
2021 IEEE International Conference on Big Data (Big Data)

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 98

Optimizing Performance of Parallel I/O Accesses to
Non-contiguous Blocks in Multiple Array Variables

Qiao Kang1, Scot Breitenfeld2, Kaiyuan Hou3, Wei-keng Liao3, Robert Ross4, and Suren Byna1

1Lawrence Berkeley National Laboratory, 2The HDF Group,
3Northwestern University, 4Argonne National Laboratory

{qkang, sbyna}@lbl.gov,
brtnfld@hdfgroup.org,

{khl7265, wkliao}@ece.northwestern.edu,
rross@mcs.anl.gov

Abstract—Accessing non-contiguous blocks in mul-
tiple array variables is a challenging I/O pattern for
parallel applications to obtain good I/O performance.
High-level I/O libraries such as HDF5 allow users to
implement this pattern conveniently, but users have ob-
served significant performance bottlenecks in the two-
phase I/O implementation of MPI-IO. Recent studies
have advanced the two-phase I/O performance by novel
communication algorithms, but such improvements still
have limitations. Two-phase I/O has to faithfully pro-
cess inputs from high-level I/O libraries, so that im-
plementation overheads can accumulate for improper
usage of high-level I/O libraries. In this paper, we
propose approaches for efficient usage of high-level
I/O libraries that can circumvent major collective I/O
overheads. We adopt a multi-dataset implementation
of HDF5 dataset I/O to aggregate non-contiguous
requests for array blocks and provide corresponding
parameter assignment strategies. These approaches re-
duce the overheads caused by communication straggler
effects in two-phase I/O. We show that our proposed
methods can improve the parallel I/O performance
up to 8× on two supercomputing systems for the
HDF5 implementations of an I/O kernel extracted from
climate simulation code compared with its baseline
implementations.

I. Introduction

Achieving superior parallel I/O performance on high-
performance computing (HPC) systems is challenging.
This challenge gets even more difficult when large-scale
scientific applications have complex I/O patterns. For
instance, modern workflow applications such as the En-
ergy Exascale Earth System Model (E3SM) [1] have high
volumes of parallel I/O to access (reads and writes) non-
contiguous blocks from all processes to and from many
variables. These patterns have a mismatch in the data
representations in memory and file spaces. Non-contiguous
block access pattern poses a scalability challenge be-
cause processes frequently compete for communication
and I/O resources. Another reason why this I/O access

pattern often obtains poor performance is due to the inter-
dependencies between I/O software layers.
High-level I/O libraries handle parallel I/O by calling

collective I/O functions implemented by I/O middleware
libraries. For example, Hierarchical Data Format version
5 (HDF5) [2] implements parallel dataset read and write
functions using collective Message Passing Interface I/O
(MPI-IO) functions. Major MPI implementations, such
as MPICH and OpenMPI, implement MPI-IO functions
with the ROMIO drivers that adopt the two-phase I/O
approach [3]. The two-phase I/O design selects a subset
of processes called I/O aggregators. The rest of the MPI
processes send data in their I/O requests to the aggre-
gators in the communication phase. In the I/O phase,
the aggregators perform I/O operations with the under-
lying file systems using the aggregated I/O requests. The
coordination of I/O requests from all processes to the
aggregators can reduce contention at the file system level
and other shared communication resources.
Although HDF5 provides convenient interfaces for im-

plementing complicated I/O patterns, the parallel I/O
performance exhibits scalability challenges for these pat-
terns. Recent studies have found bottlenecks in the com-
munication phase of two-phase I/O [4]. High-dimensional
block access patterns from high-level I/O libraries are
translated into a large number of small and non-contiguous
file access requests [5] for middleware libraries. As a result,
the communication overheads can be significant. Recent
research efforts focus on improving the communication
phase performance in two-phase I/O. For example, two-
layered aggregation method (TAM) [6] can reduce two-
phase I/O communication cost by reducing the number
of concurrent communications. These approaches focus
mainly on improving the performance of MPI-IO collec-
tive functions with novel communication strategies by
assuming fixed input patterns. However, collective MPI-
IO functions have to faithfully perform parallel I/O with
the given inputs from the high-level I/O library called by

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-3

90
2-

2/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

25
89

.2
02

1.
96

71
63

8

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

99

users. For the same I/O pattern, different implementations
of parallel I/O with a high-level library, along with MPI-
IO hint parameters, can significantly change the MPI-
IO collective performance. Applications have high-level
abstract views of metadata and data, so it is possible
to circumvent some two-phase I/O overhead by properly
rearranging and aggregating collective function calls.

In this paper, we generalize the solutions for processing
multi-dimensional blocks of I/O accesses on an arbitrary
number of datasets. We identified that the bottleneck of
ROMIO was the communication straggler effect caused
by multiple iterations of two-phase I/O implementations.
Without modifying the MPI implementations, we have
studied strategies to reduce this bottleneck at the HDF5
level. The first part of the solutions is a design for data
space and memory space aggregation at the HDF5 dataset
level. This design allows applications to trigger a sin-
gle collective I/O function call for any multi-dimensional
block access patterns on a single dataset. The next step is
to aggregate I/O requests from all datasets and perform
a single MPI-IO collective call. This approach is called
multi-dataset parallel I/O [7], which hides the complexity
in non-contiguous parallel I/O accesses to array blocks.
The multi-dataset I/O operations of HDF5 allow reading
(or writing) multiple HDF5 datasets (i.e., data objects)
from (or to) a file without a collective call between each
dataset read (or write) operation. This multi-dataset I/O
strategy at the HDF5 level improves the performance of
ROMIO implementations. With multi-dataset implemen-
tation, we propose parameter tuning strategies for Lustre
settings and MPI-IO hints that can further improve the
I/O performance.

We conducted our performance evaluations on Cori, a
Cray XC40 supercomputer with Intel KNL processors in
the KNL partition and the Lustre file system, and on
Summit, an IBM system equipped with POWER9 CPUs
and GPFS. We used the state-of-art two-layer aggregation
method for the Lustre and GPFS drivers in ROMIO that
gives better performance than the native MPI-IO libraries
deployed on Cori and Summit. The first part of the
experiments is performed using the I/O kernels of E3SM-
IO F and G cases [8] implemented with the HDF5 library.
Since the multi-dataset feature is still unavailable in the
official releases of HDF5, we implement the same I/O
pattern using APIs provided by the HDF5 multi-dataset
branch. Consequently, we can make direct comparisons
between independent dataset I/O and multi-dataset I/O.
The multi-dataset implementation can improve the I/O
performance of the F case up to 8 times on both Cori and
Summit for the E3SM-IO F case. In addition to E3SM-
IO, we also present results from a synthetic benchmark,
called non-contiguous HDF5 I/O, which is a part of the
h5bench [9] benchmark suite. This benchmark allows us
to generate I/O patterns that are more complex than
E3SM-IO at different scales, so we can further study the
limitations and advantages of our proposed approaches.

