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Transparent Asynchronous Parallel /O Using
Background Threads
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Abstract—Moving toward exascale computing, the size of data stored and accessed by applications is ever increasing. However,
traditional disk-based storage has not seen improvements that keep up with the explosion of data volume or the speed of processors.
Multiple levels of non-volatile storage devices are being added to handle bursty I/O, however, moving data across the storage hierarchy
can take longer than the data generation or analysis. Asynchronous I/O can reduce the impact of I/O latency as it allows applications to
schedule I/0 early and to check their status later. I/0 is thus overlapped with application communication or computation or both,
effectively hiding some or all of the 1/0O latency. POSIX and MPI-1/O provide asynchronous read and write operations, but lack the
support for non-data operations such as file open and close. Users also have to manually manage data dependencies and use low-
level byte offsets, which requires significant effort and expertise to adopt. In this article, we present an asynchronous I/O framework
that supports all types of I/O operations, manages data dependencies transparently and automatically, provides implicit and explicit
modes for application flexibility, and error information retrieval. We implemented these techniques in HDF5. Our evaluation of several
benchmarks and application workloads demonstrates it effectiveness on hiding the 1/O cost from the application.

Index Terms—Asynchronous I/O, parallel I/O, background threads

1 INTRODUCTION

ITH the dawn of exascale high performance computing

(HPC) systems in the coming years, new challenges
arise for scientific data management. It is expected that an
unprecedented amount of data will be generated with the
increasing computation power. However, storing the pro-
duced data and retrieving the data efficiently are challeng-
ing tasks, as the I/O sub-system of the supercomputers has
not kept up with the pace of CPU and network speed
improvements, making it likely to become a bottleneck and
limit overall application performance.

Large-scale applications running on supercomputers
typically perform computation and I/O in phases. For
instance, in simulations, after computation of a pre-set num-
ber of timesteps, a snapshot of the data is written to storage.
Several simulations also perform checkpointing of the state
of the simulation for tolerating any application failures.
Similarly, analysis applications iterate between reading
data and analyzing it. However, HPC applications using
I/0 libraries such as HDF5 have to wait until a given 1/O
phase is complete before continuing with computations.
This synchronous 1/O causes significant overhead due to
slow performance of the disk-based file systems.
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To reduce the I/O performance bottleneck further and to
improve the efficiency of data-intensive applications by uti-
lizing fast storage layers, asynchronous I/O has become a pop-
ular and effective option. Applications can take advantage of
asynchronous operations by scheduling I/O tasks as early as
possible, overlapping them with communication and com-
putation, and check the I/O operations’ completion status
later when needed. This overlapping can allow an applica-
tion to hide some or all of the costs associated with the I/O.

Despite several existing interfaces and systems to sup-
port asynchronous I/0, most applications have yet to take
advantage of this approach. The POSIX 1/0 [1] and the MPI
I/0 [2] interfaces support asynchronous data read/write
operations through the “aio *” and “MPI I*” interfaces,
respectively. However, they are rarely used by applications
that use a high-level I/O middleware library such as HDF5,
because most middleware does not provide an asynchro-
nous interface. POSIX and MPI I/O also lack support for
asynchronous non-data I/O operations, such as file open
and close and they operate on byte offsets and sizes, requir-
ing extra effort and expertise to convert existing application
code to use asynchronous I/O features. Some high-level
I/0 libraries and data management systems, such as Data
Elevator [3] and Proactive Data Containers (PDC) [4], pro-
vide a level of asynchrony, but these systems require extra
server processes in addition to the application to move data
without blocking the client processes, at the cost of extra
computing resources and user effort.

There are several challenges to providing transparent
asynchronous parallel I/O support in a way that minimizes
changes to application code. It is critical to manage data
dependencies and retain the correct order of operations
when executing I/O tasks asynchronously, as some opera-
tions may depend on previous operations’ successful com-
pletion. For example, any data read or write operations
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Fig. 1. An overview of our proposed asynchronous I/O framework. Fcreate and Dcreate refer to file and dataset creation, respectively. Dwrite refers to
writes to a dataset. Dclose and Fclose are to close the dataset and the file, respectively. When an application’s main thread is performing compute
operations, our background thread executes operations from the "async task queue” and waits for more I/O operations. If the compute phase is

shorter, the main thread may start adding more tasks into the queue.

must only be executed asynchronously after a successful
asynchronous file create/open, and operations that need
collective communication must be executed in the same
order across all processes to prevent deadlock. Addition-
ally, to minimize the impact on the application, asynchro-
nous tasks should start execution when the application is no
longer issuing I/O operations. Finally, application develop-
ers should not be burdened with manual management of all
these operations and should have a low-effort mechanism
to take advantage of the asynchronous operations, monitor
their status, and check for errors.

To tackle these challenges, we propose an asynchronous
I/O framework that supports all types of I/O operations —
including both independent and collective parallel 1/0,
requires no additional servers, manages data dependencies trans-
parently and automatically from users, provides aggregated opera-
tion status and error checking, and requires minimal code
modifications.

Our implementation of asynchronous I/O uses back-
ground threads, as the asynchronous interface offered by
existing operating systems and low-level I/O frameworks
(POSIX AIO and MPI-IO) does not support all file opera-
tions. We have implemented this approach for the HDF5 [5]
I/0 library. HDF5’s Virtual Object Layer (VOL) allows
interception of all operations on a file and VOL connectors
can perform those operations using new infrastructure,
such as background threads.

Our VOL connector maintains a queue of asynchronous
tasks and tracks their dependencies as a directed acyclic
graph, where a task can only be executed when all its parent
tasks have been completed successfully. Collective operations
are executed in the same order as in the application, in an
ordered but asynchronous manner. To reduce overhead and
avoid contention for shared resources between an
application’s main thread and the background thread that
performs the asynchronous I/O operations, we use a status
detection mechanism to check when the main thread is per-
forming non-I/O tasks. We also provide an EventSet interface
in HDF5 to monitor asynchronous operation status and to
check errors for a set of operations instead of individual ones.

