metadata cost for a number of datasets with two file-metadata configurations: 1. using
default or collective metadata I/O, 2. being placed at file start or interleaved with datasets. Moreover, we combine the descriptive metadata performance across
various burst sizes as different sizes do not affect the performance of descriptive metadata. In Figure 6(c), for each number of datasets, we report the HDF5
performance with three file-metadata configurations: 1. defer the metadata cache flushing at file close or not, 2. choose default or collective metadata I/O, 3.
place the metadata at file start or interleaved with datasets.

IV. EVALUATION WITH TUNED PARAMETERS

We experimented on two production systems (§II-B), and
measured the tuned HDF5 performance on three representative
I/O kernels extracted from production codes (§IV-A) and on
the extensive I/O patterns generated by IOR (§IV-B). For the
experiments on Summit/Alpine, we compare the performance
of the default and the tuned HDF5. For the experiments on
Cori/Lustre, we evaluate the performance of three settings: the
default HDF5 with the NERSC-recommended Lustre striping,
the tuned HDF5 with the NERSC-recommended Lustre strip-
ing, and the tuned HDF5 with the tuned Lustre striping. Here,
we set the tuned Lustre striping as stripe size=16MB and stripe
count=128 in consideration of the Alpine GPFS striping.

A. Evaluation with Scientific Workloads

We ran the experiments with three I/O kernels. For each ker-
nel on a target system, we configured the kernel to read/write
multiple timesteps per run. On Summit, we use 3,072 (512×6)
compute cores from 512 compute nodes and with 6 cores per
node; for Cori, we use 4,096 (512×8) compute cores from
512 compute nodes with 8 cores per node.

1) Scientific Workloads: VPIC-IO kernel2 is an I/O bench-
mark extracted from VPIC [18], a plasma physics code. It
presents the data structures of a space-weather simulation in a
multi-dimensional space. In this kernel, each MPI rank writes
256MB data to a single shared HDF5 file for 8M (8 × 220)
particles. In each experimental run, VPIC-IO kernel generates
2.3TB and 3TB data on Summit and Cori, respectively.

BD-CATS-IO2 is an I/O kernel that represents the I/O read
patterns used to analyze the particle data produced by appli-
cations such as VPIC and Nyx [19]. In BD-CATS-IO, each
MPI rank reads a different part of each dataset in an HDF5
file. In our experiments, each run reads the data generated by
VPIC-IO, i.e., 2.3TB data on Summit and 3TB data on Cori.

2https://sdm.lbl.gov/exahdf5/ascr/software.html

AMReX Benchmark3 is an I/O benchmark developed to
evaluate the write performance of the I/O patterns generated
by the adaptive mesh refinement (AMR) codes [20]. Different
from the regular write patterns as in VPIC-IO, AMR data
patterns are more dynamic: in an AMReX run, different MPI
ranks generate the data with different sizes in a timestep and
the total data size per timestep varies across timesteps. The
benchmark generates two patterns for single and multiple mesh
refinement levels.In our experiments on the target systems,
each AMReX run produces 1.1TB (single level, 3 timesteps)
and 2.7TB (multiple levels, 5 timesteps) of data in total.

2) Performance Analysis: In Figures 7(a) and 7(d), we
show the benchmark execution time of the three kernels on
Summit and Cori, respectively. It is clear that, the tuned
HDF5 delivers 1.1×—12× speedup on the mean performance
across the production codes on the target systems, showing the
effectiveness and generality of our tuned parameters in HDF5.

In particular, VPIC-IO benefits most from the tuned HDF5
and shows 12× and 7× (with tuned Lustre) speedup on
Summit and Cori, respectively. Because the 256MB per-core
data in size is a multiple of 16MB full blocks (which is equal
to the tuned block size on Summit’s GPFS and Cori’s Lustre
stripe size), maximum benefit comes from the perfect data-
layout alignment between the tuned HDF5 and the underlying
file systems. Comparatively, we observed less speedup in the
AMReX runs, suggesting that when the write bursts include
non-full blocks and these blocks cannot utilize the bandwidth
of the resources efficiently, and leading to the reduced end-to-
end benefit accordingly.

