
Predicting and Comparing the Performance of
Array Management Libraries

Donghe Kang1, Oliver Rübel2, Suren Byna2, Spyros Blanas1

The Ohio State University1 , Lawrence Berkeley National Laboratory2

{kang.1002, blanas.2}@osu.edu, {oruebel, sbyna}@lbl.gov

Abstract—Many applications are increasingly becoming I/O-
bound. To improve scalability, analytical models of parallel
I/O performance are often consulted to determine possible I/O
optimizations. However, I/O performance modeling has predom-
inantly focused on applications that directly issue I/O requests to
a parallel file system or a local storage device. These I/O models
are not directly usable by applications that access data through
standardized I/O libraries, such as HDF5, FITS, and NetCDF,
because a single I/O request to an object can trigger a cascade of
I/O operations to different storage blocks. The I/O performance
characteristics of applications that rely on these libraries is a
complex function of the underlying data storage model, user-
configurable parameters and object-level access patterns. As
a consequence, I/O optimization is predominantly an ad-hoc
process that is performed by application developers, who are
often domain scientists with limited desire to delve into nuances
of the storage hierarchy of modern computers.

This paper presents an analytical cost model to predict the end-
to-end execution time of applications that perform I/O through
established array management libraries. The paper focuses on the
HDF5 and Zarr array libraries, as examples of I/O libraries with
radically different storage models: HDF5 stores every object in
one file, while Zarr creates multiple files to store different objects.
We find that accessing array objects via these I/O libraries intro-
duces new overheads and optimizations. Specifically, in addition
to I/O time, it is crucial to model the cost of transforming data to
a particular storage layout (memory copy cost), as well as model
the benefit of accessing a software cache. We evaluate the model
on real applications that process observations (neuroscience) and
simulation results (plasma physics). The evaluation on three HPC
clusters reveals that I/O accounts for as little as 10% of the
execution time in some cases, and hence models that only focus on
I/O performance cannot accurately capture the performance of
applications that use standard array storage libraries. In parallel
experiments, our model correctly predicts the fastest storage
library between HDF5 and Zarr 94% of the time, in contrast
with 70% of the time for a cutting-edge I/O model.

I. INTRODUCTION

Many scientific datasets are naturally represented as multi-

dimensional arrays. To access these scientific datasets, ap-

plications often use array management libraries that support

array-centric APIs. Different array management libraries use

different data storage representations. For example, one such

array management library is HDF5, which has been in active

use for two decades. HDF5 stores arrays, metadata, and

attributes, in one file with an inner structure that is opaque

to the application. Another library that is becoming prominent

is Zarr. Zarr stores a chunk, a fixed-size partition of an array,

in a separate file, such that storing a large array requires many

files which is challenging for parallel file systems. HDF5 and

Zarr represent the two extremes of array storage mechanisms.

Although I/O performance modeling has long been a topic

of active research, performing I/O using an array management

library poses additional challenges. The performance of an

array management library is impacted by various system-

specific or user-configured factors, such as the logical array

shape, the physical storage layout and the application access

pattern to arrays. The impact of these factors varies in different

array management libraries. For example, the same dataset

is faster to read from HDF5 than Zarr when the array is

partitioned into many chunks, but HDF5 becomes slower than

Zarr when multiple processes concurrently write to the array

due to the I/O contention. Existing I/O models [1]–[3] are only

focusing on the storage device, but are not accurate when the

device I/O time is only a small fraction of the total time it

takes to return data to the application. Thus, it is not trivial

for users (often domain scientists) to select the most efficient

array storage configuration for their application.

Towards addressing the challenge, this paper introduces a

performance model that estimates the I/O performance for

array management libraries over parallel file systems. To the

best of our knowledge, no prior work has systematically

considered how the choice of an array management library

and its configuration impacts I/O performance. In addition

to choosing the most efficient array management library for

a given access pattern, an accurate I/O performance model

also guides users to configure the logical and physical storage

layout for better performance. The model presented in the

paper is based on the cost of data movement to memory

and between compute nodes and storage devices. The factors

in the model are the number of accessed data chunks, the

data size, the number of I/O requests, number of used data

servers (devices) in the parallel file system, and number of

parallel processes. The model derives these factors from the

array storage layout and access pattern. The layout and pattern

can be easily intercepted from the applications and array

management libraries using existing I/O characterization tools

such as Darshan or an HDF5 VOL driver.

We evaluate the cost model on two parallel file systems,

Lustre and GPFS, in three HPC clusters that represent facilities

of different sizes and configurations. The access patterns

are derived from two scientific applications, a neuroscience

application and an accelerator modeling simulation code. The

model correctly predicts the relative performance of HDF5

906

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00097

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



and Zarr in 97 out of 111 evaluation experiments, with a root

mean square error (RMSE) of 0.29 for the model.

The main contributions of this paper are:

1) We build an end-to-end cost model to compare the perfor-

mance of two popular array management libraries, HDF5

and Zarr. We decompose the cost into the memory copy

cost, software cache read cost and data server I/O cost.

2) We propose a model to predict the parallel I/O cost for

both HDF5 and Zarr that captures the contention for the

metadata server and the data servers in the underlying

parallel file systems.

3) We use the linear regression to train the model and evaluate

the model based on two scientific applications. The evalua-

tion is conducted on three HPC clusters with different sizes

and parallel file systems, to better reflect the diversity of

HPC infrastructure. The memory copy and software cache

read operations take as much as 90% and 87% of the

execution time, which corroborates that exclusively focus-

ing on the data server I/O cost is insufficient. In parallel

experiments, our model correctly predicts the fastest library

between HDF5 and Zarr 94% of the time versus 70% of

the time for a cutting-edge I/O model.

The rest of this paper is organized as follows. Section

II briefly introduces parallel file systems and the two array

management libraries compared and modeled in this study

(HDF5 and Zarr). We then present the cost prediction model

in Section III. We train and evaluate the model in Section IV

and V. We discuss the related work to the I/O and memory

operation cost prediction and then conclude.

II. BACKGROUND

A. Parallel file systems

Parallel file systems, such as Lustre and GPFS are widely

used on HPC clusters. These file systems have architectural

similarities in terms of having separate metadata and data

servers and transferring data to clients through the network.

