
Cross-facility science with the Superfacility Project
at LBNL

Bjoern Enders∗, Debbie Bard∗, Cory Snavely∗, Lisa Gerhardt∗, Jason Lee∗, Becci Totzke∗, Katie Antypas∗,
Suren Byna∗, Ravi Cheema∗, Shreyas Cholia∗, Mark Day∗, Aditi Gaur∗, Annette Greiner∗,

Taylor Groves∗, Mariam Kiran∗, Quincey Koziol∗, Kelly Rowland∗, Chris Samuel∗,
Ashwin Selvarajan∗, Alex Sim∗, David Skinner∗, Rollin Thomas∗ and Gabor Torok∗

∗ Lawrence Berkeley National Lab
Berkeley, California 94720

Email: benders@lbl.gov

Abstract—As data sets from DOE user science facilities grow
in both size and complexity there is an urgent need for new
capabilities to transfer, analyze and manage the data under-
lying scientific discoveries. LBNL’s Superfacility project brings
together experimental and observational research instruments
with computational and network facilities at the National Energy
Research Scientific Computing Center (NERSC) and the Energy
Sciences Network (ESnet) with the goal of enabling user science.
Here, we report on recent innovations in the Superfacility project,
including advanced data management, API-based automation,
real-time interactive user interfaces, and supported infrastruc-
ture for “edge” services.

I. INTRODUCTION

The Superfacility concept is a framework for integrating ex-
perimental and observational instruments with computational
and data facilities. We work in an ecosystem of connected
facilities, where data produced by microscopes, telescopes
and other devices can stream in real-time to large computing
facilities where it can be analyzed, curated, combined with
simulation data and served to the science user community
via powerful computing, storage and networking systems. This
model is more than the sum of its parts, enabling discoveries
across data sets, institutions and domains and making data
from one-of-a-kind facilities and experiments broadly acces-
sible. In a not-so-distant future, we anticipate that scientists
will interact with the computing facilities directly through their
experimental facility, without direct access or accounts at an
HPC center.

The LBNL Superfacility project is designed to identify
technical and policy challenges in this concept for connected
facilities. Superfacility project activities coordinate and man-
age the work needed to address these challenges in partnership
with target science teams that provide requirements and use
cases for our development work. We are working with facilities
across the DOE Office of Science, in cosmology (DESI [1],
LSST-DESC [2]), dark matter detection (LZ [3]), lightsources
(ALS [4] and LCLS [5]) and electron microscopes (NCEM
[6]). The project is designed to ensure that the solutions
developed are widely useful - scalable to multiple user groups,
and scalable for NERSC staff to support.

Since its inception in 2018, the project has made substantial
advances in our target capabilities. This paper describes our
work so far in the following areas:

1) The ”Superfacility API”, a REST interface into NERSC.
2) Data management tools and capabilities.
3) Spin: an “Edge Services” platform based on containers.
4) Interactivity with Jupyter.

II. THE SUPERFACILITY API: AUTOMATION FOR
COMPLEX WORKFLOWS AT SCALE

Complex workflows typically involve tasks that are imprac-
tical to do manually: tracking hundreds or thousands of job
runs, adjusting job run parameters in real time based on initial
results or other conditions, coordinating data movement etc.
Ideally, workflow developers would automate as much of their
interaction with HPC systems as possible.

The Superfacility API seeks to enable the automated use
of all NERSC resources using common development tools
and techniques. An evolution of its predecessor, NEWT [7],
the newly-designed API adds features designed to support
complex distributed workflows, such as placing future job
reservations. It will also allow users to offload tedious manual
tasks such as data movement via simple REST calls. We have
designed the API endpoints and operations to cover a wide
range of use cases voiced by our user science teams.

TABLE I
API ENDPOINTS.

/accounting retrieve allocation info for a user or project

/callbacks
register callbacks for asynchronous or
chained operations

/file browse, upload, and download files

/health
retrieve system health status, including
planned outages

/jobs submit jobs and check job status

/transfer
move data between sites with Globus, or be-
tween NERSC storage tiers with data move-
ment tools (see Section III)

/reservations
submit and manage future compute reserva-
tions

A. API endpoints

Inspired by NEWT, we defined a set of endpoints (listed
in Tab. I), each serving a specific purpose. Most of these
endpoints require the user to authenticate with a JSON web
token (JWT) [8], as described in Section II-B.