In summary, our method makes the following
contributions:

e We adopt a background thread approach that accu-
mulates I/O operations and starts their execution
when the background thread detects that the
application’s main thread is idle or performing non-
I/0 operations.

e We develop a task dependency management proto-
col to guarantee data consistency and support both
collective and independent operations.

e We provide transparent asynchronous 1/O support
to HDF5 applications, in a way that requires no more
than a few lines of code changes when using this
“implicit” mode.

e We provide the HDF5 EventSet interface to applica-
tion developers, so they can fully utilize our asyn-
chronous I/O framework with low-effort control
and error checking.

e  We show the evaluation of our implementation with
several benchmarks and applications to demonstrate
the effectiveness of the asynchronous I/O.

We have evaluated this asynchronous I/O framework on
Summit, the second fastest supercomputer in the top500 list
[6], located at the Oak Ridge Leadership Computing Facility
(OLCF) and on the Cori supercomputer at the National
Energy Research Scientific Computing Center (NERSC)
with several I/O kernels and scientific application work-
loads. Experimental results show that our method can effec-
tively hide the cost of I/O when the application is
performing non-I/O operations such as computation or
communication.

The remainder of the paper is organized as follows: We
introduce our asynchronous I/O framework’s design in Sec-
tion 2, and the implementation as an HDF5 VOL connector
in Section 2.4. In Section 3, we describe our experimental
setup and present the results in Section 4. We discuss the
relevant literature in Section 5 and conclude the paper in
Section 6.

2 ASYNCHRONOUS I/O FRAMEWORK

Asynchronous I/0 can significantly reduce the I/O time for
data-intensive applications, as the I/O operations can fully
or partially overlap with the computation and communica-
tion. It is especially effective for applications that write or
read data periodically, e.g., time-series data simulations
and analyses. In simulations, only the last step’s write or in
analysis applications first step’s read time cannot be over-
lapped and all other write or read operations can be over-
lapped. The observed 1/O cost of overlapped 1/O will be
near-zero if the cost of asynchronous I/O management is
negligible.

In Fig. 1, we illustrate the architecture of our framework.
When asynchronous I/0O is enabled, a background thread is
automatically started for each of the application’s processes.
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We intercept all I/O operations and create corresponding
asynchronous tasks. The asynchronous tasks are stored in a
queue for dependency evaluation and later execution. Our
background thread monitors the running state of the
application’s main thread, and only starts executing the pre-
viously accumulated tasks when it detects the application is
no longer issuing I/O operations. When an application is
shutting down, the asynchronous I/O framework executes
any remaining I/O operations, frees resources, and termi-
nates the background thread.

We have implemented our asynchronous I/O framework
as an HDF5 VOL connector (more details in Section 2.4), as
HDF5 is a popular I/O middleware library that is used by a
wide range of scientific applications [7], [8], [9].

In the following sections, we describe implicit and
explicit asynchronous operation modes. We also provide
details of asynchronous task management, including depen-
dency tracking, application thread status detection, and
background thread execution.

2.1 Implicit and Explicit Mode

We provide two ways for applications to use the I/O in
HDF5 - an implicit mode, which requires minimal code
changes but has performance limitations and explicit asyn-
chronous operations, which requires some code changes
but can take full advantage of asynchronous execution. In
the implicit mode, the user only needs to initiate the use of
asynchronous I/O by running the application with an envi-
ronment variable set. In the explicit mode, the application
must be modified to bundle asynchronous I/O operations
into EventSets. The explicit mode gives more control to
applications over when to execute asynchronous operations
and a better mechanism for detecting errors.

2.1.1  Implicit Mode With Environment Variable

Implicit asynchrony is the least intrusive method for applica-
tion developers to benefit from asynchronous I/0O. It allows
developers to use their existing code, without managing
asynchronous requests or explicitly waiting for operations to
complete, while transparently performing operations asyn-
chronously when safely possible. The HDF5 VOL connector
framework (more details in Section 2.4) supports implicit
mode by setting environment variables and dynamically
loading a connector: the user simply sets two environment
variables: HDF5_PLUGIN_PATH="/path/to/async_lib” to
specify the asynchronous I/O dynamic library’s location
and HDF5_VOL_CONNECTOR="async under_vol=0;under -
info={}" to specify using the asynchronous I/O framework
for I/O operations when running the application. I/O opera-
tions will then be transparently executed in a background
thread and fully managed by the asynchronous I/O frame-
work. This approach enables an application to execute 1/O
tasks asynchronously in a completely compatible manner to
its current synchronous behavior.

However, there are several limitations of the implicit
mode, as we need to guarantee data consistency for the
unmodified application. First, all read operations (including
metadata ‘get’ operations) are executed synchronously and
wait for previous implicit asynchronous operations to com-
plete before executing, to prevent the application from

using a buffer that has not been filled by a background asyn-
chronous read operation. Second, the file close call is also
synchronous and blocking, as it needs to wait for all previ-
ous asynchronous tasks to complete, ensuring that all I/O
operations have been completed before an application exits.
Third, the implicit mode has an optimistic view regarding
asynchronous task execution, as the execution of the actual
I/0O operation often happens well after its function call,
error checking and debugging becomes very difficult if not
impossible. Additionally, to allow applications to reuse or
free a buffer after a write call, we make a copy of the data
from the user’s buffer at task creation time by default, which
requires more temporary memory space before the write
task completes and the copied buffer is freed.