A file is partitioned into stripes and each stripe is stored in

a single data server. The metadata server stores the location

of each stripe for a file. We refer to the mapping between

stripes and data servers as the file layout. There are two

parameters that control the file layout: (1) the stripe size, or

the size of a stripe in bytes, and (2) the server count, or the

number of data servers that will be used. In GPFS, all files

in the same file system use the same stripe size and server

count, whereas in Lustre two files in the same file system

can have different stripe sizes and server counts. Accessing

many files in a parallel file system is inefficient due to the

frequent communication with metadata servers and the lack

of prefetching in data servers.

B. Array management libraries

Array management libraries, such as HDF5, Zarr, TileDB,

FITS, and NetCDF, expose array-centric APIs. Scientific

applications access arrays through these libraries. An array

is partitioned into fixed-shape chunks. Chunks are the I/O

units between the library and the underlying file system.

Applications access an array through hyperslab selections. A

hyperslab is a logically contiguous region of array cells or a

regular pattern of cells. Section III-A describes the data access

procedure after a hyperslab selection. This paper focuses on

the HDF5 and Zarr libraries, which use two different file

layouts: All chunks of an HDF5 array are stored in one file,

whereas each chunk of a Zarr array is stored as a separate file.

1) HDF5: The Hierarchical Data Format 5 (HDF5) is an

array management library which stores multiple arrays and

their metadata in one file. Chunks in an array are stored in

the file based on row-major order. HDF5 locates chunks in

a file through the chunk index. The chunk index records the

offsets and lengths of chunks. The index is partitioned into

index blocks, and each index block indexes a fixed number of

chunks. An index block is stored near the chunks it indexes.

2) Zarr: The physical representation of a Zarr array is a

folder. The folder contains one metadata file and one or more

chunk files. The metadata file stores the array shape, chunk

shape and data type. The metadata file is accessed before

opening or creating an array. A chunk file stores the raw data

of a chunk. The chunk file name encodes the logical position

of the chunk in the array. Locating relevant chunks requires

converting index offsets to chunk file names at query time.

III. MODELING ARRAY MANAGEMENT LIBRARIES

This section builds a cost model to predict the performance

of HDF5 and Zarr. Section III-A first introduces the common

I/O path that both HDF5 and Zarr use to read and write arrays

through hyperslab selections. Based on this I/O path, Sections

III-B and III-C introduce the serial and the parallel cost model,

respectively. We discuss the model applicability, usage, and

limitations in Section III-D.

A. Array management library behavior

The HDF5 and Zarr array management libraries have a

common interface to read and write arrays through hyper-

slab selections. Figure 1a shows an example that accesses

a 32, 000 × 16, 000 array with chunk shape 8, 000 × 8, 000

(a) Hyperslab selection
(b) Serial write flowchart

Fig. 1: Hyperslab selection and write flowchart

907

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



through a hyperslab selection, denoted as the grey rectangle.

The user inputs a hyperslab selection and a data buffer. The

data buffer holds the cell values read from or written to the

array. The data buffer is serialized on row-major order.

HDF5 and Zarr have a common I/O path in serial programs.

HDF5 and Zarr first identify the chunks covered by the

selected hyperslab, e.g. the chunks C0 to C5 in Figure 1a.

HDF5 and Zarr use different mechanisms to locate chunks.

HDF5 locates chunks via the chunk index, while Zarr locates

chunks based on the chunk file names. These chunks are then

read or written sequentially. The I/O unit is an entire chunk.

The I/O path in the parallel file system has three steps: opening

or creating a file, transferring data through the network, and

extracting or flushing data from or to storage devices in data

servers. We denote the time of the three steps as the metadata
time, network time, and process time. Both libraries and the

file system use caches, called library cache and software cache
respectively, to hold recently accessed data.

In the read path, when a chunk is found in the library cache,

the selected cells in the chunk are copied from the library

cache to the data buffer. When the chunk is not in the library

cache, HDF5 and Zarr use POSIX I/O to retrieve the chunk

from the file system. If the chunk is in the software cache,

HDF5 and Zarr fetch the chunk from the software cache to

a buffer, called chunk buffer, and then copy the selected cells

to the data buffer. Otherwise, HDF5 and Zarr read the chunk

from data servers to the chunk buffer and copy selected cells.

In the write path, when a chunk is fully covered by the

hyperslab, HDF5 and Zarr copy the chunk from the data buffer

to the chunk buffer and then write the chunk. When a chunk

is not fully covered, HDF5 and Zarr read the chunk into the

chunk buffer, copy the data buffer to the chunk buffer, and

write the chunk. Figure 1b shows the flowchart to write an

array.

The I/O path is different when multiple processes concur-

rently access an array. The parallel I/O path of Zarr is same as

the serial I/O path. In the parallel I/O path, HDF5 does not use

the library cache. For each chunk covered by the hyperslab,

HDF5 uses one or more MPI I/O operations to access the

selected cells in the chunk. An I/O operation accesses the cells

which are contiguous in both the data buffer and the serialized

chunk. A chunk and the buffer are serialized on row-major

order. Parallel HDF5 and Zarr do not guarantee sequential

consistency: the results of hyperslab selections concurrently

writing and reading an array are undefined [4].

Fig. 2: Prediction procedure

TABLE I: Variables and descriptions

Variables Description
t Predicted execution time

tmemory Predicted memory copy time
trdisk Predicted data server read time
twdisk Predicted data server write time
tcache Predicted software cache read time
schunk Chunk size in bytes

nmemcpy Number of memory copy operations
smemcpy Memory copied data size
nrdisk Number of chunks read from data servers
nrseek Number of seeks to read chunks in HDF5
nrindex Number of index blocks read in HDF5
nwdisk Number of written chunks
nwseek Number of seeks to write chunks in HDF5
nwindex Number of index blocks written in HDF5
ncache Number of chunks read from software cache

B. Serial cost model

The serial cost model predicts the end-to-end execution

time of reading or writing an array through a sequence of

hyperslab selections in the serial HDF5 and Zarr. Figure

2 shows the procedure to use the model. Users input the

hyperslab selections and system parameters, such as the sizes

of the library cache and the software cache, to compute the

variables in the model. The variable calculation maintains the

status of caches. The model then predicts the execution time

based on these variables.