II. Background
This section discusses motivations and related R&D

efforts in parallel I/O.
We describe I/O in the E3SM climate simulation code

in Section II-A, which is a use case that motivates the
use of the complex I/O patterns of writing and reading
non-contiguous blocks of data from multiple variables. In
Section II-B, we briefly describe HDF5 dataset I/O, which
can be used to store multiple high-dimensional variables in
parallel for applications like E3SM. Section II-C presents
two-phase I/O concept and some implementation details
for different file systems. Finally, in Section II-D we discuss
related efforts targeting parallel I/O performance improve-
ment.

A. E3SM I/O
The Energy Exascale Earth System Model (E3SM) is

a large-scale workflow that simulates, models, and pre-
dicts oceans, ice land, and atmosphere components on
Earth [1]. The simulations for high-resolution attributes
such as surface temperatures consist of a large number of
computation steps, so E3SM has a high demand in com-
putation power. Therefore, applications in E3SM usually
run in parallel on supercomputers such as NERSC Cori
and OLCF Summit.
To recover from any failures during the computational

phase, E3SM applications perform checkpointing periodi-
cally for storing intermediate data. E3SM applications can
recover their computational state from the checkpointed
files. The checkpointing operations from multiple parallel
processes generate high volumes of non-contiguous I/O
requests that can cause I/O performance bottlenecks [10].
The performance of saving and retrieving intermediate
computation data to and from parallel file systems de-
pends on the choice and utilization of I/O libraries. For
example, the current HDF5 drivers directly store data
from all processes into a single HDF5 file with collective
I/O to maintain the canonical ordering of the data from
the processes. The Adaptable Input Output (ADIOS) [11]
driver of E3SM, on the other hand, stores data from
different nodes in different files without the canonical
ordering. As a result, a post-processing program joins
these files into a single file for analysis applications to use.
Such offline file coalescing can slow down the performance
of I/O intensive workflows that frequently perform read-
modify-write. This paper targets optimizing the single
shared file accesses with collective I/O.

B. HDF5 Dataset I/O
HDF5 is a portable high-level I/O library for managing

and storing heterogeneous data [2]. Data representations
in HDF5 files are self-describing objects, namely datasets
for multi-dimensional arrays of data with the same data
type and groups that organize objects. The concept of data
space in HDF5 allows users to access any non-contiguous
portions of a dataset elegantly. The design advantages of

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

100

HDF5 allow users to manage large-scale scientific data
such as experimental data and observation data. E3SM
checkpointing modules store variables with homogeneous
types in one to three-dimensional arrays, naturally map-
ping to the HDF5 data format when saving computational
progress. This paper investigates the potential of using
HDF5 data format for E3SM checkpointing data.

The official HDF5 releases support parallel I/O on
shared file access. Multiple processes can access one HDF5
dataset with either H5DWrite or H5Dread functions. By
default, the current HDF5 release (1.12.0) translates data
space and memory space views for parallel I/O into file
offset/length pairs and passes these metadata along with
data buffer down to the lower-level MPI-IO functions. We
discuss implementations of MPI-IO in the next section.

C. Two-phase I/O for MPI-IO
Two-phase I/O is a design for parallel I/O that consists

of two parts: communication and I/O phases. A subset
of processes called I/O aggregators are assigned with file
access regions, denoted as file domains. In the communi-
cation phase, the I/O aggregators collect data from I/O
requests that fall into their file domain from the rest of the
processes. In the I/O phase, the I/O aggregators perform
read/write operations with the underlying file systems
using the data gathered in the communication phase.

ROMIO is an implementation of the MPI-IO standard
that adopts a two-phase I/O strategy. Popular produc-
tion libraries such as MPICH [12] and OpenMPI [13]
adopt ROMIO as backbones for implementing MPI-IO.
To optimize the I/O performance on different file systems,
ROMIO adopts a driver selection mechanism, abstracted
by the ADIO layer. During the library configuration time,
users can specify I/O drivers optimized for local file sys-
tems such as the Lustre file system, GPFS, etc.

Implementation of collective buffering in file read and
write functions perform two-phase I/O in multiple itera-
tions. For each iteration, a limited file domain is processed.
This implementation choice is motivated by memory foot-
print concerns. I/O aggregators gather metadata and data
from the rest of the processes, so accessing large files can
result in a large memory buffer allocated if one round
(i.e., iteration) of two-phase I/O processes the entire file
domain. Limiting the file domain size per this iteration
can constrain temporary buffer allocation size.

D. Related Work
Published literature on improving two-phase I/O per-

formance is mainly in two domains: One track focused
mainly on improving the I/O phase performance because
file system I/O was much slower compared with data
communication in the past. For instance, Ma et al. applied
a combination of active buffering and threads approaches
for improving the throughput of I/O performance [14].
Liao et al. proposed file domain alignment protocols for
Lustre and GPFS at I/O aggregators in ROMIO [15], [16].

Zhang et al. proposed and implemented a resonance I/O
in ROMIO that rearranges I/O requests for efficient uti-
lizations of underlying file systems [17]. LACIO is another
strategy that improves I/O performance by taking the
logical I/O access pattern among processes and physical
layouts of file access into account [18].
As the file I/O in HPC systems becomes faster, the com-

munication phase cost of the two-phase I/O is no longer
negligible compared with the I/O phase. Communication
and I/O phase overlapping has been a popular research
area over the past decade. One direct overlapping example
is the two phases I/O pipelining with the help of asyn-
chronous MPI communication functions [19], [20]. Multi-
threading is another approach that hides the communica-
tion cost in the background during I/O processing [21].
TAPIOCA is a topology-aware two-phase I/O algorithm
using double-buffering and one-sided communication to
reduce data aggregation overhead [22], [23].
Recently, the communication cost generated by high

volumes of non-contiguous I/O requests becomes larger
than the I/O cost for certain applications. Algorithms
designed for reducing the communication cost are neces-
sary. The state-of-the-art design for two-phase I/O that
has shown significant performance improvement is a two-
layered aggregation method (TAM) [6]. This approach
assigns a subset of processes called local aggregators that
aggregate I/O requests from processes within the same
compute node. Later, the local aggregators carry out two-
phase I/O with I/O aggregators using these aggregated
I/O requests. The main advantage of this approach is
the reduction of communication contention by replacing
the all-to-many communication patterns with many-to-one
and many-to-many patterns in the communication phase
of two-phase I/O. A subsequent study [4] for bottlenecks
of all-to-many communication patterns to further support
the advantages of TAM.