2.1.2  Explicit Mode With EventSet API

In the explicit mode, we provide a direct specification of
asynchronous I/O operations. As opposed to the implicit
mode, the explicit mode requires modifying an application’s
source code to replace existing I/O functions with their cor-
responding asynchronous version, but this can be done with
simple find-and-replace with minimal effort. The explicit
mode allows an application to fully use all asynchronous
/0O features, lifting the limitations in the implicit mode.

To make it easier for existing HDF5 applications to tran-
sition to this approach, and avoid managing individual
operations, we offer EventSet APIs that can track and inspect
multiple I/O operations. An event set is an in-memory
object that is created by an application, and functions simi-
lar to a “bag” — holding request tokens from one or more
asynchronous I/O operations.

To support asynchronous operations, the HDF5 API rou-
tines have been extended with asynchronous versions of
each API routine that operates on a file. These new API rou-
tines add _async as the suffix of existing routines such as
H5Fcreate (HDF5 file create) or H5Dcreate (HDF5 data-
set create), and an extra parameter to pass in an EventSet ID.

EventSet management routines are also added:
H5EScreate creates an event set which can be associated
with multiple asynchronous operations, H5ESget_count
returns the number of operations in an event set, HSEStest
checks whether there is any incomplete operations,
H5ESwait waits for operations to complete within a user-
specified time threshold, H5EScancel attempts to cancel
all operations in an event set (in-progress operations might
not be canceled), and H5ESclose closes the event set. In
Fig. 2, we show an example of converting existing HDF5
I/0 calls to corresponding asynchronous I/O calls and
enable asynchronous I/O with the event set APIs.

We recommend application developers to try their appli-
cation with the implicit mode of our asynchronous 1/O
VOL connector first, which would execute most of the write
operations asynchronously. Once they are familiar with
using the asynchronous I/O VOL connector, depending on
the requirement to control asynchronous I/O operations,
we suggest to convert their existing application code to use
the explicit mode using the EventSet APIs. The EventSet
API provides full asynchronous execution capabilities and
error handling. We currently do not fully support mixing
implicit and explicit modes, since whenever a non-async
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// Continue to computation
operations

H5ESwait (es_id,

// Finalize // Finalize

// Create an event set to track async operations

es_1id = H5EScreate();
// Synchronous file create // Asynchronous file create
fid = H5Fcreate(...); fid = HS5Fcreate_async (.., es_id);
// Synchronous group create // Asynchronous group create
gid = Hb5Gcreate (fid, ...); gid = HS5Gcreate_async (fid, .., es_id);
// Synchronous dataset create // Asynchronous dataset create
did = HS5Dcreate (gid, L) did = HS5Dcreate_async(gid, .., es_id);
// Synchronous dataset write // Asynchronous dataset write
status = HS5Dwrite (did, L) status = HS5Dwrite_async(did, .., es_id);
// Synchronous dataset read // Asynchronous dataset read
status = Hb5Dread(did, ..); status = Hb5Dread_async(did, .., es_id);
// Synchronous file close // Asynchronous file close
H5Fclose (fid); status = H5Fclose_async (fid, .., es_id);

// Continue to computation,
// Finished computation, Wait for all previous operations in the
event set to complete

// Close the event set
H5ESclose (es_id) ;

overlapping with asynchronous

HSES_WAIT_FOREVER, &n_running, &op_failed);

Fig. 2. Example code showing converting existing HDF5 code (left) to utilize

the explicit EventSet asynchronous I/0 APlIs (right).

// Check if event set has failed operations
status H5ESget_err_status (es_id, &es_err_status);

status HS5ESget_err_count (es_id, &es_err_count);
// Retrieve information about failed operations
status HS5ESget_err_info(es_id, 1, &err_info,
// Retrieve the failed operations’ API name,
printf (*'API name: %s, args: %s, file name: %s,
err_info.api_args, err_info.api_file_name,

func

printf (' 'Op counter: %$1llu, Op timestamp: %1lu’’,

(es_err_status is set to true)
// Retrieve the number of failed operations in this event set
&es_err_cleared);

arguments list,
err_info.api_func_name,

// Retrieve operation counter and operation timestamp
err_

file name, function name, and line number
line number: %u’’, err_info.api_name,
err_info.api_line_num);

name: %s,

info.op_ins_count, err_info.op_ins_ts);

Fig. 3. Error checking and reporting for asynchronous operations in an event set.

API is invoked, it can lead to synchronous execution that
blocks and waits for all previous 1/O operations to finish.
The event set functions such as H5ESwait will also not
include operations that are called with the implicit mode,
which may cause unexpected behaviors.

2.1.3 Memory Management

With asynchronous execution of I/O tasks, memory usage
becomes an aspect that must be carefully managed. For the
implicit mode write operations, a double-buffering
approach is used that duplicates the data in a temporary
buffer. The additional memory may be significant to mem-
ory-intensive applications, so we recommend applications
developers make the necessary calculations to prevent the
copied buffers from exceeding the memory limit at runtime.
For the explicit mode, we rely on the application to manage
the buffers and make sure they are not modified or freed
before the operation completes. We plan to utilize node
local storage, such as SSDs, as a temporary cache location to
replace the memory double-buffering, which would write
to the SSD first and then flush the data from there to the par-
allel file system asynchronously.

2.1.4  Error Reporting

Using asynchronous I/O comes with delayed feedback for
the status of operations. The default, synchronous, HDF5

API routines return an error status immediately, but asyn-
chronous versions of API routines only return the status of
creating the asynchronous task, as the actual I/O operation
is executed by a background thread at a future time. How-
ever, effective error reporting is critical to users when locat-
ing root causes of failures and must be provided by an
asynchronous I/O framework before users will rely on it for
production use. To achieve this, we record an error stack for
asynchronous tasks when a failure occurs, and prevent the
remaining tasks that depend on the successful execution of
the failed task from being executed, as well as also prevent-
ing the addition of more tasks to an event set with unhandled
failures. We have provided an API to query the error status
of operations in an event set, as we show in Fig. 3. Using
these API functions makes it possible for users to trace root
causes of failures from operations in an event set.