Existing analytical I/O cost models [1], [2], [5] only predict

the time to access data servers. In comparison, we find that

other operations in the I/O path, specifically the memory

copy operation and software cache accesses, take considerable

time. We thus divide the end-to-end execution time into three

components: memory copy time, data server access time
and cache read time. The cache read time refers to the time

reading chunks from the software cache. Table I shows the

notation. The predicted end-to-end execution time, t, is the

sum of these components:

t = tmemory + trdisk + twdisk + tcache (1)

The memory copy time in HDF5 and Zarr is proportional

to the number of memory copy operations nmemcpy , and the

size of copied data smemcpy . We assume that a memory copy

operation has some constant startup cost plus a cost that is

proportional to the size of the data that are copied during the

operation. Therefore, the memory copy time is modeled as:

tmemcpy ∝ nmemcpy + smemcpy (2)

For the cache read time, the model assumes that there is

some constant start-up cost plus a cost that is proportional

to the read size. Hence, the cache read time is modeled as a

linear function of the the number of chunks ncache, and the

size of the data read from the cache ncache × schunk:

tcache ∝ ncache + ncache × schunk (3)

When the requested data are not in the cache, a read oper-

ation will need to access the data servers. For every accessed

908

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



chunk, Zarr must first communicate with the metadata server

before opening the relevant chunk file. The model assumes that

the metadata time of a read operation is constant, whereas the

network time and the process time have constant start-up cost

and are proportional to the read size. The data server read time

in Zarr is thus modeled as:

tZarr
rdisk ∝ nrdisk + nrdisk × schunk (4)

HDF5 reads multiple chunks from a single file, hence HDF5

will only open the file once per read operation. Hence, we

model the data server read time in HDF5 as the sum of

the network time and the process time. The network time is

proportional to three variables: (1) the number of chunks, (2)

the size of each chunk, and (3) the number of index blocks

that need to be read. The process time of random reads in an

HDF5 file is higher than sequential reads. The model uses the

number of seek operations to capture the overhead of random

reads. A seek operation happens when the next chunk to be

read does not immediately follow the last chunk that was read

from the HDF5 file. The process time is thus proportional to

the number of seek operations, the number and size of read

chunks and the number of read index blocks. The data server

read time in HDF5 is thus modeled as:

tHDF5
rdisk ∝ nrseek + nrdisk + nrdisk × schunk + nrindex (5)

The data server write time is predicted similarly to the

data server read time. The write time in Zarr, tZarr
wdisk, is

linearly proportional to the number of written chunks and

the written data size, as shown in Formula 6. The write time

in HDF5, tHDF5
wdisk , is linearly proportional to the numbers of

seeks, written index blocks and written chunks and the written

data size as shown in Formula 7.

tZarr
wdisk ∝ nwdisk + nwdisk × schunk (6)

tHDF5
wdisk ∝ nwseek + nwdisk + nwdisk × schunk + nwindex (7)

Careful readers may have noticed that the HDF5 model adds

variables to the Zarr model. However, this does not necessarily

mean that the read time of HDF5 is larger than the read time in

Zarr, as the HDF5 and Zarr formulas use different coefficients

for the same variable.

Variable Calculation. This subsection shows how to com-

pute the variables in Table I. The inputs of the variable

calculation are the hyperslab selection and system parameters.

A hyperslab selection is the offset and size of the hyperslab

in each dimension. The system parameters are the sizes of the

library cache and the software cache. Computing the HDF5

model requires one more system parameter, which is the

number of chunks indexed by an HDF5 index block, called

the index block size.

Users need to input the hyperslab selection and the system

parameters to the variable calculation. Users who do not know

these inputs can run the application and collect this infor-

mation systematically through the HDF5 virtual object layer

Algorithm 1: Computing variables for HDF5 read

input : h, a hyperslab

sindex, the number of chunks indexed by an

index block

output: nrdisk, nrseek, nrindex and ncache

1 idlast ← -1;

2 Initialize output variables with 0;

3 foreach chunk c covered by h do
4 id ← the row-major order of c in the array;

5 if id /∈ Clib ∧ id ∈ Cu then
6 ncache ← ncache + 1;

7 else if id /∈ Clib ∧ id /∈ Cu then
8 nrdisk ← nrdisk + 1;

9 if id �= idlast + 1 then
10 nrseek ← nrseek + 1;

11 index ←
⌊

id
sindex

⌋
;

12 if index /∈ Cindex then
13 nrindex ← nrindex + 1;

14 Insert index to Cindex;

15 Insert id to Cu;

16 Insert id to Clib;

17 idlast ← id;

(VOL). The VOL is a new abstraction in HDF5 that allows

intercepting and injecting I/O operations without modifying

applications. Users can implement a VOL plugin to log the

hyperslab selections, the configured HDF5 cache size and

index block size, and the free memory size. Prior works [6],

[7] have used this mechanism to log the access pattern.

Calculating the input variables correctly depends on the

state of the cache. For this reason, the model tracks the cache

state separately for the library cache, the software cache and

the accessed HDF5 index blocks. The contents of the library

cache and the software cache are represented as two finite

sets, denoted as Clib and Cu, respectively. The sizes of the

two sets are the capacity of the two caches. All the accessed

HDF5 index blocks are tracked in the Cindex set. The three

sets only hold a unique ID for each chunk and index block,

instead of the actual data.

Due to space limitations, we only show how to compute

the variables for the HDF5 read operation. Algorithm 1 shows

the variable calculation algorithm. The inputs are a hyperslab

selection and the index block size. The algorithm first identifies

all the chunks covered in the hyperslab. First, Algorithm 1

increments the number of cache read operations when a chunk

is not in the library cache but is found in the software cache

(lines 5-6). When a chunk is in neither cache, the number of

chunks read from data servers, nrdisk, is increased by 1. If the

current chunk does not immediately follow the last chunk, the

number of seeks is incremented (lines 9-10). If the index block

has not been accessed before, the number of accessed index

blocks is incremented (lines 11-13). Finally, the cache state is

updated (lines 14-16) before processing the next chunk.