III. I/O Optimization Strategies
We describe various strategies for efficient processing

of I/O requests to multi-dimensional blocks of data from
multiple variables in this section. We assume that an
MPI application runs in parallel with p processes. The
application performs I/O operations on d datasets (i.e.,
array variables) in a single HDF5 file shared by all MPI
processes. Each of the datasets represents the storage of
data in an n dimensional space. Process i accesses a list of
sub-arrays (n-dimensional blocks) from each dataset. We
denote the number of sub-arrays for a dataset j by process
i as ci,j . For example, in the E3SM F case, there are 402
datasets (i.e., d = 402) and the number of processes (p)
is 21632. E3SM applications access two-dimensional and
three-dimensional datasets with sub-array blocks.
As mentioned earlier, parallel HDF5 translates its data

structures to an MPI datatype before calling MPI-IO
collective I/O functions. The end-to-end I/O performance
can vary significantly depending on the HDF5-layer tuning

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

101

a b c

0 1 2 3 4 5 0 1 4 5 2 30 1 4 5

2 3 6 7

10 11 8 9

File Space Process 1 reordered memory space

6 7 8 9 10 11 6 7 10 11 8 9

Process 0 memory space

Process 1 memory space

Process 0 reordered memory space

Figure 1: This figure illustrates an example of how a contigu-
ous memory buffer is rearranged between two MPI processes
according to the locations of sub-arrays placed in a two-
dimensional data space of a dataset in parallel I/O. Array
elements on the same row from different sub-arrays are con-
catenated into a new contiguous memory buffer. Row buffers
are concatenated into a single contiguous memory buffer in
ascending order.

parameters that are passed to the MPI-IO layer. Also,
as mentioned in Section II-C, ROMIO implements two-
phase I/O in multiple iterations for processing collective
MPI I/O function calls. One factor that is negatively
proportional to the end-to-end I/O performance is the
total number of two-phase I/O iterations summed up
across all collective MPI I/O functions. A large number of
two-phase I/O iterations leads to more overheads spent on
the communication phase. In addition, processing a small
file domain per two-phase I/O iteration is likely to result
in imbalanced workloads among processes so that some
processes may stay idle during the execution. We refer to
these scenarios to the communication straggler effect of
multiple two-phase I/O iterations.

The end-to-end execution time for processing the multi-
dimensional blocks of I/O accesses on HDF5 datasets
consists of the following costs: Two-phase I/O file access
time (tI/O), two-phase I/O communication time (tcomm),
two-phase I/O overheads (to), and HDF5 overhead (th5).
Equation 1 summarizes these factors.

total I/O time = tI/O + tcomm + to + th5 (1)

In the rest of this section, we present incremental tuning
options for reducing the two-phase I/O overhead.

A. Sub-array Aggregation
To access multi-dimensional blocks in multiple variables

(i.e., HDF5 datasets), the independent I/O implementa-
tion can let each process independently access the sub-

arrays for each dataset. This strategy results in
d∑

j=1
ci,j

independent HDF5 dataset I/O calls per process. Inde-
pendent I/O calls from each MPI process can result in
resource contention on file systems at large scales due to
a large number of requests and the lack of coordination
among processes. Thus, the I/O cost (tI/O) will be large.
On parallel file systems shared by several applications on
a HPC system, this solution is inefficient due to contention
for I/O resources.

Collective I/O allows process coordination for accessing
shared resources. With collective I/O, the number of col-

lective HDF5 dataset I/O calls is maxi∈[0,p−1]

(
d∑

j=1
ci,j

)
.

Processes that access (read or write) fewer sub-arrays

than maxi∈[0,p−1]

(
d∑

j=1
ci,j

)
contribute 0 write size for

some collective calls. A disadvantage of this method is the
potentially high number of collective function calls, which
is determined by the process that accesses the largest num-
ber of sub-arrays. For applications with large number of
non-contiguous blocks per process, collective I/O overhead
resulting from the function calls is not negligible. If the
number of sub-arrays is not balanced across all processes,
overheads of collective function calls can significantly slow
down the overall performance because the majority of
processes can stay idle.
Coalescing sub-arrays at the dataset level reduces

the number of collective calls. HDF5 provides
H5Sselect_hyperslab functions that can coalesce
multiple sub-arrays into one data space using the
H5S_SELECT_OR operator. This implementation needs to
reorder the corresponding memory buffers, which is a part
of the HDF5 overhead (th5). The number of collective I/O
calls becomes d after coalescing data space and memory
space.
In Figure 1, we illustrate an example for memory re-

ordering. We show the contiguous input memory buffers
of two MPI processes in ascending order of array elements
(Figure 1-(a)). We differentiate the memory buffers for
each of the processes by different border colors. In Fig-
ure 1-(b), we show the non-contiguous 2D blocks for each
of the processes in the file space of a dataset. For example,
process 0 reads or writes array elements circled by the two
red blocks in the file space. From Figure 1 (b), the first
block of process 0 consists of 4 array elements, and the
second block of process 0 consists of 2 array elements. In
Figure 1-(c), buffers are rearranged along with the dataset
dimensions after block coalescing. In the case of the two-
dimensional dataset, the array elements on the same row
from different blocks are rearranged to become contiguous.
For example, process 0 concatenates array elements 0 and
1 from the 2 × 2 block with the elements 4 and 5 from
the 1 × 2 in the first row. The elements 2 and 3 from
the second row of the file space are then appended to the
memory space of process 0. Thus, the array element order
for process 0 after rearrangement is {0, 1, 4, 5, 2, 3}.

B. HDF5 Multi-dataset
In the previous sub-section, we discussed how sub-array

coalescing reduces the number of collective I/O calls from

maxi∈[0,p−1]

(
d∑

j=1
ci,j

)
to d. As mentioned earlier, the

E3SM F case performs I/O using 402 variables. Each of
these variables is represented as one dataset in HDF5.
Thus, writing all variables into a file triggers enormous
collective I/O calls. The overheads of d number of collec-
tive I/O operations are still not trivial. We demonstrate
this fact in the experimental evaluation section.

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

102

The H5DWrite and H5Dread functions in the released
versions of HDF5 (including 1.12.x) can store one dataset
at a time, which we call independent dataset I/O (IDIO).
To further reduce the number of collective calls, we use
the multi-dataset branch of HDF5 implementation [24],
where new APIs and features are developed. The new
APIs include H5Dwrite_multi and H5Dread_multi for
multi-dataset write and read operations, respectively.
H5Dwrite_multi and H5Dread_multi take arrays of pa-
rameters for H5DWrite and H5Dread functions, respec-
tively. With multi-dataset API (MDIO), the parallel I/O
implementation wraps the pairs of file offset and length for
all datasets into aMPI_Datatype. Later, the multi-dataset
library calls a single collective MPI I/O function.