Moreover, on Cori, the runs with the tuned HDF5 and tuned
Lustre deliver the best performance for all three applications.
Relative to the fact that each code reads/writes >200MB per-
core data, we conclude that, large reads/writes obtain better
performance when stripe size and stripe count set larger. It also
indicates that, for Lustre file systems, a fine-tuned striping may

3https://github.com/AMReX-Codes/amrex/tree/development/Tests/
HDF5Benchmark

https://sdm.lbl.gov/exahdf5/ascr/software.html
https://github.com/AMReX-Codes/amrex/tree/development/Tests/HDF5Benchmark
https://github.com/AMReX-Codes/amrex/tree/development/Tests/HDF5Benchmark


deliver even better performance than the default configuration
does. We leave additional study as future work.

B. Evaluations with IOR

We generated I/O patterns using the IOR template proposed
in the file-metadata experiment (§III-D). On the target systems,
we use 512 compute nodes with M cores per node and
read/write D datasets in an HDF5 file. In each pattern, the
512×M MPI ranks each read/write a W -byte different part
in each of the D datasets; the aggregate data size of a file is
512×M×W×D. We generate I/O patterns with the randomly-
chosen file sizes between 0.1GB and 1TB and the randomly-
chosen number of datasets (D) between 1 and 200. We set the
randomly-chosen number of cores (M ) between 1 and 16 on
Summit and set M=1 on Cori.

We ran each of these patterns repetitively, between at least
3 times (up to 6 times in a few cases) on each system
to show performance variance. For each pattern on a target
system, we summarize the mean and the max of the read/write
performance for each HDF5 settings and normalize it to the
corresponding measure on the pattern with the default HDF5.

In Figure 7(b), we report the read performance on Summit.
Specifically, with the tuned HDF5, 73% and 85% of the
patterns deliver 1.5×—57× speedup on the mean and max
of the read performance. We separate the time consumption
in HDF5 read internals and find that, for a pattern, the cost on
file metadata takes up to 58% of the total read time and the
tuned HDF5 outperforms the default on this metadata 30×—
100×. It is clear that the tuned file-metadata configurations
contribute most to this performance improvement.

Figure 7(c) shows the write performance on Summit. With
the tuned HDF5, 77.5% of the patterns deliver 1.03×—
1.8× speedup on the mean write performance, suggesting
the consistent improvement of the tuned HDF5. However,
we also noticed that, on some patterns, the tuned HDF5 per-
forms worse than the default and it becomes more noticeable
when we compare the max performance. We look into the
HDF5 write internals and find that, the tuned file-metadata
configurations still achieve 42×—103× better performance
on the metadata write, but the achievement is less than 7%
of the total write times. Moreover, the results also suggest
that, for small writes, the performance improvement from the
alignment setting is limited. In consideration of the highly
variable environment and the limited repetitions per pattern,
we conclude that, small writes can benefit from the tuned
HDF5 but its performance is also largely determined by the
system conditions.

Figure 7(e) reports the read performance on Cori. It suggests
that the tuned HDF5 plus the default Lustre performs the
best. Specifically, 92.6% and 84.3% of the patterns with this
HDF5 delivers 1.05×—17.3× and 1.04—14.2× speedup on
the mean and max performance, respectively. We look into the
HDF5 read internals and find that, the cost of file metadata in
the default HDF5 settings ranges in 20%—67% of the total
read time, and with the tuned HDF5, this cost is reduced

to less than 5%. It suggests that, the tuned file-metadata
configurations contribute most to good performance.

Figure 7(f) reports the write performance on Cori, showing
that the tuned HDF5 and Lustre delivers the best performance.
In particular, 90.3% and 87% of the patterns with this HDF5
reaches 1.2×–44× and 1.2×–39× speedup, respectively. We
look into the write internals and find that the write performance
is dominated by the dataset write. Clearly, the appropriate
alignment setting plus the large stripe size and stripe count
maximize the write performance on the Cori’s Lustre.

In summary, we conclude that for small and medium I/O,
our tuned HDF5 delivers good performance across I/O patterns
and file systems.

V. RELATED WORK

First, researchers proposed various optimization mecha-
nisms in various I/O libraries. Among the HDF5 tuning efforts,
Byna et al. [7] work on tuning configurations with the HDF5
sub-filing feature and initiates parallel writes to multiple HDF5
files instead of a single-shared one. Howison et al. [8] tune
the HDF5 performance on Lustre file systems with chunked
dataset alignment setting and metadata flush. Several studies
explored tuning of various parameters using genetic algorithms
and performance modeling [9], [10], [11].