2.2 Asynchronous Task Management
2.2.1 Asynchronous Tasks

We enable asynchronous execution by creating asynchro-
nous tasks for each operation and defer its execution to a
future time. An asynchronous task object is a transient in-
memory object holding all the information needed for exe-
cuting a specific operation. It may include a copy of all its
parameters, a callback function pointer, data pointers, and
internal states such as its dependency and execution status.
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This converts a blocking I/O operation into a non-blocking
operation — once the task is created and put into the asyn-
chronous task queue, the function can return without wait-
ing for its completion. These asynchronous tasks are
internal data structures and are not exposed to users.

When the background thread begins executing I/O oper-
ations, it chooses the oldest task in the asynchronous task
queue that has either no dependent operations or all of its
dependent operations have successfully completed. This
operation then runs normally, as in the synchronous
approach, but in the background thread. After it completes,
the next task is dequeued in a similar way. More details on
deciding when to start background thread execution are
given in Section 2.3. The additional memory requirements
for managing asynchronous tasks are minimal, less than
1KB for each task and they are freed once the corresponding
operation completes.

2.2.2 Task Dependency Management

To ensure data consistency for asynchronous execution, our
framework automatically tracks and maintains the depen-
dencies of all asynchronous tasks. Tasks that have depen-
dent operations are paused until their dependencies are
fulfilled and then scheduled to run when a background
thread becomes available. This approach allows an existing
application to execute all of its I/O operations asynchro-
nously and still have confidence that they will be executed
in the correct order. This approach is useful for applications
writing checkpoint files regularly, as the I/O time can be
effectively masked by the compute time between check-
points. To determine the dependency among tasks, we
adopt a rule-based approach, which includes the following
rules [10]:

e Al I/O operations can only be executed after a suc-
cessful file create/open.

e A file close operation can only be executed after all
previous operations in the file have been completed.

e Allread or write operations must be executed after a
prior write operation to the same object.

e All write operations must be executed after a prior
read operation to the same object.

e All collective operations must be executed in the
same order with regard to other collective
operations.

e  Only one collective operation may be in execution at
any time (among all the threads on a process).

Fig. 4 illustrates the task dependencies for 7 tasks on dif-
ferent objects in one file. There are three types of tasks with
different colored boxes, the white/transparent color box
(i.e., box labeled with “1”) is a task that has no dependent
parent and can be executed at any time. The light grey color
boxes (i.e., 2,34 and 7) are tasks that have dependent
parents, based on the above rules, and must wait for its par-
ent operations to complete before being executed. The dark
gray color boxes (i.e., 5 and 6) are collective tasks that must
be executed in their original order. With these rules, it is
possible that some asynchronous tasks may not be executed
in the same order as in the application’s code. Two out-of-
order execution scenarios may occur: 1) independent (non-
collective) read operations on the same or different objects,

1
Fopen
7R
2T
| w1 I 3 :
4 b B2
., 0 -
S Py
e C\W3
A
| ovs )
S
Fclose

Fig. 4. An example of asynchronous task dependency management,
with the labeled number as their order of issue in the application. 1
(Fopen) is a regular task with no dependency; 2 and 3 (W1, W2) are
writes to objects 1 and 2, and are both dependent on the previous file
open operation; 4 (W1’) also writes to object 1 and is dependent on W1;
5 and 6 (CW3, CW4) are collective writes on objects 3 and 4, and must
be executed in the same order as in the application; 7 (Fclose) depends
on all previous operations.

and 2) independent write operations on different objects.
These two exceptions would not cause data consistency
issues and thus are allowed in our framework.

2.3 Application Thread Status Detection

As mentioned previously, there must be a mechanism to
decide when a background thread may start executing tasks
in the asynchronous task queue. Simply start executing the
tasks as soon as they enter the queue will not lead to effec-
tive asynchronous execution, as task execution could hap-
pen concurrently in the background thread and the
application’s main thread, and it is possible that the two
threads compete for access to shared resources, thus block-
ing each other’s progress. This may lead to the worst-case
scenario where the application and the background thread
execute tasks interleaved, making all the asynchronous
tasks effectively synchronous.

Our solution to this problem is to actively check the
application thread’s status. We maintain a counter that
tracks the number of accesses the application’s main thread
makes to the shared resources, and the background thread
delays its execution when it sees the counter value increas-
ing in a short time window (typically, the time gap between
consecutive accesses is at the microsecond level when the
application is actively issuing I/O operations). This value
check is done by repetitively retrieving the counter value
twice, with a sleep time in between (default 200 microsec-
onds), and only stops when the counter value does not
increase. We then infer that the application has finished its
I/0 phase and we can begin executing queued 1/O opera-
tions with a background thread.

This approach works well with all our experimental runs
in Section 4, as their I/O calls are grouped together, with
zero to a few non-HDF5 API calls in between. It does add
200 us overhead for each operation, but is negligible for
most I/O operations as they have much higher overhead.
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We also have a dynamic sleep time adjusting mechanism,
which increases the time when it detects that the application
had issued 1/0O calls during the background thread execu-
tion by checking the counter value before and after the
execution.

2.4 HDF5 VOL Connector Implementation

HDF5 [5] is a popular 1/O middleware library with a self-
describing file format. It provides an abstraction layer to
manage data and metadata within a single file. HDF5
relieves the user from manual file management such as file
space allocation and seeking specific offsets to access data.
It is used widely in many science domains to manage vari-
ous data models and is used for efficient parallel I/O in
HPC simulations and machine learning analyses [7], [8], [9].