909

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



C. Parallel cost model

The parallel cost model predicts the execution time of

HDF5 and Zarr when multiple processes independently and

concurrently access an array. The parallel cost model focuses

on the use case where (1) each chunk is accessed by only

one process, (2) the stripe size is the chunk size, and (3) each

process runs in a different node. Many scientific applications,

such as GCRM and VORPAL [8], have this access pattern.

When multiple processes concurrently read or write to

the parallel file system, the model predicts the I/O time

by estimating resource contention. The parallel cost model

assumes that (1) the metadata server sequentially processes

the file open and creation requests, (2) the network is not the

bottleneck, and (3) a data server sequentially processes the I/O

requests it receives. The inputs to the parallel cost model are

the hyperslab selections for each process and the number of

accessed data servers.

We model the contention for the metadata server and the

data server differently. The degree of contention for the meta-

data server is the number of processes that are accessing it. To

model the contention for data servers, we track the number of

processes concurrently accessing a data server, denoted as cf .

Data servers have higher contention in HDF5 than Zarr when

chunks are stored in a subset of all data servers. Consider the

example shown in Figure 3 where three processes P0, P1, P2

read sixteen array chunks C0, C1, ..., C15 in a round-robin

pattern, and the chunks in Zarr are stored in all n data servers

while the HDF5 chunks are striped to two data servers Si and

Sj . Formula 8 computes the degree of contention cf with p
processes and c data servers. The c variable in HDF5 is the

server count, while c in Zarr is the total number of data servers.

cf = 1 +
p− 1

c
(8)

The parallel execution time of a process consists of the

memory copy time, software cache read time, and data server

access time. The parallel cost model predicts the software

cache time similarly as the serial model, as processes run in

separate nodes and access different chunks.

Formula 9 models the data server read time in HDF5, which

consists of the network time nrrequest + srrequest, and the

process time nrrequest×cf+srrequest×cf . The process time

is multiplied by cf to account for contention in data servers.

The data server write time is predicted similarly as the read

time. The memory copy time does not need to be modeled

(a) Zarr (b) HDF5

Fig. 3: Data layout and access pattern

TABLE II: Variables and descriptions of parallel cost model

Variables Description
p Numer of processes
c Number of data servers accessed in the application
cf Number of processes concurrently accessing a data server

nrrequest Number of data server read requests
srrequest Read data size from data servers
nwrequest Number of data server write requests
swrequest Written data size to data servers

because HDF5 does not use the chunk buffer in the parallel

I/O path.

tHDF5
rdisk ∝ nrrequest + srrequest + nrrequest × cf

+ srrequest × cf
(9)

Formula 10 models the data read time in Zarr. The read

time consists of the network time, process time, and metadata

time. The metadata time nrrequest × p, is multiplied by p due

to contention in the metadata server. The memory copy time

of Zarr in the parallel cost model is predicted similarly as the

serial cost model.

tZarr
rdisk ∝ nrrequest × p+ nrrequest + srrequest

+ nrrequest × cf + srrequest × cf
(10)

Variable Calculation. Given the hyperslab selections of

each process, we compute the variables nrrequest, srrequest,
nwrequest and swrequest. The model only considers the access

pattern where a chunk is only accessed by a single process.

With parallel I/O, Zarr works similarly as the serial version.

The nrrequest and nwrequest of Zarr equal the nrdisk and

nwdisk in Table I. Chunks are the I/O units in the parallel

Zarr, such that the srrequest and swrequest are derived by

multiplying the nrdisk and nwdisk with the chunk size schunk.

An MPI-I/O operation in parallel HDF5 directly reads or

writes array cells which are contiguous in a chunk and the

data buffer. For example, in Figure 1a, an MPI-I/O operation

accesses the selected cells in each row of a chunk. We initialize

the four parameters as 0. For each read chunk, we increase the

nrrequest and srrequest by the number of MPI-I/O operations

and the data size of the selected cells in the chunk. The

nwrequest and swrequest are computed in the similar way.

D. Discussion

1) Generalizability: The cost model can be applied to

different array management libraries. There are three common

array storage mechanisms: storing everything in a file (S1),

storing arrays in separate files (S2), and storing a chunk in

a file (S3). The HDF5 and Zarr represent the two extremes,

S1 and S3, respectively. The cost models in this paper can

also be applied to arrays stored based on the S2 mechanism.

The HDF5 cost model can predict the serial cost. Processes in

a parallel application often access either an array or separate

arrays. The HDF5 and Zarr parallel cost models apply to the

two access patterns respectively due to the same file access

patterns.

910

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



The model considers HPC clusters with a fast network to

slow, shared storage. Many HPC clusters use Infiniband to

connect nodes in the cluster and hard disks to store data in

the parallel file system. The generalizability of the model to

faster storage devices that may be locally-attached to compute

nodes, such as NVM, is an open question.

2) Usage: It is challenging for users, who are often do-

main scientists, to identify efficient I/O configurations. The

I/O performance is dependent on various factors, like the

hardware status, file system, and array access pattern. Without

a prediction model, users have to implement the I/O modules

in applications on different array management libraries and

manually tune I/O parameters. This procedure is cumbersome,

error-prone, and heavily relies on a user’s prior experience.

Together with suitable search heuristics, the model provides

a systematic method to identify the most efficient array man-

agement library and I/O configurations for an application. The

solution depends on the array access pattern which can be

intercepted automatically. If a dataset is replicated in different

file formats and file system configurations, the cost model can

predict the execution time on different replicas.

3) Limitations: Although the model in this paper only

captures linear effects, we acknowledge that recent advances

in I/O technology may require introducing non-linearity in I/O

performance modeling. More complex I/O models and training

methods could more accurately predict the performance of

each phase in the I/O path. Given that the end-to-end time

is modeled as the sum of the time of individual phases (cf.

Formula 1), one could easily replace the model for a particular

phase with a more complex one, after deriving the input

parameters of the model through a variable calculation as

shown in Algorithm 1. A strength of linear models is their

interpretability, compared to more complex models such as

models based on neural networks.