The multi-dataset approach only takes a single MPI
collective I/O function call for a parallel application pro-
gram to perform sub-array I/O on multiple datasets in
a shared HDF5 file. In the ROMIO’s implementation,
each MPI collective I/O function call distributes metadata
from all processes to I/O aggregators with an all-to-many
personalized communication pattern. In addition, all pro-
cesses synchronize their error codes at the end of an MPI
collective I/O function. Therefore, reducing the number
of MPI collective I/O calls can reduce the collective I/O
function overheads to.

HDF5’s MDIO implementation sometimes reduces the
number of two-phase I/O iterations compared to those
with IDIO, especially for small files with large numbers
of variables. The number of two-phase I/O iterations is
lower bounded by the number of collective I/O calls. With
IDIO, the number of two-phase I/O iterations is at least
the number of variables. The number of two-phase I/O
iterations for MDIO is independent of the number of
variables. Instead, it is proportional to the file size. As
a result, MDIO has only a few two-phase I/O iterations
for all small files, regardless of the number of variables.

In most cases, implementations with fewer two-phase
I/O iterations are expected to have better performance
because overheads accumulated by the communication
straggler effects in each of the two-phase I/O iterations
are less. We will elaborate on these overheads in the next
subsection.

C. Tuning MPI-IO
As mentioned in II-C, ROMIO performs two-phase I/O

in multiple iterations depending on the file domain par-
titioning. Processes exchange data with I/O aggregators
using MPI_Issend and MPI_Irecv functions. MPI_Waitall
is placed at the end of each two-phase I/O iteration
to wait for the completion of the asynchronous com-
munication functions. I/O aggregators thus cannot start
to receive data for the next iteration of two-phase I/O
until all the MPI_Irecv requests in the current iteration
are finished. Processes that send data with MPI_Issend
cannot exit MPI_Waitall until the corresponding receivers
in the current iteration start to receive data, so senders

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Iteration 1 Iteration 2

b

a

Figure 2: This figure illustrates data domain partitioning ap-
proach of ROMIO in (a) Lustre and (b) GPFS.

cannot advance to the next iteration of two-phase I/O
until the corresponding receivers in the previous iteration
have finished all communications in the previous iteration.
Communication time for each process per iteration can
vary due to imbalanced data size, network stability, and
contentions for local node hardware resources. As a result,
a sender and a receiver can frequently wait for each other
before starting their data. Such communication straggler
effect accumulates as the number of two-phase I/O iter-
ations increases. Therefore, a large number of two-phase
I/O iterations can slow down the overall performance.
Tuning the file domain size per two-phase I/O iteration

changes the total number of iterations. Figure 2 illustrates
the file domain partitioning strategies for Lustre and
GPFS. In general, increasing the file domain size per two-
phase I/O iterations reduces the number of iterations.
On the Lustre file system, ROMIO set the number of
I/O aggregators equal to Lustre stripe size by default.
This setting can avoid the Lustre lock contention issue,
which can cause prolonged I/O phase performance. An
I/O aggregator handles one contiguous Lustre stripe size
amount of data at a time, so each two-phase I/O iteration
processes a complete Lustre stripe as shown in Figure 2
(a). To reduce the number of iterations, we can increase
the Lustre stripe size. In the experimental result section,
we demonstrate this approach is helpful.
On GPFS, the number of I/O aggregators equals the

number of compute nodes by default. The entire file access
region is partitioned to the number of I/O aggregators
contiguous regions as even as possible with alignments to
the block boundaries. Each I/O aggregator handles one
contiguous region in the collective function call as shown
in Figure 2 (b). For each of the two-phase I/O iterations,
an I/O aggregator processes the next cb_buffer_size of
the contiguous block assigned to it. As a result, increasing
cb_buffer_size can reduce the number iterations.

IV. Experimental Evaluation
We evaluate the strategies discussed in the previous sec-

tion on two supercomputing systems. Cori is a Cray XC40
supercomputer with Intel KNL processors and a Lustre
file system at the National Energy Research Scientific
Computing Center (NERSC). We use Lustre stripe counts
64 and 128, which are two typical stripe counts used by

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

103

this application’s production runs. Each Cori KNL node
contains one CPU with 68 CPU cores. In our experiments,
we allocate 64 processes per node in the KNL partition.
Summit is a supercomputer located at the Oak Ridge
Leadership Computing Facility (OLCF), with IBM Power
System AC922 nodes equipped with IBM POWER9 CPUs
and IBM GPFS. Each Summit node has two CPUs with
21 CPU cores per socket. In our experiments, we allocated
42 processes per node. We use the two-layered aggrega-
tion(TAM) implementation of ROMIO proposed in [6] for
all experiments, which can yield better performance results
than the system’s default MPI-IO libraries.

We select two workloads to demonstrate the advantages
of the proposed strategies. The first is E3SM-IO [25],
an I/O kernel extracted from the E3SM application.
The second is the HDF5 non-contiguous benchmark from
H5Bench [9] that emulates the multi-dimensional block
I/O access pattern on multiple HDF5 datasets collectively.
We use this non-contiguous benchmark to generate ran-
dom 3D block access patterns that are more complex than
E3SM-IO.

A. E3SM-IO Results
We evaluate two data decomposition patterns used in

the E3SM production simulation runs, namely F and G
cases [8]. E3SM-IO [25] suite extracts the I/O kernels from
E3SM production runs. The F case simulates atmosphere,
land, and runoff models components, represented with 402
variables. The total number of I/O blocks accumulated
across all variables and MPI processes for the F case is
1.37 billion. An HDF5 dataset denotes each variable, i.e.,
an HDF5 file generated by the F case would have 402
datasets per time stamp of checkpointed data. The total
file size of the F case is ≈15GB and each I/O request
is for a small amount of data. Small HDF5 blocks per
dataset are distributed across 21,632 MPI processes in
the production run. The G case simulates active ocean
and sea-ice components, represented with 41 variables.
The total number of I/O blocks accumulated across all
variables and processes for the G case is 176 million. The
G case decomposition file has the model for prediction
across scales (MPAS) grid data structure that consists
of pentagons and hexagons on top of a spherical surface.
Small HDF5 blocks per dataset are distributed across
9,600 processes in the production run and the total file
size is ≈85GB.
1) Optimizing with Multi-dataset I/O: In Figure 3, we

summarize the time breakdown of running the E3SM-
IO F and G cases on Lustre and GPFS with different
parameter settings. In each plot, the first two stacked bars
correspond to the F case, and the latter two to the G
case. The system and the configuration used are listed at
the top of each plot. We compare the implementation of
HDF5 multi-dataset I/O (MDIO) with the original im-
plementation that performs I/O each dataset separately,
i.e., independent dataset I/O (IDIO) for E3SM-IO. In