Currently, HDF5 does not support asynchronous 1/0,
and adding asynchronous I/O support to it would benefit a
large number of existing applications, especially on exascale
computing architectures. Recent HDF5 versions provide a
new framework, called the Virtual Object Layer (VOL) [7],
[11], which enables dynamic interception of I/O operations
at runtime. The VOL framework allows third-party VOL
connectors to dynamically intercept HDF5 API calls and
implement extensions to those operations or access to new
types of storage, enabling transparent changes to applica-
tion behavior without modification of the application. The
user continues to use the same HDF5 data model where
access is done to a single HDF5 “container”, while the VOL
connector translates what operations the application per-
forms into how data is actually stored. We have imple-
mented our asynchronous I/O framework as an HDF5 VOL
connector, which can be compiled as a dynamic library and
linked to the user’s application at runtime, while remaining
separate from the installed version of HDF5.

We've chosen to use a background threading model to
implement asynchronous operations. As the number of
available CPU threads per processor has increased in the
modern CPU architecture, and applications offload some
computation tasks to accelerators such as GPUs and FPGAs,
there is frequently a surplus of CPU threads that can be uti-
lized to perform I/O operations. Additionally, new HPC
architectures and early designs for future exascale systems
support I/O forwarding, where compute nodes use a fast
network interconnect to forward I/O requests to dedicated
servers that handle them. These resources can be used to
offload I/O operations, without additional hardware or sys-
tem software modification. The background threads in our
asynchronous I/O framework are managed by Argobots
[12], a lightweight low-level thread scheduling and execu-
tion package. The threading interface in our asynchronous
framework is abstracted to replace the Argobots library
with any other libraries.

Currently we use one background thread per process for
executing asynchronous tasks. We use only a single back-
ground thread because HDF5 has a global mutex that must
be acquired at the start of all HDF5 API calls and is released
right before the function returns. Using multiple back-
ground threads would effectively have the same perfor-
mance as using one thread, as there can only be one thread
executing an I/O operation at any given time, with others

waiting for it to release the global HDF5 mutex. The back-
ground thread can affect the application’s performance if all
the cores are used by the application, so we recommend
users spare some resources for the background thread to
minimize such impact. However, as applications are start-
ing to offload the computation to accelerators such as GPUs
and FPGAs, the CPU cores are often idle during the compu-
tation phase, which the asynchronous I/O background
thread can take full advantage of. The asynchronous tasks
that are ready to be executed are pushed to the Argobots
execution stream for immediate execution.

Adding asynchronous operations to the HDF5 library
requires correctly supporting a large number and variety of
HDF5 operations, which fall into the following three
categories:

(1)  Metadata operations: These operations create or open
HDF5 objects such as files, groups, datasets, and
attributes; operations that modify existing objects
such as extending dataset dimensions, write an attri-
bute, etc.; operations that query groups such as get
the number of links it contains, get the datatype for a
dataset, read an attribute, etc.; and operations that
close objects such as close a group or a file.

(2)  Raw Data operations: An HDF5 dataset contains a col-
lection of data elements, or raw data. The main I/O
raw data operations are read or write HDF5 datasets
(i.e., H5Dwrite and H5Dread, respectively).

(3)  In-memory (local) operations: The local operations help
users manage objects but do not directly result in
actual file I/O operations such as creating or setting
property lists, IDs, dataspaces, etc. These operations
do not need to be performed asynchronously.

In addition, we utilize the new support for “future” IDs
in HDF5. A future ID is an HDF5 ID object (i.e., an hid_t)
that is returned from an asynchronous operation and has
not yet completed execution. It has an internal flag to indi-
cate that the object it refers to is not actually available and is
still being created or opened. A future ID is indistinguish-
able from a “normal” HDF5 ID from an application’s per-
spective and can be used in any HDF5 API call where a
normal ID is appropriate. If a future ID is used in an HDF5
API call that returns information to the application, as
opposed to a call that returns another ID (e.g., H5Dget_ -
space), that call will block until the future ID resolves to an
actual object and the queried information can be returned.
When a future ID’s operation completes execution, the ID’s
state is transparently updated, without changing its value
and without the application’s involvement.

3 EXPERIMENTAL SETUP

We have evaluated the performance of the HDF5 asynchro-
nous I/0 framework using I/O kernels that are representa-
tive of simulation and analysis applications as well as real
scientific workloads. We conducted our experiments on two
supercomputing platforms: Cori at the National Energy
Research Scientific Computing Center (NERSC), and Sum-
mit at Oak Ridge Leadership Computing Facility (OLCF).
Cori is a Cray XC40 supercomputer with 2,338 Intel Xeon
“Haswell” nodes, where each node consists of 32 cores and
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128 GB memory. We use the Lustre parallel file system on
Cori, which has 27 PB storage capacity, with 248 OSTs and
700 GB/s peak performance. Summit is an IBM system con-
sisting of 4,608 compute nodes, with each node containing 2
IBM POWERY processors (2 x22 CPUs) and 6 NVIDIA
V100 accelerators (6 GPUs). Summit is connected to Alpine,
the center-wide IBM Spectrum Scale file system (GPFS),
which provides nearly 250 PB of storage capacity and a 2.5
TB/s peak I/O bandwidth.

To measure the performance and demonstrate the effec-
tiveness of our asynchronous I/O framework, we have
used two I/0O kernels: VPIC-IO and BD-CATS-IO, as well as
two AMReX application workloads: Nyx and Castro. For all
the experiments, we have configured the application to
write 5 timesteps of data with ‘sleep” time in between to rep-
resent computation phases, such that the asynchronous 1/0
operations can fully overlap with it. As a result, only the
last timestep’s write time or the first timestep’s read time
plus the asynchronous I/O framework’s overhead are
observed by the application.