IV. TRAINING THE COST MODEL

The coefficients in the cost models must be identified before

prediction. It is difficult and error-prone to profile the file

systems in supercomputers to directly derive these coefficients.

The I/O path in HPC clusters is complicated and domain scien-

tists usually cannot measure the detailed performance of each

step in the path. We train the model trough linear regression

to derive these coefficients. We measure the performance of

reading and writing synthetic arrays by hyperslab selections

and ensure that all parameters in the cost model are varied.

The models are trained on multiple HPC clusters.

The shape of the synthetic array to train the serial cost model

is 8, 388, 608×128 and each cell is a 4-byte integer. The initial

chunk shape is 65536 × 1 and extended by 2 to 128 times

on the two dimensions respectively. We define three types of

hyperslab selection, including reading or writing the full array,

a column and 1,000 rows randomly selected from the array.

A chunk can be accessed more than once to read or write the

1,000 rows, such that the software cache read time is trained.

Processes read or write separate synthetic arrays to train the

parallel cost model. Except for the chunk shape, we vary the

array size from 2 GB to 8 GB by changing the length of the

first dimension of the arrays. The number of processes varies

from 1 to 64 or 20 and the stripe count of HDF5 files stored in

Lustre file systems varies from 1 to 64 or 4, depending on the

sizes of HPC clusters. Applications cannot change the stripe

count in GPFS file systems.

It is worth noting that these synthetic arrays are longer in

the first dimension than in the second dimension. This shape

is common in many scientific arrays, where a column is an

attribute and a row is the observation values in a timestamp.

V. EXPERIMENTAL EVALUATION

This section presents an evaluation of the cost models

for HDF5 and Zarr on three HPC clusters with different

hardware and software capabilities. These clusters include:

a large cluster, called Cori located at the National Energy

Research Scientific Computing Center (NERSC); a medium

cluster, called Owens, located at the Ohio Supercomputing

Center (OSC); and a small cluster, called RI2. The medium

and the small clusters are located at the Ohio Supercomputer

Center (OSC). Table III shows the configuration of the three

clusters. We use HDF5 version 1.10.2 and Zarr version 2.3.2 in

these experiments. We have conducted experiments in Section

V-B and Section V-C on Cori. The results presented in Section

V-D are from the runs on the Owens and RI2 clusters. We

repeat each experiment 10 times and report the median of

the measured values, with error bars denoting the 25 and 75

percentiles. We consider the following questions:

1) What is the relative error of the cost model? How does the

model behave in different access patterns and on different

HPC clusters?

2) When is Zarr faster than HDF5 or vice versa? What is the

performance trend when I/O parameters, like the chunk

shape, are changed? Can the model correctly pick the

fastest among HDF5 and Zarr in each case?

A. Datasets and access patterns

We use two scientific datasets to evaluate the cost model.

The first one is a 9 GB neuroscience dataset storing the brain

observations. The array shape is 35, 660, 170× 64 and chunk

shape is 69, 649× 1. A column represents an instrument and

a row represents a timestamp. The array size is increased to

128 GB by extending the array length in the first dimension to

evaluate the parallel cost model. We figure out four common

access patterns, which are reading or writing 1) the whole

array, 2) a set of rows, 3) a column and 4) a set of hyperslabs.

We randomly select 1,000 rows and 1,000 hyperslabs with

shape 1, 000× 8, located in the leftmost 8 columns.

TABLE III: Cluster configuration

Cori Owens RI2
Compute nodes 9,688 822 48
CPU Xeon Phi 7250 Xeon E5-2680 Xeon E5-2680
Memory per node 96 GB 128 GB 128 GB
File system Lustre GPFS Lustre
Storage servers 248 36 4

911

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



The second dataset is a 3D array from the VORPAL appli-

cation, which is an acceleration modeling and computation

plasma framework developed by Tech-X Corporation. The

array shape is 2, 400× 2, 000× 3, 000 and the chunk shape is

60 × 100 × 300. Multiple processes write the array, each of

which writes a partition of logically contiguous chunks.

B. Serial cost model

1) Read all: We evaluate the serial cost model by reading

the 9 GB neuroscience dataset through HDF5 and Zarr. We

extend the initial chunk shape by 4, 16 and 64 times in the two

dimensions respectively. Figure 4a shows the time breakdown

of the real and predicted execution time when the chunk

length in the first dimension is increased. The data server

read time decreases from 52 seconds to 19 seconds in HDF5

and from 930 seconds to 65 seconds in Zarr. Increasing the

chunk size saves the server read time because the number

of I/O operations is decreased. The memory copy time is

constant and at most takes 90% of the execution time. Hence,

only predicting the I/O time is insufficient. Zarr has higher

variance because it more frequently communicates with the

metadata server, which is a limited resource that is shared by

all programs in the cluster.

69649 278596 1114384 4457536

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

250

500

750

1000

Chunk length in Dim 1

Ti
m

e 
(s

ec
on

ds
)

Operation Memcpy Server read

(a) Chunk length in the first
dimension

1 4 16 64

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

250

500

750

1000

Chunk length in Dim 2

Ti
m

e 
(s

ec
on

ds
)

Operation Memcpy Server read

(b) Chunk length in the second
dimension

Fig. 4: Read experiment. The memory copy operation takes

as much as 90% of the execution time. The model correctly

predicts the relative performance between HDF5 and Zarr.

Figure 4b shows the breakdown of the real and predicted

execution time when the chunk length in the second dimension

is increased from 1 to 64. The real memory copy time

decreases from 168 seconds to 12 seconds in HDF5 and from

44 seconds to 0.003 seconds in Zarr due to fewer memory

copy operations. Zarr does not copy data when the elements

of a chunk are contiguous in the data buffer, such that Zarr

only spends 0.003 seconds in the memory copy phase when

the chunk length equals array length in Dim 2.
2) Read and write boxes: This experiment reads and writes

the 9 GB neuroscience dataset by 1, 000 hyperslabs with shape

1, 000× 8, located in the leftmost 8 columns. We extend the

chunk shape in the first dimension and report the real and

predicted execution time in Figure 5. The execution time is

composed of the memory copy time, data server read and write

time and software cache read time. As shown in Figure 4a, the

server read time decreases as the chunk shape is extended due

to fewer Lustre read operations. The cache read time increases

and is at most 7× larger than the server read time because

more data are read from the software cache. Models ignoring

the software cache are not accurate. The server write time in

Figure 5b ranges from 14 seconds to 35 seconds in HDF5 and

from 155 seconds to 675 seconds in Zarr, which is a trade-off

between the number of write operations and written data size.