Table I: The number of iterations in two-phase I/O with dif-
ferent Lustre and GPFS configurations for the E3SM F and G
cases. The column label the number of iterations for write/read
when multi-dataset I/O (MDIO) or independent dataset IO
(IDIO) operations are used.
Dataset & Setting IDIO

writes
MDIO
writes

IDIO
reads

MDIO
reads

F case LFS 1MB 64 591 229 387 4
F case LFS 1MB 128 465 116 387 4
F case LFS 16MB 64 402 18 387 4
F case LFS 16MB 128 402 11 387 4
F case GPFS 16MB 402 5 387 3
F case GPFS 256MB 402 4 387 2
G case LFS 1MB 64 1302 1276 72 45
G case LFS 1MB 128 656 638 45 35
G case LFS 16MB 64 113 80 72 45
G case LFS 16MB 128 76 45 45 35
G case GPFS 16MB 43 23 387 23
G case GPFS 256MB 41 2 41 2

Table I, we show the number of two-phase I/O iterations
at the ROMIO ADIO layer with different file system and
I/O settings. The numbers of two-phase I/O iterations
are reported from our profiling tool. However, it is also
possible to roughly compute them by dividing the file
domain per collective I/O function by the file domain size
per iteration. Figures 3 (a)-(d) illustrate the results on
Lustre stripe count 64. Performance with using a stripe
count of 128 is shown in Figures 3 (e)-(h). In Figures 3 (i)-
(l), we show these results for write and read operations on
Summit. For the E3SM-IO F case, it is evident that the use
of HDF5 MDIO significantly reduces the end-to-end time
compared with IDIO. The major improvements are the
two-phase I/O communication time (tcomm) and two-phase
I/O overhead (to). The number of two-phase I/O iterations
is inversely proportional to the file domain processed per
two-phase I/O iterations. In addition, the number of two-
phase I/O iterations is lower-bounded by the number
of collective I/O calls. Independent dataset write has to
trigger collective function calls for a least the number of
variables times. MDIO, on the other hand, has the number
of two-phase I/O iterations mainly dependent on the total
data size, instead of the number of variables. The F case
has a large number of variables and relatively small data
size, so we expect a large difference in the number of
two-phase I/O iterations between IDIO and MDIO. For
the F case write with Lustre configuration of 64 stripes
and 1MB per stripe, the total two-phase I/O iterations
using IDIO is 591, where as that for MDIO is 229. The
corresponding end-to-end timings are 22.7s for MDIO and
55.8s for IDIO as shown in Figure 3 (a). The same pattern
holds for Lustre configuration of 128 stripes of 1MB reduce
the total number of two-phase I/O iterations from 465
to 116. Similarly, on Summit, the total two-phase I/O
iterations with IDIO from 402, and that with MDIO is
5. With fewer MPI-IO collective function calls, MDIO
reduces collective function overheads, including metadata
exchanges and error code synchronization. Moreover, two-

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

104

a b c d

e f g h

i j k l

0
10
20
30
40
50
60
70

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c
Cori E3SM-IO HDF5 Write LFS 1MB 64

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

100

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Write LFS 16MB 64

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Read LFS 1MB 64

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

100

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Read LFS 16M 64

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

60

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Write LFS 1MB 128

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Write LFS 16MB 128

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

60

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Read LFS 1M 128

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

100

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Cori E3SM-IO HDF5 Read LFS 16M 128

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

60

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Summit E3SM-IO Write GPFS 16MB CB

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

60

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Summit E3SM-IO Write GPFS 256MB CB

MPI comm I/O MPI other HDF5 overhead

0

2

4

6

8

10

12

F case IDIO F case MDIO G case IDIO G case MDIO

Ti
m

e/
se

c

Summit E3SM-IO Read GPFS 256MB CB

MPI comm I/O MPI other HDF5 overhead

0

2

4

6

8

10

12

F case IDIO F case MDIO G case IDIO G case MDIO
Ti

m
e/

se
c

Summit E3SM-IO Read GPFS 16MB CB

MPI comm I/O MPI other HDF5 overhead

Figure 3: E3SM-IO end-to-end time breakdown for the F and G cases on Cori and Summit. We show the timings for MPI
communication time (tcomm), I/O time (tI/O), two-phase I/O overhead (to), and HDF5 overhead (th5) (from Eq. 1) in different
colors. The x-axis indicates whether independent dataset I/O (IDIO) or multi-dataset I/O (MDIO) is used for the F or G cases.
(a)-(d): E3SM-IO results on Cori Lustre (LFS) with a stripe count of 64. (e)-(h): E3SM-IO results on Cori Lustre with Lustre
count 128. (i)-(l): E3SM-IO results on Summit GPFS. The LHS plots in each of these sets are for write operations and the RHS
plots are for read operations. For each set of write and read plots, 1MB and 16MB stripe sizes are used on LFS, and 16MB and
256MB collective buffer sizes on GPFS.

phase I/O overhead caused by communication straggler
effects also reduces as the number of two-phase I/O
iterations decreases. Reducing communication straggler
effects for two-phase I/O communication also reduces the
receiver idle time per iteration, hence the communication
overhead, i.e., tcomm also reduces. The same reasoning and
conclusions apply to performance improvement for the F
case read operations.

The G case does not benefit from HDF5 MDIO in the
same way as the F case for Lustre stripe size 1MB, as
shown in the RHS two bars in Figure 3. The total number
of collective calls for IDIO is 41, one-tenth of the F case
collective calls. However, the G case has a much larger
data size. With a fewer number of variables and a larger
data size, each G case variable triggers a large number of
two-phase I/O iterations. From Table I, the total number
of iterations is much larger than the number of variables
for the G case, so the numbers of two-phase I/O iterations
depend mainly on the data size instead of the number of
variables for both IDIO and MDIO. Therefore, aggregation
of all 41 large variables does not result in a significant
difference for the number of two-phase I/O iterations. As
a result, MDIO does not have a noticeable advantage
according to Figures 3 for the G case runs with 1MB
stripe size. A similar conclusion applies to experiments on

Summit GPFS with a 16MB collective buffer size.
2) Tuning file domain size for Multi-dataset I/O: To

further reduce the number of two-phase I/O iterations
in ROMIO, we increase the Lustre stripe and collective
buffer sizes as discussed in Section III-C. As shown in
Table I, with the same Lustre stripe count 128, increasing
the stripe size from 1MB to 16MB reduces the number
of two-phase I/O iterations for MDIO write from IDIO’s
229 to 18. Thus, tcomm and to are reduced by comparing
the "F_case with multi" bars in Figures 3 (a) and (b).
For stripe count 128, the pattern is similar by observing
Figures 3 (e) and (f). For the G case write on Cori Lustre,
the observations are similar to the F case.
On Summit, increasing the collective buffer size from