Second, at the MPI-IO layer, ROMIO [21] introduced data
sieving and collective I/O, to improve the I/O performance that
allows users to configure various “hints” of the techniques
to tune the performance. Liao et al. [22] proposed several
improvements to the ROMIO collective buffering algorithm.

Third, parallel file systems such as Lustre allows users to
customize their data layout on storage devices. Different layout
policies can lead to different I/O performance [13], [16]. For
instance, Yu et al. [23] characterized, tuned, and optimized
I/O performance on a Lustre file system. Similarly, Byna et
al. [24] showed the performance improvements with properly
set Lustre parameters matching the access patterns of VPIC.

Compared to these tuning studies that focused on optimizing
specific I/O benchmarks, our study explored setting the default
parameters by using benchmark patterns on a system and
obtained tuned parameters that can be set as new defaults for
HDF5 on different systems.

VI. CONCLUSION

To find tuning parameters that provide high I/O performance
with HDF5, we have conducted a benchmarking analysis
with controlled experiments to profile the I/O behavior under
production loads Using this approach, we identified a set of
tuned default parameters for HDF5 and demonstrated these
defaults achieve significant performance benefits for various
I/O patterns on on multiple HPC systems. We plan to extend
this work towards achieving automatic and runtime tuning by
using file system load and other I/O software parameters.

ACKNOWLEDGMENT

This research is supported by the Director, Office of Sci-
ence, Office of Advanced Scientific Computing Research, of



(a) Execution time with 512 nodes on Summit

0.6
GB

0.7
GB

0.8
GB

0.9
GB

1.0
GB

1.3
GB

2.4
GB

3.4
GB

5.4
GB

74
.8G

B
0

10

20

30

40

50

60

Re
la

tiv
e 

Re
ad

 B
an

dw
id

th

mean performance, Tuned HDF5
max performance, Tuned HDF5
relative bandwidth = 1

(b) Relative read performance on Summit

0.6
GB

0.7
GB

0.8
GB

0.9
GB

1.0
GB

1.3
GB

2.4
GB

3.4
GB

5.4
GB

74
.8G

B
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e 

W
rit

e 
Ba

nd
wi

dt
h

mean performance, Tuned HDF5
max performance, Tuned HDF5
relative bandwidth = 1

(c) Relative write performance on Summit

(d) Execution time with 512 nodes on Cori

0.1
GB

0.2
GB

0.2
GB

0.3
GB

0.5
GB

0.6
GB

0.8
GB

1.3
GB

3.0
GB

4.5
GB

6.2
GB

7.4
GB

8.8
GB

24
.9G

B

81
7.5

GB
2

1

0

1

2

3

4

5

Re
la

tiv
e 

Re
ad

 B
an

dw
id

th

mean performance, Tuned HDF5, recommended Lustre
max performance, Tuned HDF5, recommended Lustre
mean performance, Tuned HDF5, tuned Lustre
max performance, Tuned HDF5, tuned Lustre
relative bandwidth = 1

(e) Relative read performance on Cori

0.1
GB

0.2
GB

0.2
GB

0.3
GB

0.5
GB

0.6
GB

0.8
GB

1.3
GB

3.0
GB

4.5
GB

6.2
GB

7.4
GB

8.8
GB

24
.9G

B

81
7.5

GB
2

1

0

1

2

3

4

5

Re
la

tiv
e 

W
rit

e 
Ba

nd
wi

dt
h

mean performance, Tuned HDF5, recommended Lustre
max performance, Tuned HDF5, recommended Lustre
mean performance, Tuned HDF5, tuned Lustre
max performance, Tuned HDF5, tuned Lustre
relative bandwidth = 1

(f) Relative write performance on Cori

Fig. 7: Performance comparison with different I/O kernels and IOR runs on Summit (top three) and Cori (bottom three)

the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This work used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725 and resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] The HDF Group, “HDF5,” https://www.hdfgroup.org/solutions/hdf5/.
[2] ADIOS team at ORNL, “The Adaptable I/O System,” https://csmd.ornl.

gov/adios.
[3] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,

R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf:
A high-performance scientific i/o interface,” in SC, 2003, pp. 39–39.