69649 278596 1114384 4457536

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

25

50

75

100

Chunk length in Dim 1
Ti

m
e 

(s
ec

on
ds

)

Operation Memcpy
Cache read

Server read

(a) Read 1000 boxes

69649 278596 1114384 4457536

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

200

400

600

800

Chunk length in Dim 1

Ti
m

e 
(s

ec
on

ds
)

Operation Memcpy
Server write

Cache read
Server read

(b) Write 1000 boxes

Fig. 5: Read and write 1000 boxes. The cache read takes as

much as 87% of the execution time. The relative performance

is correctly predicted.

C. Parallel cost model

In this section, we compare the parallel cost model with a

cutting-edge I/O cost model on Titan [3]. The model on Titan

does not consider the startup time of I/O operations, which

is considerable when accessing many chunks. We denote the

parallel cost model as P1 and the cost model on Titan as

P2 in the following figures. Section V-C1 and V-C2 evaluates

the models on the neuroscience dataset and Section V-C3

uses the VORPAL application. Chunks in an array are equally

partitioned. The VORPAL dataset is stored as an array, while

a partition of the neuroscience dataset is stored as an array. A

compute node runs a single process, accessing a partition.

1) Process Number: We fix the stripe count as 4 and the

stripe size as the chunk size to store the HDF5 files. A chunk

file in Zarr is stored in a data server. The number of processes

ranges from 4 to 64. Figure 6 shows the real and predicted

execution time. The HDF5 is faster than Zarr to read arrays,

but slower to write arrays. Both HDF5 and Zarr spends less

time as the number of processes is increased by 16 times.

The speedups of HDF5 and Zarr are 9.7 and 14 in Figure

6a and 4.16 and 8.28 in Figure 6b. Zarr has higher speedups

than HDF5 because Zarr utilizes all the data servers in Luster

but HDF5 only uses 4 data servers to read and write chunks.

The parallel cost model, P1, correctly predicts the performance

order between HDF5 and Zarr, but the model on Titan P2 only

correctly predicts the order in 4 out of the 6 experiments.

2) Stripe Count: In this experiment, we use 16 processes

to read HDF5 arrays while increasing the stripe count from

912

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

0
30

0
50

0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

0
30

0
50

0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

0
30

0
50

0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

0
30

0
50

0

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

(a) Read arrays

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

30
0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

30
0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

30
0

4 16 64
Process num

Ti
m

e 
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

25
0

30
0 HDF5

HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

(b) Write arrays

Fig. 6: Parallel I/O experiment. Zarr is at most 2.7× faster than

HDF5 in parallel write. Our model (P1) correctly predicts the

relative performance of HDF5 and Zarr , while an I/O model

from prior work (P2) correctly predicts 4 experiments.

1 4 16 64
Stripe count

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0

1 4 16 64
Stripe count

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0
12

0 HDF5
HDF5 P1
HDF5 P2

Fig. 7: Striping experi-

ment. Execution time de-

creases due to lower re-

source contention.

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
20

40
60

80
10

0

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

Fig. 8: VORPAL. P1 and

P2 correctly predict the

performance order in all

and 3 experiments.

1 to 64. Figure 7 shows the real and predicted HDF5 exe-

cution time. The real HDF5 execution time decreases from

81 seconds to 54 seconds when the stripe count is increased

from 1 to 4 and almost does not change when we continue

to increase the stripe count. The predicted time of P1 and

P2 decreases from 93 seconds to 59 seconds and from 118

seconds to 71 seconds respectively. Reading data from more

data servers takes less time due to lower resource contention.

3) VORPAL: The VORPAL application shows the robust-

ness of the parallel I/O cost model. Arrays to train the model

and in other experiments are 2D long tables and an HDF5

process accesses a contiguous region in the file. However,

chunks accessed by a process in the VORPAL application are

scattered in the HDF5 file because the array is partitioned on

the fast changing dimension. We set the stripe count as 40 and

vary the number of processes. Figure 8 shows the results. The

HDF5 execution time decreases from 80 to 25 seconds when

the number of processes is increased from 5 to 20 and does

not change later. Zarr always spends less time than HDF5.

The P1 predicts the order of HDF5 and Zarr correctly in all

the experiments while P2 wrongly predicts the order when the

number of processes is 5.

D. Evaluation on medium- and small-sized clusters

In this section, we evaluate the serial and the parallel cost

models on Owens and RI2 clusters located at OSC. The

parallel file system in RI2 is Lustre and that in Owens is GPFS.

Figure 9 shows the results of reading the 9 GB neuroscience

dataset to evaluate the serial cost model. The chunk length in

the second dimension is varied from 1 to 64. The memory

copy operation is the bottleneck, taking as much as 76% of

the execution time. Both the memory copy time and the server

read time decrease as the chunk length is increased due to

the fewer memory copy and I/O operations. The predicted

costs also decrease. The model correctly predicts the relative

performance order between HDF5 and Zarr.

1 4 16 64

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

250

500

750

Chunk length in Dim 2

Ti
m

e 
(s

ec
on

ds
)

Operation Memcpy Server read

(a) Owens

1 4 16 64

HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n
HDF5

HDF5 p
re

dic
tio

n
Zar

r

Zar
r p

re
dic

tio
n

0

50

100

Chunk length in Dim 2

Ti
m

e 
(s

ec
on

ds
)

Operation Memcpy Server read

(b) RI2

Fig. 9: Time for reading an array with variable chunk shape.

The memory copy operation respectively takes as much as

76% and 62% of the execution time on Owens and RI2.

The model correctly predicts the relative performance order

between HDF5 and Zarr.