These endpoints are under active development. The web
interface1 comes with documentation and the ability to query
the API in the browser window. Table II lists use cases that
can be made faster, more robust or simplified with a proper
API endpoint.

B. Technical Details

The Superfacility API is a Python Flask app built on top
of the restx library [9]. The library provides the framework
and the Swagger-compatible documentation [10]. The Python
service and other auxiliary services (database, HTTP proxy)
are hosted in Spin (see Section IV for more details) which
provides load balancing and HTTPS termination. All API
calls are blocking with the exception of the use of a simple,
database-backed message queue to handle long transactions,
e.g. running jobs or transferring data.

The API uses OAuth 2 tokens [11] for authorization. Apart
from being an open standard, OAuth 2 is an attractive autho-
rization framework for several reasons.

• Client Credentials Grant: Individual users directly using
the API to perform work with their own allocation
and data obtain a client identifier and key in Iris [12].
Workflow code or scripts then use these credentials to
request short-lived access tokens from the NERSC OAuth
2 server, which are supplied to the API for authorization.

• Authorization Code Grant: Workflow managers that per-
form work on behalf of many different users and across

1https://api.nersc.gov/api/v1

TABLE II
COMPARISON OF NERSC USE CASES WITH AND WITHOUT API.

Before Superfacility API With Superfacility API

Read the NERSC MOTD with
your eyes and see if any down
time is planned

Makes a Python Requests call
to fetch planned maintenance in
JSON.

Test SSH or ping specific services
for status

Query the /health API end-
point.

SSH in and submit jobs with
sbatch ...

Manage jobs using Requests calls
from a script or Spin service us-
ing the /jobs endpoint.

SSH in (again) and do squeue
| grep | sort | ...

Create a Spin service using
the Superfacility API to present
a custom view of workflow
progress.

File a ticket to create a reserva-
tion, then wait

Make a Requests call against the
/reservations API endpoint.

SSH in and run file transfer tools
to move data

Use the /transfer API end-
point.

Chain jobs, maintain job state
(e.g. in a database), check state
when a cron job wakes up to
coordinate workflow.

Register callbacks at the
/callback API that fire
when steps complete.

Fig. 1. Illustration of a user creating an OAuth client in Iris, then using the
client credentials to obtain an access token for automated API operations.

allocations can utilize this model, which allows a user
to authorize actions to be taken on their behalf without
exposing passwords or other credentials. Following a
web-based approval, the workflow manager obtains a
refresh token from the OAuth 2 server that corresponds
to the granting user; then, as in the first model above, this
token is used to obtain access tokens which are presented
to the API for authorization.

The OAuth 2 model not only provides a fitting authorization
solution for both single-individual and multi-user workflow
managers (see Figure 1), but the short-lived access tokens used
by both models allow for quick access revocation, satisfying
the strict security requirements for HPC centers.

C. An API for the future

Automation has emerged as a critical need for experiment
data analysis pipelines, and can no longer be considered an
optional part of HPC infrastructure [13]–[15]. The Superfa-
cility API thus meets critical needs of our partner science
teams. In the long run, we envisage all NERSC interactions
will be callable via policy-driven APIs. Backend tools will
assist with large or complex operations, keeping the API
interpretable and not just a one-to-one exposure of system
tools. As a stable and understandable interface, the API can
more readily be integrated into the tools and UIs of our user
community, creating a ”NERSC inside” experience for their
users. Adoption will be simplified further by using standard-
ized tooling (Python/REST ecosystem) which will make it
easier for middleware developers to refactor their software or
lower the entry barrier for new projects. Embracing established
authentication and security models such as OAuth 2 [11],
OpenID Connect [16], and JWTs allows software developers
to make use of standard libraries and programming methods,
reducing the time spent on these tedious aspects of system-
building and leveraging the strengths of open source - broad
community adoption and testing - to avoid security risk.

III. DATA MANAGEMENT TOOLS AND
CAPABILITIES

NERSC offers 35 PB of Lustre [17] and 60 PB of Spectrum
Scale (formerly GPFS) [18] disk storage known as the Com-
munity File System (CFS). NERSC also has more than 150 PB
of tape storage in a High-Performance Storage System (HPSS)
[19] archiving system, and 1.8 PB of NVMe Burst Buffer
storage [20]. Future projections estimate that the volume will
increase by a factor of 10 - 100 by 2025 [21].