To compare the performance among different
approaches, we measure and report the elapsed 1/0O time
observed by the application, which is the time from the first
I/0O operation until the last I/O operation finishes, and
excludes the computation/sleep time. We ran each experi-
ment at least 10 times and report the median value. The
observed variance of different runs for the same configura-
tion is less than 10 percent. for a majority of cases. For Lus-
tre on Cori, we set the stripe count to 128 and the stripe size
is 16 MB. Each run writes to or reads from a different file to
avoid any caching effects.

3.1 VPIC-IO

The VPIC-IO kernel' is a parallel I/O kernel extracted from
VPIC [13], a plasma physics code that simulates kinetic
plasma particles in a multi-dimensional space [8]. It has a
highly regular write pattern, with each MPI process writing
eight properties for each particle. There are a total of 8M
(8 x 2%) particles, each with 8 32-bit values, for a total of
256 M B data from each process, all written to a single HDF5
file. As a fixed amount of data is written by each process,
VPIC-IO is a weak scaling test. Besides the original version
of VPIC-IO, we have also created new versions that use
asynchronous I/O in the explicit mode. For the implicit
mode, we simply set environment variables for the HDF5
and asynchronous VOL paths and run the original, synchro-
nous version of VPIC-IO.

3.2 BD-CATS-IO

The BD-CATS-IO kernel® is extracted from a parallel clus-
tering algorithm code [9], which represents the I/O read
patterns used to analyze the particle data produced by
applications such as VPIC. Its read pattern matches that of
VPIC-IO, such that data related to the particles are read
among all the MPI processes with an even distribution, and
is also a weak scaling test. We have also created new ver-
sions of the BD-CATS-IO code to use the asynchronous I/0O

1. https:/ /sdm.Ibl.gov/exahdf5/ascr/software.html
2. https:/ / github.com/glennklockwood /bdcats-io

capability. With the explicit mode, it asynchronously reads
the next timestep’s data, i.e., prefetches the data, before
processing the current timestep, allowing the background
thread to overlap I/O with the application’s computation.

3.3 Nyx

Nyx [14] is a massively-parallel adaptive mesh cosmological
simulation code that solves equations of compressible
hydrodynamics flow. Nyx uses the AMReX framework [15],
which allows for a variety of algorithms, discretizations,
and numerical approaches, and supports different program-
ming models such as MPI, OpenMP, and GPU. AMReX has
an HDF5 output option that writes out one file with the
adaptive mesh refinement (AMR) and application-specific
metadata together with the simulation data for each check-
point step. We used a simulation configuration extracted
from a Nyx run and replaced all the computation with a
‘sleep’ time between data writes, allowing us to write the
exact same amount of data with the same data structures
without having to perform the actual computation, which is
very time-consuming. Each output file has 1 refinement
level with 262144 AMR boxes, and approximately 385G'B
data per HDF5 output, which includes the names of the
components, dimension and coordinate system information,
number of grids, the location and sizes of AMR boxes, the
offsets of the data corresponding to different boxes in a flat-
tened array, and the data, etc.

3.4 Castro

Castro [16] is an adaptive-mesh compressible radiation/
MHD/hydrodynamics code for astrophysical flows. It is
also an AMReX [15] application. Similar to Nyx, we
extracted the workload from a Castro run, which writes 6
components in 3 adaptive mesh refinement (AMR) levels,
with 4096, 8192, and 49152 AMR boxes, and approximately
559G B data to an HDF5 plot file per checkpoint. Nyx and
Castro are different from VPIC-IO and have write patterns
that include both small (metadata) and large (raw data)
writes, which allow us to demonstrate the broad applicabil-
ity of our asynchronous I/O framework.

4 RESULTS

We use the results from running two I/0 kernels (VPIC-IO
and BD-CATS-IO) that perform primarily raw data opera-
tions and two real scientific application workloads (Nyx
and Castro) that have both metadata and raw data
operations with complex datatypes to demonstrate the
effectiveness and generic applicability of our proposed
asynchronous I/O framework at scale. In all the plots
below, we are showing the observed I/0 time (without any
emulated computation time). Using the original HDF5 in
the synchronous mode as a baseline, we compare the perfor-
mance of both the implicit and explicit asynchronous I/0
modes. The baseline is labeled as “HDF5”, asynchronous
I/0 in the implicit mode as “Async-implicit”, and asynchro-
nous I/0O in the explicit mode as “Async-explicit”.

4.1 VPIC-IO

In Fig. 5, we compare the observed 1/O time (without the
emulated computation time with sleep operations) of
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Fig. 5. VPIC-1O write performance comparison on Cori (top) and Summit
(bottom) between synchronous HDF5, HDF5 with implicit asynchronous
mode, and HDF5 with explicit asynchronous mode. 5 timesteps of VPIC
data are written with sufficient compute/sleep time between timesteps.
Observed 1/0 time includes the last timestep’s write time and the over-
head of the asynchronous I/0 framework for all timesteps.

VPIC-IO on Cori and Summit. As mentioned previously,
VPIC-IO writes a fixed amount of data (256 MB) per MPI
rank for 8 variables, and increasing the number of pro-
cesses/nodes also increases the total amount of the data
written. We configured VPIC-IO to write 5 timesteps of
data, all to a single HDEF?5 file with each timestep in a differ-
ent HDF5 group. For all three cases, we added sleep time,
which represents the computation time in real application
runs, that are sufficient for the I/O time to fully overlap
with, which is typical with the VPIC application. In these
experiments, we have set the sleep time to be up to 60 sec-
onds on Cori and up to 20 seconds on Summit. In an actual
VPIC simulation, computation time is typically more than
1,000 seconds [8], hence, the sleep time we used to overlap
the entire write time is reasonable. For the results on Cori,
we used 32 processes per node and increase the number of
nodes from 1 to 128; while on Summit, applications typi-
cally run with 6 MPI ranks per node to match and utilize
the 6 GPUs, which is why we chose to run VPIC-IO and all
other applications using 6 processes per node.