Figure 10 shows the results of evaluating the parallel cost

model through the VORPAL application. In contrast with the

Cori cluster, the execution time on the two clusters does not

change significantly when more processes read the array. The

predicted time of the parallel cost model has the same trend

as the execution time. Zarr is faster than HDF5 on Owens, but

slower on RI2. The parallel cost model correctly predicts the

relative performance between HDF5 and Zarr, while the cost

model on Titan correctly predicts in 2 out of the 7 experiments.

E. Model accuracy

Figure 11 reports the predicted and real execution time of

HDF5 and Zarr in all the serial and parallel experiments, con-

ducted on the three clusters. The serial experiments evaluate

the model on 4 access patterns, which are accessing the whole

array, a set of rows, a column and a set of hyperslabs. Section

V-B reports the experiments of accessing a whole array and

a set of hyperslabs. The parallel experiments vary the number

of processes and stripe counts. The model correctly predicts

the fastest library between HDF5 and Zarr in 97 out of the

total 111 experiments. As shown in Figure 12, the model

correctly predicts the fastest library in 94% of the 47 parallel

913

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40

5 10 20 40
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

HDF5
HDF5 P1
HDF5 P2
Zarr
Zarr P1
Zarr P2

(a) Owens

5 10 20
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40
50

60

5 10 20
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40
50

60

5 10 20
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40
50

60

5 10 20
Process num

Ti
m

e 
(s

ec
on

ds
)

0
10

20
30

40
50

60

HDF5
HDF5 P1

HDF5 P2
Zarr

Zarr P1
Zarr P2

HDF5
HDF5 P1

HDF5 P2
Zarr

Zarr P1
Zarr P2

(b) RI2

Fig. 10: VORPAL on Owens and RI2. P1 and P2 correctly

predict the relative performance in all and 2 experiments.

1 10 100 1000

1
10

10
0

10
00

10
00

0

Predicted time (seconds)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

1 10 100 1000

1
10

10
0

10
00

10
00

0

Predicted time (seconds)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Prefect
prediction

HDF5
Zarr

Fig. 11: The real and

predicted time of P1.

The RMSE is 0.29.

Read Write VORPAL
Experiments

O
rd

er
 p

re
di

ct
io

n 
ac

cu
ra

cy
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Read Write VORPAL
Experiments

O
rd

er
 p

re
di

ct
io

n 
ac

cu
ra

cy
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

P1 P2

Fig. 12: Accuracy of pre-

dicting the fastest library

in parallel experiments.

experiments, in contrast with 70% for the cost model on Titan.

The RMSE of our cost model in all experiments is 0.29.

Takeaways. The experiments show five main takeaways.

(i) The three phases in the I/O path, memory copy, cache

read and data server I/O, spend respectively up to 90%, 87%

and 99% of the end-to-end execution time in different access

patterns. Hence, models only focusing on a specific phase are

not enough to predict the execution time. (ii) HDF5 is at most

15× faster than Zarr in the serial applications, while Zarr is

up to 2.7× faster than HDF5 for parallel write. It is crucial for

users to identify the most efficient array management library

based on the access patterns in scientific applications. (iii) The

execution time decreases as the number of processes increases

on the Cori cluster, while not changing on the Owens and

RI2 clusters. Experience of tuning configurations on a specific

cluster is not portable to other clusters. (iv) The cost model,

with RMSE 0.29, correctly predicts the relative performance

of HDF5 and Zarr in 97 out of 111 evaluation experiments.

VI. RELATED WORK

I/O cost prediction. Predicting the I/O performance is well

studied in the HPC and database communities. Previous works

proposed various cost models with different granularity and

accuracy. We categorize these models into 3 types.

Analytic models. The analytic models characterize under-

lying file systems with a few features and explicitly define

formulas to estimate the I/O cost based on these features. Hass

et al. [1] decompose the end-to-end time of an I/O request

in hard disks into multiple unit operations, including seek,

latency and page transfer, and estimate the costs of different

ad hoc joins by multiplying the unit time of each operation

with the number of instances of the operation in the joins.

Wu et al. [5] assume the I/O cost is composed of a constant

latency and the data transferring time which is proportional

to the transferred data size. Gulati et al. [2] builds a linear

I/O cost model, depending on the to the average outstanding

I/Os, I/O size, read-write ratio, and randomness of the I/O

requests. These works profile the file systems to determine the

coefficients in the models. However, profiling the parallel file

systems in supercomputers is challenging for domain users.

These works model the performance of serial applications.

Song et al. [9] estimate the resource contention on storage

nodes and network to predict the parallel I/O performance in

parallel file systems. However, the Infiniband in cutting-edge

supercomputers is fast enough to avoid resource contention

compared with the slow storage devices, like HDD. Xie et al.

[3] predicts the I/O performance in Titan supercomputer. The

model does not consider the startup time of I/O operations,

which is considerable when array management libraries access

many chunks. We use the model as the baseline in our

experiments to evaluate our parallel I/O cost model.

ML models. Machine learning techniques are also used to

predict the I/O performance. These models abstract the I/O

activities as a vector from the applications’ view. Ganapathi

et al. [10] predict the performance metrics of database queries

through the KCCA algorithm. A query plan, a tree where nodes

are basic operators, is vectorized as the number of instance

count and cardinality sum for each operator in the tree. Zhang

et al. [11] use the transform regression algorithm to predict the

performance of XML queries. The features in the regression

model are the number of visited XML nodes, the returned

XML elements, page requests and the elements inserted into

the buffer. It is not trivial to capture and represent the I/O

characteristics of array query workloads as vectors.

Abstract quantity. These models abstract a set of I/O op-

erations as a unit and predict the I/O performance based

on the number of unit instances. Chaudhuri et al. [12] and

Luo et al. [13] predict the database query cost by counting

the GetNext() function instances and the size of processed

tuples respectively. Mozafari et al. [14] and Duggan et al.

[15] assume that each I/O request or disk page access spend

constant time.

Memory cost prediction. Zhang et al. [16] predicts the

memory access cost based on the read and written data

size in memory. Byna et al. [17] and Rahman et al. [18]

predict the memory access cost based on cache misses in

hierarchical memories. These models are either oversimplified

or dependent on many variables. Constructing complicated

models is challenging and not necessary to predict the perfor-

mance of array management libraries. The memory access cost

914

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 



dominates the execution time of array management libraries

when there are many memory copy operations.