While scientists have grown increasingly adept at produc-
ing data, there has been no commensurate increase in the
sophistication of the tools available to manage data sets at the
HPC facility. As a result, scientists spend a large fraction of
their time in manual data management. For instance, scientists
often have only “du” and “ls” to examine tens to hundreds
of terabytes of data spread across tens of millions of files
at NERSC. They must manually move this data through a
multi-level storage hierarchy (i.e., from high-speed scratch to
a long-term tape archive) and manually verify that the transfer
succeeded. The commands can often take hours to days to
complete, making data management a time-consuming chore
and management of petabyte-size data volumes untenable.
Like other efforts [22], the Superfacility project aims to take
the pain out of data management and leave the scientist with
more time to do what really matters: Science.

A. UI improvements: Data Dashboard and PI Toolbox

1) Data Dashboard: The Data Dashboard offers a graphical
view into a project’s data usage as can be seen in Fig. 2 and
Fig. 3. The visualizations in the dashboard are updated by
scripts that leverage file scan data stored in either text files
(for usage information) or a Postgresql database (for largest
files and file browser visualizations). The data from the scans is
processed daily by a set of scripts that run Spark jobs and load
the resulting data. Access to information from the database and
from the stored text files is mediated by API calls. At present,
the dashboard makes these calls via the NEWT API, but we
are in the process of moving to the Superfacility API.

2) PI Toolbox: The PI Toolbox is a web portal that allow
PIs to address many of the common issues with permission
drift and ownership changes on CFS. The current process
for these actions is handled via active ssh sessions for user-
privilege operations (like chmod) and open support tickets for

Fig. 2. Data Dashboard. Upon login, the user is shown a list of projects to
which they have permissions, and each project can be inspected for details
about the current usage of both space and inodes relative to their current
quota. One can also view the breakdowns of usage by individual users or by
unix groups within the collaboration.

Fig. 3. The Data Dashboard also provides a view of the user’s largest files,
along with age information visualized by color, enabling rapid identification
of candidates for removal.

elevated privileges (like chgrp or chown). The PI Toolbox adds
file-browser convenience and automation to this process. It
allows PIs to change permissions on their files without having
to open a ticket for the following operations:

• chgrp
• chmod (group level)
• chown (under development)
• All-in-one request to assign a group and group-read

permission for an entire project directory
• Any of the above at any level of recursion.

Under the hood, the web portal tracks requests and updates
their status in a database. A background process executes these
requests in the order they are received and reports success or
any errors back to the database.

B. Globus Sharing endpoints for collaboration accounts

Many users from our scientific partner facilities use collab-
oration accounts to manage their data at NERSC. A collabora-
tion account is a login account which is not tied to a person but
instead to the group for the purposes of shared access to batch
jobs or data. Members of an individual collaboration linux
group can impersonate the collaboration user via a modified
su command, collabsu. This abstraction layer serves a
critical need when the data is created by an experiment or
observations, and not necessarily at the hand of a particular
user. This eases burdens of data management, but Globus [23]
transfers into NERSC using a collaboration account as target
previously required several levels of human intervention:

• Transfer in with user credentials.
• File a ticket to get the data chowned to the collaboration

account.
NERSC now provides a new program which uses Globus
Sharing to create dedicated endpoints that will write as
the collaboration account with the same access controls as
collabsu :

• Only NERSC users who are in the collaboration linux
group can access the endpoint.

• Read / write access to all files and directories at NERSC
the collab account can access.

Collaboration endpoints are created and maintained by a suite
of custom scripts that use the Globus SDK. Collaboration
endpoints for Globus have been deployed in production and
the LSST-DESC collaboration has used it with great success
to move PB of data into NERSC.

C. Globus Command Line Tools

NERSC has written several command line data transfer
scripts so users can integrate data transfers into their work-
flows. These scripts are based on the Globus SDK package
and can manage transfers inside and outside NERSC. It has
defaults for NERSC endpoints and moves data into and out
of HPSS in an optimal ordered way. These scripts will serve
as the backbone for the ongoing effort to integrate data
movement into the batch system, and are being integrated into
the Superfacility API.