16MB to 256MB for MDIO does not have a significant
performance improvement for the F case write according
to Figures 3 (i) and (j). With a 16MB collective buffer
size, the number of two-phase I/O iterations is only 5 for
the F case, so two-phase I/O overhead is expected to be
small. As a result, a larger collective buffer size does not
improve performance in the same way as on Cori. On
the other hand, the G case write can benefit from the
increased collective buffer size on Summit. The G case
has a larger data size than the F case, so increasing the
collective buffer size from 16MB to 256MB can effectively

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

105

Table II: The number of iterations in two-phase I/O with
different settings on Lustre (LFS) and GPFS for 3D non-
contiguous I/O accesses. The columns label the numbers for
write/read when multi-dataset I/O (MDIO) and independent
dataset (IDIO) implementations are used.
of
procs

Setting IDIO
write

MDIO
write

IDIO
read

MDIO
read

4096 LFS 1MB 64 800 627 400 40
4096 LFS 1MB 128 400 314 400 40
4096 LFS 16MB 64 400 40 400 40
4096 LFS 16MB 128 400 20 400 40
4096 GPFS 16MB 400 26 400 26
4096 GPFS 256MB 400 2 400 2
16384 LFS 1MB 64 800 627 400 10
16384 LFS 1MB 128 400 314 400 10
16384 LFS 16MB 64 400 40 400 11
16384 LFS 16MB 128 400 20 400 10
16384 GPFS 16MB 400 7 400 7
16384 GPFS 256MB 400 1 400 1

reduce the number of two-phase I/O iterations. From the
third bars in Figures 3 (i) and (j), the write performance is
reduced from 12.3 seconds to 10.7 seconds as we increase
the collective buffer size from 16MB to 256MB for MDIO.

The number of two-phase I/O iterations for collective
read is independent of Lustre stripe settings as shown
in Table I because ROMIO adopts the ADIO common
driver Lustre file system by default. On Summit, the
collective buffer size can reduce the number of two-phase
I/O iterations for the multi-dataset read in the same way
as the multi-dataset write. However, the end-to-end read
timings are less than 3 seconds for multi-dataset read on
Summit, so performance improvement for increasing the
collective buffer size is not significant.

With IDIO implementation, the numbers of two-phase
I/O iterations are not reduced for the F case with different
collective buffer sizes and Lustre stripe settings because
these numbers are lower bounded by the numbers of
collective I/O calls, which is the number of datasets.
Most datasets of the F case only have one two-phase
I/O iteration. As shown in the third and fourth bars in
Figures 3 (i)-(l), MDIO improves the performance of the
G case I/O. The G case has fewer numbers of datasets
and a larger data size compared with the F case. I/O for
one of the G case variables takes many two-phase I/O
iterations. Consequently, increasing the file domain per
two-phase I/O iterations reduces the number of two-phase
I/O iterations per G case variable, which in turn reduces
the total number of two-phase I/O iterations and improves
the performance.

B. Evaluation of Non-contiguous Block I/O Accesses
As illustrated in the previous section, the E3SM-IO F

and G cases are real-world I/O storage in 2-dimensional
space. The F case has a smaller data size (15GB), but
with a larger number of datasets (402) and more non-
contiguous blocks. The G case has a larger data size
(85GB), but with a smaller number of datasets (41) and
less number of non-contiguous blocks. A more challenging

pattern for non-contiguous I/O consists of both a large
number of datasets and a large number of non-contiguous
blocks. In this section, we use an I/O benchmark with
three-dimensional non-contiguous block accesses with 400
datasets, 200K non-contiguous 83 blocks per dataset, and a
total I/O size of 42GB. The non-contiguous 3D blocks are
randomly distributed on all MPI processes, so the access
pattern consists of highly non-contiguous small requests.
The F and G cases only run on fixed numbers of processes
(21632 and 9600). For this benchmark, we run strong-
scaling experiments on both small scales (4096 processes)
and large scales (16834 processes).
1) Optimizing with Multi-dataset I/O: Figures 4 (a) and

(e) illustrate the write results with 4096 processes and Cori
Lustre 64/128 stripe counts. MDIO has a worse write per-
formance than IDIO as compared respectively in the first
two bars in both plots. From Table II, the number of two-
phase I/O iterations for IDIO write is 800 for Lustre stripe
count 64 and size 1MB. MDIO write has 627 two-phase
I/O iterations. If the stripe count increases from 64 to 128,
the numbers of two-phase I/O iterations are approximately
halved. According to the number of two-phase I/O itera-
tions, MDIO should have better performance than that of
IDIO, which is contradictory to the results. The cause of
this performance degradation for MDIO is the heavy mem-
ory footprint on Cori KNL nodes, which results in unstable
MPI pack and unpack operations. MPI pack reorders data
in a contiguous memory buffer to another buffer in the
order described by MPI data type. MPI unpack is the
reverse operation. The presented results are with strong
scaling, so data size per process with 4096 processes is
four times the data size per process with 16384 processes.
I/O aggregators gather all the metadata describing file
accessing offsets and sizes at the beginning of collective
I/O function calls in ROMIO. The total number of non-
contiguous I/O requests is 5.2 billion across all processes.
Offset and length pairs, parsed from MPI datatype passed
from HDF5 layer, are stored in arrays of 8-byte integers
in ROMIO. With MDIO, all non-contiguous offset/length
pairs for 400 datasets are aggregated to I/O aggregators
in a single collective function call. With IDIO, metadata
for only one dataset is aggregated per collective function
call. Thus, MDIO has a high memory footprint at the
ROMIO layer for a small number of processes. MPI pack
and unpack operations for the communication phase are
memory-intensive operations. The performance becomes
unstable because the high memory footprint occupies most
of the memory of KNL nodes. As a result, communication
straggler effects accumulate for a large number of two-
phase I/O iterations. To reduce the memory footprint per
node, we can increase the number of compute nodes. With
16384 nodes, MDIO retrieves its advantages as shown in
Figures 4 (b) and (f).
Another solution for this scenario is to place the two-

phase I/O aggregators on designated I/O nodes [26], so
I/O aggregators can have exclusive access to hardware

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

106

a b c d

e f g h

i j k l

0

50

100

150

200

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c
Cori Non-contig Write LFS 64 4096p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Write LFS 64 16384p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

250

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Read LFS 64 4096p

MPI comm I/O MPI other HDF5 overhead

0
50

100
150
200
250
300
350

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Read LFS 64 16384p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Write LFS 128 4096p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Write LFS 128 16384p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

250

300

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Read LFS 128 4096p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

250

300

IDIO 1MB MDIO 1MB IDIO 16MB MDIO 16MB

Ti
m

e/
se

c

Cori Non-contig Read LFS 128 16384p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