These I/O and memory cost models mentioned above do

not include the full I/O path in array management libraries.

Steps in the path dominate the execution time in different

scenarios. These models are dependent on detailed variables,

like the number of disk seek operations. I/O and memory

characterization tools only gets the values of these variables in

an execution of an application, which limits the model usage.

VII. CONCLUSIONS

Many scientific applications use array management libraries

to read and write arrays. Whereas a substantial body of prior

work has focused on modeling I/O performance, we find that

I/O accounts for as little as 10% of the execution time when

accessing array objects via popular I/O libraries. Models that

only focus on I/O therefore cannot accurately capture new

overheads (such as transforming data to a particular layout)

and new optimizations (such as library-level caching) when

accessing data through popular I/O libraries.

This paper builds a new analytical cost model to predict

and compare the end-to-end performance of two popular I/O

libraries, HDF5 and Zarr. HDF5 and Zarr embrace different

storage principles: HDF5 stores all chunks in one file, while

Zarr stores each chunk as a separate file. We systematically

evaluate the model using two scientific applications on three

HPC clusters, equipped with the Lustre and GPFS file systems.

The model correctly predicts the fastest library between HDF5

and Zarr in 94% of the parallel experiments, in contrast

with 70% for a cutting-edge model that only focuses on I/O

performance. Automatically tuning the I/O configuration of

scientific applications based on the cost model is a promising

avenue for future work.

ACKNOWLEDGMENTS

This work is supported in part by the Director, Office of Sci-

ence, Office of Advanced Scientific Computing Research, of

the U.S. Department of Energy under Contract Numbers DE-

AC02-05CH11231; the National Institute Of Mental Health

of the National Institutes of Health under Award Number

R24MH116922; and the National Science Foundation grant

SHF-1816577. This research used resources of the National

Energy Research Scientific Computing Center, which is DOE

Office of Science User Facilities supported by the Office of

Science of the U.S. Department of Energy under Contract

Number DE-AC02-05CH11231. The content is solely the

responsibility of the authors and does not necessarily represent

the official views of any federal agency. We would like to

thank Kristofer Bouchard and his team for providing us with

example ephys data used in the performance evaluation.

REFERENCES

[1] L. M. Haas, M. J. Carey, M. Livny, and A. Shukla, “Seeking the truth
about ad hoc join costs,” The VLDB Journal, vol. 6, no. 3, pp. 241–256,
Aug. 1997.

[2] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar, “Basil: Automated
I/O load balancing across storage devices,” in Proceedings of the 8th
USENIX Conference on File and Storage Technologies, ser. FAST’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 13–13.

[3] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky, J. Lofstead,
and S. Oral, “Predicting output performance of a petascale supercom-
puter,” in Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’17. New
York, NY, USA: ACM, 2017, pp. 181–192.

[4] The HDF Group, “Enabling a strict consistency semantics model in
parallel HDF5,” 2012.

[5] T. Wu, J. Chou, S. Hao, B. Dong, S. Klasky, and K. Wu, “Optimizing
the query performance of block index through data analysis and I/O
modeling,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’17.
New York, NY, USA: ACM, 2017, pp. 12:1–12:10.

[6] D. Kang, V. Patel, A. Nair, S. Blanas, Y. Wang, and S. Parthasarathy,
“Henosis: Workload-driven small array consolidation and placement for
HDF5 applications on heterogeneous data stores,” in Proceedings of the
ACM International Conference on Supercomputing, ser. ICS ’19. New
York, NY, USA: ACM, 2019, pp. 392–402.

[7] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, and
N. Keen, “Data elevator: Low-contention data movement in hierarchical
storage system,” in 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC), Dec 2016, pp. 152–161.

[8] B. Behzad, S. Byna, Prabhat, and M. Snir, “Pattern-driven parallel I/O
tuning,” in Proceedings of the 10th Parallel Data Storage Workshop,
ser. PDSW ’15. New York, NY, USA: ACM, 2015, pp. 43–48.

[9] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A cost-intelligent application-
specific data layout scheme for parallel file systems,” in Proceedings
of the 20th International Symposium on High Performance Distributed
Computing, ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp.
37–48.

[10] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson, “Predicting multiple metrics for queries: Better deci-
sions enabled by machine learning,” in 2009 IEEE 25th International
Conference on Data Engineering, March 2009, pp. 592–603.

[11] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang, “Sta-
tistical learning techniques for costing XML queries,” in Proceedings of
the 31st International Conference on Very Large Data Bases, ser. VLDB
’05. VLDB Endowment, 2005, pp. 289–300.

[12] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Estimating progress
of execution for SQL queries,” in Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
’04. New York, NY, USA: ACM, 2004, pp. 803–814.

[13] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, “Toward
a progress indicator for database queries,” in Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 791–802.

[14] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance and re-
source modeling in highly-concurrent OLTP workloads,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp.
301–312.

[15] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal, “Perfor-
mance prediction for concurrent database workloads,” in Proceedings
of the 2011 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’11. New York, NY, USA: ACM, 2011, pp.
337–348.

[16] C. Zhang and C. Ré, “Dimmwitted: A study of main-memory statistical
analytics,” Proc. VLDB Endow., vol. 7, no. 12, pp. 1283–1294, Aug.
2014.

[17] S. Byna, Xian-He Sun, W. Gropp, and R. Thakur, “Predicting memory-
access cost based on data-access patterns,” in 2004 IEEE International
Conference on Cluster Computing, Sep. 2004, pp. 327–336.

[18] S. M. F. Rahman, Q. Yi, and A. Qasem, “Understanding stencil code
performance on multicore architectures,” in Proceedings of the 8th ACM
International Conference on Computing Frontiers, ser. CF ’11. New
York, NY, USA: ACM, 2011, pp. 30:1–30:10.

915

Authorized licensed use limited to: The Ohio State University. Downloaded on July 30,2020 at 23:23:11 UTC from IEEE Xplore.  Restrictions apply. 