Comparing the observed I/O time on both systems, the
HDF5 case with synchronous I/O performs the slowest, as
expected. Asynchronous I/O with both the implicit and
explicit modes is up to 4.8X faster than writing data syn-
chronously. The performance difference between implicit
and explicit modes in this use case is minimal, as they both
execute the I/O operations asynchronously in a similar
way. For the implicit mode, the data is copied to a tempo-
rary buffer at asynchronous task creation time, while the
explicit mode can skip copying the data since the buffer is
not reused or freed by the application code. However, the
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Fig. 6. BD-CATS-IO read performance comparison on Cori (top) and
Summit (bottom) between synchronous HDF5, HDF5 with implicit asyn-
chronous mode, and HDF5 with explicit asynchronous mode. 5 time-
steps of VPIC data is read with sufficient compute/sleep time between
timesteps. Observed 1/O time includes the first timestep’s read time and
the overhead of asynchronous I/O framework for all timesteps.

data copy is a very fast memory copy operation and thus
the implicit mode performs similarly to the explicit mode.

4.2 BD-CATS-IO

The BD-CATS-IO kernel reads the data produced by the
VPIC-IO kernel. In Fig. 6, we show a performance compari-
son of BD-CATS-IO on both Cori and Summit with a vary-
ing number of MPI processes and nodes. We use sleep time
to emulate the clustering algorithm’s processing time.
Again, we used 60 seconds of sleep time on Cori and 20 sec-
onds of that on Summit between the subsequent reading of
data. This time is less than the real BD-CATS DBScan proc-
essing time [9].

In contrast to the VPIC-IO results, asynchronous I/O in
the implicit mode performs the worst, even worse than the
synchronous mode. Asynchronous I/0O in the explicit mode
offers the best performance, which is 4.9X faster than read-
ing the data in the synchronous mode. The slowness of the
implicit mode is because the read operations in this mode
default to the synchronous mode to maintain data consis-
tency. Without switching to the synchronous mode, the
non-blocking read function calls would return immediately
without filling the user’s buffer with data, while the applica-
tion assumes the data is ready and starts its procedures to
operate on the data. That will result in errors and reading
incorrect data. Therefore the implicit mode is slightly slower
than the synchronous HDF5 mode because of the added
overhead in the asynchronous task creation and manage-
ment. On the other hand, with the explicit mode, we are
able to enable asynchronous read operations to their full
potential, effectively reducing the observed I/O time.
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Fig. 7. Nyx workload write performance comparison on Cori (top) and
Summit (bottom) between synchronous HDF5 and HDF5 with explicit
asynchronous I/O mode. 5 timesteps each with a single AMR level data
are written with sufficient compute/sleep time in between. Observed 1/0
time includes the last timestep’s write time and the overhead of the asyn-
chronous I/0O framework for all timesteps.

4.3 Nyx

We configured the Nyx workload to write a fixed amount of
data with a different number of MPI processes and nodes. It
writes 5 timesteps with a sufficient amount of sleep time in
between to fully overlap the I/O and is much less than the
computation phases in actual simulation runs [14]. As
opposed to VPIC-IO, each time a checkpoint is written, Nyx
creates a new file.

As mentioned previously, the implicit mode uses file
close as a synchronization point, which would result in
effectively synchronous I/O and thus we only compare the
explicit mode against the baseline synchronous HDF5 in
Fig. 7. The workload requires much more memory than
VPIC-IO as additional data structures are maintained by the
AMReX framework, so we use 16 nodes on both Cori and
Summit as the smallest scale and increase the number to
256 for the largest scale.

The results from both Cori and Summit show up to 4.5X
I/O time speedup when using our asynchronous 1/0
framework, and while the performance of synchronous 1/0
fluctuates with different numbers of processes, it is much
more stable with the asynchronous approach as most of the
I/0 time is completely hidden.

4.4 Castro

The Castro workload has more complex data structures in
the HDF5 output file than the Nyx workload. Castro uses
three mesh refinement levels, each with rich metadata such
as the refinement ratio, problem domain of the level, num-
ber of ghost cells, etc. We also configured Castro to write 5
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Fig. 8. Castro workload write performance comparison on Cori (top) and
Summit (bottom) between synchronous HDF5 and HDF5 with explicit
asynchronous mode. 5 timesteps each with 3 AMR levels data are writ-
ten with sufficient compute/sleep time in between. Observed 1/O time
includes the last timestep’s write time and the overhead of the asynchro-
nous I/O framework for all timesteps.

timesteps and use enough sleep time between them to fully
overlap with the asynchronous 1/0.

Due to an issue with Summit’s Spectrum MPI, we were
only able to run the Castro workload with independent MPI
I/0 (without collective buffering) on Summit, while using
the default collective buffering on Cori. This leads to differ-
ent performance trends when increasing the number of pro-
cesses on the two supercomputers, as shown in Fig. 8. On
Summit, as the number of processes increase, the observed
I/0 time increased due to more MPI processes accessing
the file system independently causing higher overhead on
the server. On the positive side, we still observe up to 4.7X
performance improvement with the asynchronous I/0 both
on Cori and on Summit.

4.5 Discussion
We have designed and developed an asynchronous 1/0O
framework using background threads and tested it with
two I/O kernels and two real cosmology simulation config-
urations. The comparison among the baseline HDF5 with
synchronous I/0O, implicit asynchronous I/0O, and explicit
asynchronous I/O demonstrates the effectiveness of our
work: the implicit asynchronous I/O mode requires the
least amount of code changes, and is ideal for a write-only
application that operates on a single file. In this write pat-
tern, the metadata operations such as file close operations
that default to synchronous I/O operations do not impact
the performance of implicit asynchronous I/O.