D. GPFS-HPSS interface (GHI)

GHI is a new GPFS / HPSS interface that offers the benefits
of a more familiar file system interface for HPSS. NERSC
users often want to store complex directory structures or
large bundles in HPSS which can be difficult to do with the
traditional HPSS access tools (hsi, htar). GHI works with a
small set of commands (see Tab. III) and can be used to easily
move data between HPSS and the GPFS file system. It offers
a set of compelling advantages:

• Users interact with a familiar file system directory that’s
tied to HPSS behind the scenes.

• GHI puts the files optimally into HPSS on your behalf,
no need to htar small files together or break things into
appropriately-sized chunks.

• GPFS and HPSS are combined in a shared namespace,
so deleting a file from GPFS will remove it from HPSS.

To illustrate the capabilities of GHI, we describe here two
common use cases for experimental or observational facilities.

• Archiving Complex Directory Structures. Experiments at
the ALS at LBNL often has complex sets of microscopy

TABLE III
GHI COMMANDS

ghi ls
show what file system the files are currently on, files
are marked ’G’ for GPFS, ’H’ for HPSS and ’B’ for
both

ghi put
copy the files to HPSS, makes files dual residents on
both files systems

ghi stage move the files back from HPSS to GPFS

ghi punch
move the files to HPSS (leaving a stub behind on
GPFS)

ghi pin keep the files from being removed from GPFS

ghi lock
keep the files from being removed using rm or other-
wise modified

image data. An experiment may produce large volumes of
image data in tens of MBs along with a few kB-sized text
files containing scan parameters. The files are organized
in a complex metadata-based directory structure that must
be maintained. Now, with a single command (ghi put)
the user is able to archive the entire directory into HPSS
without having to consider bundling or sorting the files.

• Large volumes of Infrequently Accessed Data. Experi-
ments like DESI perform annual reprocessing of large
(100TBs) datasets that are otherwise not accessed fre-
quently. The user can now move data into HPSS with ghi
put. In between analyses, the user frees up disk space by
using ghi punch to move most data off of GPFS, leaving
behind a browsable directory structure. After most of the
initial work is done the user selectively retrieves files with
ghi stage for in-depth reanalysis or download.

GHI has been released to select partners from ALS, LSST-
DESC, LZ and others for testing. Their feedback will guide
the shape of the GHI deployment, but we expect to add GHI
as a separate file system to offer an easier way for users to
archive their data.

E. HDF5 Features and Improvements

Hierarchical Data Format version 5 (HDF5) [24], [25] is the
most popular I/O middleware and file format used at NERSC.
HDF5 provides a data model, library, and file format along
with a rich programming interface for storing and managing
data. Due to the versatility of its data model, and its portability,
longevity, and efficiency, many applications (including some
superfacility science partners), use HDF5 as part of their data
management solution. In Fig. 4, we show a use case where
a detector sends data to a HDF5 application that writes data
to a storage system, and uses multiple reader applications to
access data for analysis.

We developed several new features in HDF5 to facilitate SF
use cases. Among those, a few of the most are:

• Development of the HDF5 mirror Virtual File Driver
(VFD) [24], which allows transmitting write-only opera-

Fig. 4. Data flow from detectors to remote storage when using HDF5
- Compressed data frames are send over the network to an HDF5 writer
application, which writes the data as HDF5 dataset objects in files that
correspond to each detector. Virtual datasets (VDS) are used by readers, to
compose a unified view of the detector data frames for applications at the
remote facility.

tions at a science facility to a receiver or writer process
located at a remote host;

• To search the metadata (attributes and values) of a large
number of HDF5 files, we developed a new in-memory
indexing data structure that performs three orders of
magnitude faster than databases such as MongoDB [26];

• To improve the performance of streaming applications
that append data to existing datasets, we profiled the
HDF5 library to identified bottlenecks. By optimizing
these append operations, we achieved 10X performance
improvement to application I/O.

Collectively, these features and performance optimizations are
aimed towards improving productivity and performance of
Superfacility-type workloads.

IV. SPIN: AN “EDGE SERVICES” PLATFORM BASED ON
CONTAINER TECHNOLOGY

Complex, distributed workflows typically require resources
beyond those provided by conventional HPC. In addition to
batch compute, high-performance networking, and large-scale
storage, these projects need reliable and persistent services
to manage and track job execution, coordinate data transfers,
store interstitial or ephemeral data, or provide access to results.
These “edge services” may be workflow engines, API servers,
databases, web-based science gateways, or other services.