IDIO 16MB MDIO 16MB IDIO 256MB MDIO 256MB

Ti
m

e/
se

c

Summit Non-contig Write GPFS 4096p

MPI comm I/O MPI other HDF5 overhead

0

50

100

150

200

IDIO 16MB MDIO 16MB IDIO 256MB MDIO 256MB

Ti
m

e/
se

c

Summit Non-contig Write GPFS 16384p

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

IDIO 16MB MDIO 16MB IDIO 256MB MDIO 256MB
Ti

m
e/

se
c

Summit Non-contig Read GPFS 4096p

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

IDIO 16MB MDIO 16MB IDIO 256MB MDIO 256MB

Ti
m

e/
se

c

Summit Non-contig Read GPFS 16384p

MPI comm I/O MPI other HDF5 overhead

Figure 4: Performance results for non-contiguous I/O benchmark on Cori and Summit. We use a total number of 400 datasets.
A dataset has 200K 3-D blocks of shape 83 randomly distributed over all processes. Total data size is 42GB.

a b c d

0

50

100

150

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write LFS 64 4096p

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

100

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write LFS 128 4096p

MPI comm I/O MPI other HDF5 overhead

0

20

40

60

80

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write LFS 64 16384p

MPI comm I/O MPI other HDF5 overhead

0

10

20

30

40

50

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write LFS 128 16384p

MPI comm I/O MPI other HDF5 overhead

0
100
200
300
400
500
600

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write IDIO LFS 64 4096p

MPI comm I/O MPI other HDF5 overhead

0
100
200
300
400
500
600

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write IDIO LFS 128 4096p

MPI comm I/O MPI other HDF5 overhead

0
100
200
300
400
500
600

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write IDIO LFS 64 16384p

MPI comm I/O MPI other HDF5 overhead

0
100
200
300
400
500
600

1M 2M 4M 8M 16M 32M 64M

Ti
m

in
g/

se
c

Stripe size/B

Cori Non-contig Write IDIO LFS 128 16384p

MPI comm I/O MPI other HDF5 overhead

e f g h

Figure 5: Non-contiguous I/O benchmark write results on Cori for Lustre striping sizes ranged from 1MB to 64MB. (a)-(d)
Multi-dataset write. (e)-(h) Independent dataset write.

resources, instead of sharing these resources with other
processes. This alternative solution is suitable for applica-
tions that require a specific number of processes.

On Summit GPFS, the performance improvements of
MDIO are more evident than the results on Cori Lustre.
From Table II, the number of two-phase I/O iterations is
reduced from 400 to 26 with MDIO on 4096 processes.
With 16384 processes and a default collective buffer size
of 16MB, this number is further reduced to 7 because the
number of I/O aggregators is increased. A larger collective
buffer size of 256MB further reduces the number of two-

phase I/O iterations to 2 and 1 on 4096 and 16384 pro-
cesses. Consequently, we expect significant performance
improvements on Summit GPFS.

2) Tuning file domain size for Multi-dataset I/O:
Increasing file domain per two-phase I/O iterations can
improve MDIO write performance. If we increase the
stripe size from 1MB to 16MB, the numbers of two-phase
I/O iterations with MDIO reduce to approximately 1

16 .
IDIO write, on the other hand, has the same number
of two-phase I/O iterations because this number is lower
bounded by the number of datasets. Moreover, IDIO write

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

107

performs worse using 16MB stripe size compared with
1MB stripe size as shown in the first and the third bars
in Figures 4 (a), (b), (e), and (f). As shown in Figure 2,
the Lustre driver handles an entire stripe per two-phase
I/O iterations. For every two-phase I/O iteration, each
I/O aggregator gathers data for a contiguous file domain.
In our non-contiguous benchmark settings, a dataset has
approximately 128MB data size. Therefore, less than 8 I/O
aggregators are active for one collective I/O function call
when independent dataset write is used for Lustre stripe
size 16MB. On the other hand, most I/O aggregators
are active for the Lustre stripe size of 1MB configuration
because a full Lustre stripe (64MB or 128MB) is not larger
than a dataset size. With fewer active I/O aggregators,
both communication and I/O phases become slower due to
limited resources. Consequently, IDIO writes are expected
to have worse performance with 16MB stripe size. The
MDIO does not have the same issue since the entire 42GB
file is processed with a single collective call.

Figures 4 (a)-(h) show that a larger Lustre stripe size
benefits the multi-dataset implementation. We study the
relationship between the number of two-phase I/O iter-
ations and end-to-end I/O performance using the write
results on Cori Lustre. Figures 5 (a)-(d) illustrates how the
performance of multi-dataset write varies with different
Lustre stripe sizes on Cori for 4096 and 16384 processes.
The MPI-IO communication cost reduces as the stripe size
increases. In theory, a large stripe size should reduce the
number of two-phase I/O iterations down to the number of
MPI-IO collective calls. For MDIO that writes all datasets
in a single collective I/O function call, the number of two-
phase I/O iterations is 1. However, infinitely large stripe
size results in high memory footprints. For large files, the
out-of-memory issue can occur at the ROMIO layer. In
addition, Lustre file systems do not recommend a very
large stripe size because it can reduce I/O performance.
Thus, choosing a reasonably large stripe size depending on
the memory budget is necessary.

Figures 5 (e)-(h) illustrates how the performance of in-
dependent dataset write varies with different Lustre stripe
sizes on Cori for 4096 and 16384 processes. Different from
the multi-dataset write, the performance of independent
dataset write decreases as the stripe size increases in
general. As mentioned earlier, a larger stripe size (16MB)
can result in the idle of I/O aggregators with IDIO. Some
I/O aggregators are idle during collective I/O if the stripe
size is greater than the dataset size divided by the stripe
count. To minimize the number of two-phase I/O itera-
tions without resulting in I/O aggregators staying idle, the
maximum stripe size should be the dataset size divided
by the stripe count. In Figures 5, we can observe that
the 2MB and 1MB stripe sizes yield the best performance
for stripe counts 64 and 128 respectively, regardless of the
number of processes. Therefore, if applications decide to
use IDIO, this stripe size setting is the optimal choice.
On GPFS, the same conclusion holds. The stripe size is

replaced with collective buffer size and the stripe count
is replaced with the number of I/O aggregators, which is
usually the number of compute nodes.