[4] P. Braam, “The Lustre storage architecture,” arXiv preprint
arXiv:1903.01955, 2019.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in FAST, vol. 2, no. 19, 2002.

[6] “Automatic Library Tracking Database at NERSC,” https://sdm.lbl.gov/
exahdf5/papers/201810-HDF5-Usage.pdf, accessed: 2019-4-28.

[7] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning
HDF5 subfiling performance on parallel file systems,” CUG, 2017.

[8] M. Howison, “Tuning HDF5 for Lustre File Systems,” IASDS, 2010.
[9] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,

Q. Koziol, and M. Snir, “Taming parallel i/o complexity with auto-
tuning,” in SC, 2013.

[10] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel i/o autotuning with performance modeling,” in HPDC, 2014, p.
253–256.

[11] B. Behzad, S. Byna, and M. Snir, “Optimizing I/O performance of
HPC applications with autotuning,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, pp. 1–27, 2019.

[12] NERSC Documentation, “Lustre Striping on Cori Scratch,” https://docs.
nersc.gov/performance/io/lustre/.

[13] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC, 2012.

[14] B. Xie, Y. Huang, J. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and
S. Oral, “Predicting output performance of a petascale supercomputer,”
in HPDC’17, 2017.

[15] B. Xie, J. Chase, D. Dillow, S. Klasky, J. Lofstead, S. Oral, and
N. Podhorszki, “Output performance study on a production petascale
filesystem,” in HPC-IODC’17, 2017.

[16] B. Xie, S. Oral, C. Zimmer, J. Y. Choi, D. Dillow, S. Klasky, J. Lofstead,
N. Podhorszki, and J. S. Chase, “Characterizing output bottlenecks of a
production supercomputer: Analysis and implications,” ACM Transac-
tions on Storage, 2020.

[17] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. S. Vazhkudai, and F. Wang, “Interpreting write performance of
supercomputer i/o systems with regression models,” in IPDPS’21, 2021.

[18] K. J. Bowers, B. J. Albright, L. Yin, W. Daughton, V. Roytershteyn,
B. Bergen, and T. Kwan, “Advances in petascale kinetic plasma sim-
ulation with vpic and roadrunner,” in Journal of Physics: Conference
Series, vol. 180, no. 1, 2009, p. 012055.

[19] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel,
“Nyx: A massively parallel AMR code for computational cosmology,”
The Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

[20] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves et al., “AMReX: a framework
for block-structured adaptive mesh refinement,” Journal of Open Source
Software, vol. 4, no. 37, pp. 1370–1370, 2019.

[21] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in
ROMIO,” in Frontiers, 1999, pp. 182–189.

[22] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols,” in SC, 2008, pp. 1–12.

[23] W. Yu, J. S. Vetter, and H. S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” in IPDPS, 2008, pp. 1–11.

[24] S. Byna, R. Sisneros, K. Chadalavada, and Q. Koziol, “Tuning parallel
I/O on Blue Waters for writing 10 trillion particles,” CUG, 2015.

https://www.hdfgroup.org/solutions/hdf5/
https://csmd.ornl.gov/adios
https://csmd.ornl.gov/adios
https://sdm.lbl.gov/exahdf5/papers/201810-HDF5-Usage.pdf
https://sdm.lbl.gov/exahdf5/papers/201810-HDF5-Usage.pdf
https://docs.nersc.gov/performance/io/lustre/
https://docs.nersc.gov/performance/io/lustre/

	Introduction
	Background
	Parallel I/O in HDF5
	HDF5 file
	HDF5 parallel write operations
	HDF5 parallel read operations

	I/O Systems on Production HPC Systems
	GPFS on Summit
	Lustre on Cori


	HDF5 I/O Profiling on Summit
	Overview
	Benchmarking Method
	Dataset Layouts and File System Defaults
	Experimental Setup
	Write Performance Analysis
	Read Performance Analysis

	Tuning File Metadata Operations
	Experimental Setup
	Performance Analysis


	Evaluation with Tuned Parameters
	Evaluation with Scientific Workloads
	Scientific Workloads
	Performance Analysis

	Evaluations with IOR

	Related Work
	Conclusion
	References