Providing and supporting infrastructure for these types of
services presents a classical challenge. Edge services must be
adjacent to HPC storage and networks to interact directly with
datasets, but placing them inside the supercomputer presents
problems with security and provides poor availability (uptime).
The support of the highly customized software that edge
services require takes significant effort from HPC operational
staff for even a handful of projects.

Spin [27] offers a solution to these problems and a scal-
able home for edge services by placing a secure, managed,
container-based platform outside - but in direct proximity to
- HPC resources. Using Docker [28] container images and a
high-level CLI and UI, users are able to deploy their own
custom software and services within reach of NERSC net-
works and storage without any administrative access to worker
nodes. Staff manage all of the underlying infrastructure, which
is agnostic to the specifics of service workloads.

A. System Components

The key components of Spin are as follows:
• Orchestration: the core of the system, responsible for

starting and monitoring containers on Spin nodes, in-
cluding failover and fault recovery. This component also
provides the user-facing command-line interface (CLI)
and web user interface (UI) where users create and
manage services. Spin uses the Rancher [29] orchestration
system, which embeds the Kubernetes [30] scheduler.

• Image Registry: a versioned repository for Docker im-
ages, which typically correspond to individual microser-
vices (e.g. Apache frontends, MongoDB instances and
application backends).

Fig. 5. Spin architecture depicting a typical edge service. The Docker-
based workstation and service deployment are user-managed; all underlying
infrastructure and HPC integration are managed by NERSC.

• Overlay network: an abstraction of the physical net-
work, this virtual network isolates related groups of
microservices into their own private, encrypted IP space.
External routes are explicitly declared to allow outgoing
access to HPC storage and job management and incoming
connections to web or database services.

• Worker nodes and local storage: commodity servers
running container workloads in Docker. Containers are
distributed across different worker nodes by the scheduler
to level resource usage. Enterprise storage is mounted for
data persistence outside of the HPC environment.

• Security and Policy Enforcement: encoded policy dec-
larations and real-time logic that perform user authen-
tication, enforce authorization, and inspect user activity
to permit or deny deployment operations. Spin uses the
Open Policy Agent (OPA) [31] system for security policy
enforcement.

B. Usage

Building and deploying services in Spin loosely follows the
Docker “Build - Ship - Run” methodology:

• Build: images for individual microservices are built and
tested on a local workstation using docker build,
run, and exec;

• Ship: when complete, images are uploaded to the Registry
with a specific name and version using docker push;

• Run: microservices are defined and deployed using the
Rancher CLI or UI, where they can communicate with
each other via the overlay network.

Microservices may be run (or ”deployed”) using the
Rancher CLI or UI. The CLI requires preparing YAML decla-
ration files that describe the deployment; this mode of access
lends itself well to version control. The UI is a more manual,
interactive process suitable for new users, initial deployments
from scratch, or proof-of-concept experimentation. The two
approaches may also be used interchangeably.

C. Security Measures

The conventional Docker daemon runs with privilege, which
is necessary for it to interact with worker node resources

(e.g. network interfaces and storage). Because direct access
to Docker is equivalent to privileged access to the node,
additional measures must be taken to secure a multi-tenant,
shared infrastructure.

• Access via Rancher CLI / UI: all access to Docker is
mediated through Rancher, which enforces authorization
and security policy.

• Multi-tenancy / RBAC: users can see and manipulate only
the services associated with their NERSC projects, giving
them a virtual private view on the shared environment.

• Limited allowable Linux capabilities: containers may run
only with a limited subset of capabilities, which prevents
typical ”root” privilege and subverts privilege escalation.

• Dynamic policy enforcement: the OPA system integrates
with Kubernetes, inspecting user actions and applying
rules to allow or deny execution, such as allowing mounts
only of approved file system paths or preventing users
from running containers as another’s UID.

“Edge services” are a critical component of many complex,
distributed workflows. Spin provides a supported platform for
these services built on worker node clusters placed adjacent
to the HPC environment, an overarching orchestration system,
and a rule-based security policy enforcement subsystem.

V. INTERACTIVE COMPUTING WITH JUPYTER

Large scale Superfacility-type experimental science work-
flows require support for a unified, interactive, real-time plat-
form that can manage a distributed set of resources connected
to High Performance Computing (HPC) systems. The Jupyter
platform [32] plays a key role in this space - it provides
the ease-of-use and interactivity of a web science gateway
while providing scientists the ability to build custom, ad-
hoc workflows in a composable and sharable way. Jupyter
Notebooks combine live executable code cells, with inline
documentation and embedded interactive visualizations. This
allows us to capture an experiment in a fully contained
executable Notebook that is self-documenting and incorporates
live rendering of outputs and results as they are generated.
The Notebook format lends itself to a highly modular and
composable workflow, where individual steps and parameters
can be adjusted on the fly. Additionally, the Jupyter platform
can support custom applications and extensions that live
alongside the core Notebook interface.