V. Conclusion
Large-scale scientific workflow applications adopt high-

level I/O libraries to abstract complex data layouts in
storage for parallel I/O. Since these complex patterns
are common in scientific applications that have a mis-
match in data representations in memory and file spaces,
optimizing I/O for them is of high importance. This
paper identifies the bottlenecks of MPI-IO’s two-phase I/O
implementations for non-contiguous blocked parallel I/O
on multiple variables. Instead of modifying middleware
level implementation, we design optimization strategies for
using high-level I/O libraries to avoid overheads in I/O
software layers.
We have shown that sub-array aggregation and HDF5

multi-dataset collective I/O can effectively reduce the
number of two-phase I/O iterations in the ROMIO’s
ADIO implementation using E3SM-IO and HDF5 non-
contiguous benchmarks on Cori and Summit. Two-phase
I/O can further reduce overheads by increasing the file
domain size per two-phase I/O iteration. We plan to
integrate the multi-dataset implementation into the HDF5
releases in the future. Rearranging I/O patterns submitted
to the MPI-IO layer that can further reduce MPI-IO
overheads are interesting future studies.

A. Acknowledgment
This research was supported by the Exascale Comput-

ing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. This research
used resources of the National Energy Research Scien-
tific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725. This work was supported by the
U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research, under Contract DE-AC02-
06CH11357.

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

108

References

[1] “E3sm model.” https://e3sm.org/model/
e3sm-model-description. Accessed: 2021-06-26.

[2] The HDF Group, “Hierarchical Data Format, version 5,” 1997-.
http://www.hdfgroup.org/HDF5.

[3] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
i/o in romio,” in Proceedings. Frontiers’ 99. Seventh Symposium
on the Frontiers of Massively Parallel Computation, pp. 182–
189, IEEE, 1999.

[4] Q. Kang, R. Ross, R. Latham, S. Lee, A. Agrawal, A. Choud-
hary, and W.-k. Liao, “Improving all-to-many personalized com-
munication in two-phase i/o,” in SC20: International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, pp. 1–13, IEEE, 2020.

[5] A. Ching, A. Choudhary, K. Coloma, W.-k. Liao, R. Ross,
and W. Gropp, “Noncontiguous i/o accesses through mpi-io,”
in CCGrid 2003. 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2003. Proceedings., pp. 104–
111, IEEE, 2003.

[6] Q. Kang, S. Lee, K. Hou, R. Ross, A. Agrawal, A. Choud-
hary, and W.-k. Liao, “Improving mpi collective i/o for high
volume non-contiguous requests with intra-node aggregation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 11, pp. 2682–2695, 2020.

[7] P. Cao, Q. Koziol, and J. Kim, “RFC: Read/Write Multiple
Datasets in a HDF5 file.” https://github.com/HDFGroup/
hdf5doc/tree/master/RFCs/HDF5_Library/HPC_H5Dread_
multi_H5Dwrite_multi, 2013.

[8] P. M. Caldwell, A. Mametjanov, Q. Tang, L. P. Van Roekel, J.-
C. Golaz, W. Lin, D. C. Bader, N. D. Keen, Y. Feng, R. Jacob,
et al., “The doe e3sm coupled model version 1: Description and
results at high resolution,” Journal of Advances in Modeling
Earth Systems, 2019.

[9] T. Li, S. Byna, H. Tang, Q. Koziol, J. Ravi, et al., “H5bench: a
benchmark suite for parallel hdf5 (h5bench) v0. 1,” tech. rep.,
North Carolina State Univ., Raleigh, NC (United States), 2021.

[10] Q. Kang, S. Lee, K.-y. Hou, R. Ross, A. Agrawal, A. Choud-
hary, and W.-k. Liao, “Improving mpi collective i/o perfor-
mance with intra-node request aggregation,” arXiv preprint
arXiv:1907.12656, 2019.

[11] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisen-
hauer, J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck,
et al., “Adios 2: The adaptable input output system. a frame-
work for high-performance data management,” SoftwareX,
vol. 12, p. 100561, 2020.

[12] “Mpich3.” http://www.mpich.org/downloads/, 2017.
[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,

J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.
Woodall, “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings, 11th Euro-
pean PVM/MPI Users’ Group Meeting, (Budapest, Hungary),
pp. 97–104, September 2004.

[14] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving mpi-io
output performance with active buffering plus threads,” in
Proceedings International Parallel and Distributed Processing
Symposium, pp. 10–pp, IEEE, 2003.

[15] W.-k. Liao and A. Choudhary, “Dynamically adapting file do-
main partitioning methods for collective i/o based on underlying
parallel file system locking protocols,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, p. 3, IEEE Press,
2008.

[16] W.-k. Liao, “Design and evaluation of mpi file domain parti-
tioning methods under extent-based file locking protocol,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 2,
pp. 260–272, 2011.

[17] X. Zhang, S. Jiang, and K. Davis, “Making resonance a common
case: A high-performance implementation of collective i/o on
parallel file systems,” in 2009 IEEE International Symposium
on Parallel & Distributed Processing, pp. 1–12, IEEE, 2009.

[18] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp,
“Lacio: A new collective i/o strategy for parallel i/o systems,”

in 2011 IEEE International Parallel & Distributed Processing
Symposium, pp. 794–804, IEEE, 2011.

[19] S. Sehrish, S. W. Son, W. keng Liao, A. Choudhary, and
K. Schuchardt, “Improving collective i/o performance by
pipelining request aggregation and file access,” in the 20th
EuroMPI Conference, September 2013.

[20] Y. Tsujita, H. Muguruma, K. Yoshinaga, A. Hori, M. Namiki,
and Y. Ishikawa, “Improving collective i/o performance using
pipelined two-phase i/o,” in Proceedings of the 2012 Symposium
on High Performance Computing, HPC ’12, (San Diego, CA,
USA), pp. 7:1–7:8, Society for Computer Simulation Interna-
tional, 2012.

[21] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and
Y. Ishikawa, “Multithreaded two-phase i/o: Improving collective
mpi-io performance on a lustre file system,” in 2014 22nd
Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pp. 232–235, IEEE, 2014.

[22] F. Tessier, V. Vishwanath, and E. Jeannot, “Tapioca: An i/o
library for optimized topology-aware data aggregation on large-
scale supercomputers,” in International Conference on Cluster
Computing, pp. 70–80, September 2017.

[23] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for i/o accelera-
tion on blue gene/p supercomputing systems,” in Proceedings
of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, (New York,
NY, USA), pp. 19:1–19:11, ACM, 2011.

[24] M. S. Breitenfeld, K. Chadalavada, R. Sisneros, and S. Byna,
“Recent progress in tuning performance of large-scale i/o with
parallel hdf5,” 2020. Accessed: 2021-08-25.

[25] “Parallel i/o kernel case study – e3sm.” https://github.com/
Parallel-NetCDF/E3SM-IO. Accessed: 2021-09-05.

[26] A. Nisar, W.-k. Liao, and A. Choudhary, “Scaling parallel
i/o performance through i/o delegate and caching system,”
in SC’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pp. 1–12, IEEE, 2008.

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on June 16,2022 at 14:27:26 UTC from IEEE Xplore. Restrictions apply.