The explicit asynchronous 1/O mode requires replacing
the I/O function calls with corresponding asynchronous
versions and an additional EventSet ID parameter, but it
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allows all I/O operations to be asynchronous (including file
close) and provides convenient methods to check multiple
asynchronous operations’ status and retrieve the detailed
error information at runtime. Our results show that for all
the experiments, the explicit mode can hide the I/O time
efficiently when there is sufficient computation time to
overlap with, leaving only the overhead of the first timestep
of read and the last timestep of write observed by the appli-
cation. This demonstrates that the explicit asynchronous
I/0 mode in HDF5 greatly improves the overall application
performance.

5 RELATED WORK

The size of data stored and accessed by scientific appli-
cations is ever increasing as we are moving toward exas-
cale computing. However, I/O hardware has not seen
improvements that keep up with the explosion of data to
access. Parallel file systems such as Lustre [17], PVFS
[18], GPFS [19], and NFS [20] are designed to handle
common I/O access patterns in HPC applications, but
still suffer significant performance drops when the data
is accessed poorly or with a large number of small I/O
operations.

Asynchronous I/0O is an increasingly popular option for
improving I/O performance when handling the large vol-
ume of data operations required by today’s applications.
Applications that perform I/O and computation or commu-
nication periodically can take advantage of asynchronous
1/0 operations by scheduling I/O as early as possible and
checking the operations’ status later. This allows overlap-
ping I/O operations with the application’s communication
and computation, hiding some or all of the cost associated
with the I/O.

POSIX [1] introduced asynchronous I/O (AIO) to
enable performing I/O operations alongside computation
operations [21]. Operating systems, such as Linux, pro-
vide such support [22] with “aio_*" functions, and allow
writing and reading data asynchronously to and from the
underlying file system. Lazy AIO (LAIO) [23] is proposed
for converting any I/O system call into an asynchronous
call. However, these low-level 1/O calls require user
involvement in managing data dependencies. There have
also been asynchronous I/O efforts at the file system
level. For instance the Light-Weight File System (LWEFS)
[24] proposes asynchronous 1/O support at the file sys-
tem level. However, to use asynchronous I/O in LWES,
the entire file system has to be replaced, which is imprac-
tical on production-class supercomputing facilities that
typically use Lustre, GPFS, etc., and support thousands of
users.

I/0 overlapping strategies have also been proposed for
parallel I/O libraries. The impact of various overlapping
strategies of MPI-IO have been studied in [25], and [26].
Unfortunately, these studies were either performed at a
small scale or are application-specific. High-level 1/O librar-
ies, such as ADIOS [27], [28] provide asynchronous 1/0O
support using a staging interface, where data is transferred
to staging servers’ memory with the DataSpaces [29] trans-
port method before writing to the storage system. DataEle-
vator [3] uses a similar strategy of writing to a burst buffer

file system and moving the data to long-term capacity stor-
age asynchronously. [30] proposed a buffering scheme that
can output data asynchronously for collective MPI-IO oper-
ations, but is limited to write-only applications. Damaris
[31] proposed to use additional cores or dedicated nodes to
perform asynchronous data processing, 1/0O, and in situ
visualization. Proactive Data Containers (PDC) [4] is a user-
level data management system with servers for object
abstractions and performs asynchronous I/0.

I/0O libraries and data management systems, such as
ADIOS [27], Data Elevator [3], Damaris [31], and PDC [4],
provide asynchronous I/O by using extra (server) pro-
cesses. These processes stage/cache data transferred from
the client processes through network (when client and
server are on different compute nodes) or shared memory
(when on the same node). Comparing with our background
thread approach, which does not require launching and
maintaining extra server processes, and the data is only cop-
ied in the process’s memory and never transferred to other
compute nodes, these approaches involve more manual
control and often have higher overhead. While these sys-
tems provide more data management services, such as
metadata management [32], in situ analysis, etc., perform-
ing asynchronous I/0O in HDF5 does not require addition
CPU resources. Damaris and PDC also require the user to
replace the existing application’s I/O related functions with
their provided APIs and use a new data storage format,
while our proposed approach only requires a minor API
change (adding _async to the function name and the Even-
tSet ID to the function parameters) and preserving the
already in-use HDF?5 file format.

The asynchronous I/O framework in this paper expands
our previous work [10], adding the explicit mode with
EventSet APIs, error checking and information retrieval for
failed tasks, as well as the experiments on the Summit
supercomputers with additional scientific application work-
loads. We have demonstrated that the new developments
with an explicit asynchronous I/O mode prove to be highly
efficient at hiding I/O latency.

6 CONCLUSION AND FUTURE WORK

We propose an asynchronous I/O framework implemented
with background threads that supports all I/O operations
and can effectively reduce an application’s observed 1/0O
time. Our framework manages the asynchronous I/0 tasks
automatically and transparently, with rule-based depen-
dency tracking and dynamic operation maintenance. Our
implementation as an HDF5 VOL connector provides two
ways for applications to use our framework: an implicit
mode for minimal code change requirements but with lim-
ited control of asynchronous tasks, and an explicit mode
that uses an EventSet API to manage asynchronous tasks
with more capability but with modest modification to appli-
cation code. We demonstrate the performance improve-
ments by comparing standard synchronous HDF5 with the
asynchronous approaches using I/O kernels and real scien-
tific workloads, and show that the majority of the I/O cost
can be hidden from the application.

Our future work includes exploring new optimization
techniques for asynchronous I/O, such as reordering or
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merging tasks in the asynchronous task queue and dynami-
cally setting the ideal parallel file system tuning parameters
(e.g., Lustre stripe size and count) based on the queued
operations before starting to execute asynchronous 1/0
tasks. We will also explore additional optimizations by
engaging with more scientific applications — especially from
the Exascale Computing Project (ECP), as well as other I/O
libraries and frameworks. We are also planning to make the
asynchronous 1/0 feature available to Python-based librar-
ies that use HDF5, such as h5py, which will broaden the
impact of this work.
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