As part of the LBNL Superfacility project we have made
substantial improvements to our Jupyter service and demoed
its use for HPC applications.

A. Scaling up Jupyter notebooks

Notebooks provide a concise way to capture a set of
steps involved in an experimental analysis workflow. However,
a typical notebook runs inside a single notebook “kernel”
process. This means that if there are steps in the notebook
that need to be scaled up, we need to run those on additional
compute resources. In our work with experimental facilities
like NCEM, ALS and LCLS we have implemented a process
[33] for enabling this kind of scale-up using data parallel

frameworks like Dask [34]. In this mode when the user starts
a notebook we spawn a compute job that runs on backend
compute nodes and starts up a set of Dask workers that can
accept tasks. The notebook can then communicate with these
workers to farm out the operations that need to be parallelized
and scaled up, effectively giving us a mechanism to run a given
piece of Python code at much higher levels of concurrency. We
can also communicate with the running tasks to pull results,
allowing us to interact with results in real-time.

B. Sharing and cloning

Modern experimental science is highly collaborative. Sci-
entists want to provide curated analysis notebooks for their
colleagues to run a set of predefined analyses that can then
be modified, and applied to other datasets. Towards this end
we have developed a service (based on the nbviewer [35]
tool), that allows a project to browse a repository of curated
notebooks, along with a predefined software environment
at NERSC. Our service CloneNotebooks allows a user to
browse this repository of notebooks along with a static HTML
rendering of a given notebook file. If the user wishes to use
this analysis they can then clone the notebook into their own
Jupyter environment at NERSC, along with a reference to the
pre-installed software environment, allowing the user to then
have a live working copy of the analysis.

VI. CONCLUSION

The experimental and observational science community is
increasingly looping in HPC facilities and high-performance
networks to manage, move and analyse their data. The LBNL
Superfacility project has been designed to coordinate and focus
the technical and policy work required to support these work-
flows at ESnet and NERSC. This paper highlights key areas
of technical innovation in automation, data management, edge
services and interactivity with Jupyter that have been driven by
the science needs of our user community. Our goal is to enable
truly automated use of ESnet and NERSC for end-to-end user
workflows. We are now mid-way through the project, and our
focus for the future will be on increased automation, federated
identity management, workflow resiliency and providing a
seamless user experience for the tools we have deployed.

REFERENCES

[1] The Dark Energy Spectroscopic Instrument, “DESI,” https://www.desi.
lbl.gov/.

[2] Rubin Observatory Legacy Survey of Space and Time Dark Energy
Science Collaboration, “LSST-DESC,” https://lsstdesc.org/.

[3] LUX-ZEPLIN Dark Matter Experiment, “LZ,” https://lz.lbl.gov/.
[4] Advanced Light Source, “ALS,” https://als.lbl.gov/.
[5] Linac Coherent Light Source, “LCLS,” https://lcls.slac.stanford.edu/.
[6] National Center for Electron Microscopy, “NCEM,” https://foundry.lbl.

gov/about/facilities/the-national-center-for-electron-microscopy-ncem/.
[7] S. Cholia, D. Skinner, and J. Boverhof, “Newt: A restful service

for building high performance computing web applications,” in 2010
Gateway Computing Environments Workshop (GCE), 2010, pp. 1–11.

[8] Json web tokens. [Online]. Available: https://jwt.io
[9] Restx, formerly restplus. [Online]. Available: https://github.com/

python-restx/flask-restx
[10] Swagger. [Online]. Available: https://swagger.io/
[11] Oauth v2. [Online]. Available: https://oauth.net/2/

[12] Management and reporting for your account, compute and storage
allocations, and projects at NERSC. [Online]. Available: https:
//iris.nersc.gov

[13] E. Lingerfelt, A. Belianinov, E. Endeve, O. Ovchinnikov, S. Somnath,
J. Borreguero, N. Grodowitz, B. Park, R. Archibald, C. Symons,
S. Kalinin, O. Messer, M. Shankar, and S. Jesse, “Beam: A
computational workflow system for managing and modeling material
characterization data in hpc environments,” Procedia Computer
Science, vol. 80, pp. 2276 – 2280, 2016, international Conference
on Computational Science 2016, ICCS 2016, 6-8 June 2016, San
Diego, California, USA. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050916308869

[14] M. A. Salim, T. D. Uram, J. T. Childers, P. Balaprakash, V. Vishwanath,
and M. E. Papka, “Balsam: Automated scheduling and execution of
dynamic, data-intensive hpc workflows,” 2019.

[15] J. T. Childers, T. D. Uram, D. Benjamin, T. J. LeCompte, and M. E.
Papka, “An edge service for managing hpc workflows,” in Proceedings
of the Fourth International Workshop on HPC User Support Tools,
ser. HUST’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3152493.
3152557

[16] Openid connect. [Online]. Available: https://openid.net/connect/
[17] Lustre home page. [Online]. Available: https://lustre.org/
[18] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large

computing clusters,” in In Proceedings of the 2002 Conference on File
and Storage Technologies (FAST, 2002, pp. 231–244.

[19] Hpss collaboration. [Online]. Available: http://www.hpss-collaboration.
org/

[20] W. Bhimji, D. Bard, K. Burleigh, C. Daley, S. Farrell, M. Fasel,
B. Friesen, L. Gerhardt, J. Liu, P. Nugent, D. Paul, J. Porter, and
V. Tsulaia, “Extreme I/O on HPC for HEP using the burst buffer at
NERSC,” Journal of Physics: Conference Series, vol. 898, p. 082015,
oct 2017. [Online]. Available: https://doi.org/10.1088/1742-6596/898/8/
082015

[21] R. Gerber, J. Hack, K. Riley, K. Antypas, R. Coffey, E. Dart,
T. Straatsma, J. Wells, D. Bard, S. Dosanjh, I. Monga, M. E. Papka,
and L. Rotman, “Crosscut report: Exascale requirements reviews, march
9–10, 2017 – tysons corner, virginia. an office of science review
sponsored by: Advanced scientific computing research, basic energy
sciences, biological and environmental research, fusion energy sciences,
high energy physics, nuclear physics,” 1 2018.

[22] D. Stansberry, S. Somnath, J. Breet, G. Shutt, and M. Shankar, “Datafed:
Towards reproducible research via federated data management,” in 2019
International Conference on Computational Science and Computational
Intelligence (CSCI), 2019, pp. 1312–1317.

[23] I. Foster, “Globus online: Accelerating and democratizing science
through cloud-based services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, 2011.

[24] The HDF Group, “HDF5,” https://www.hdfgroup.org/solutions/hdf5/.
[25] S. Byna, M. S. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal,

D. Robinson, J. Soumagne, H. Tang, V. Vishwanath, and R. Warren,
“ExaHDF5: Delivering Efficient Parallel I/O on Exascale Computing
Systems,” Journal of Computer Science and Technology, vol. 35,
no. 1, pp. 145–160, 2020. [Online]. Available: https://doi.org/10.1007/
s11390-020-9822-9

[26] W. Zhang, S. Byna, H. Tang, B. Williams, and Y. Chen, “MIQS:
Metadata Indexing and Querying Service for Self-Describing File
Formats,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356146

[27] Spin. [Online]. Available: https://www.nersc.gov/systems/spin/
[28] Docker. [Online]. Available: https://www.docker.com
[29] Rancher. [Online]. Available: https://rancher.com
[30] Kubernetes. [Online]. Available: https://kubernetes.io
[31] Open policy agent. [Online]. Available: https://www.openpolicyagent.

org
[32] T. Kluyver, B. Ragan-Kelley, F. Perez, B. Granger, M. Bussonnier,

J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and Jupyter Development Team,
“Jupyter notebooks – a publishing format for reproducible computational
workflows,” in Positioning and Power in Academic Publishing: Players,
Agents and Agendas, 01 2016, pp. 87 – 90.

[33] M. L. Henderson, W. Krinsman, S. Cholia, R. Thomas, and T. Slaton,
“Accelerating experimental science using jupyter and nersc hpc,” in
Tools and Techniques for High Performance Computing. Springer,
2019, pp. 145–163.

[34] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

[35] Nbviewer. [Online]. Available: https://nbviewer.jupyter.org/

