HPC Workload Characterization Using Feature Selection and
Clustering

Jiwoo Bang

Seoul National University
Seoul, Korea
jwbang@dcslab.snu.ac kr

Alex Sim
Computational Research Division
Lawrence Berkeley Nat’l Laboratory
Berkeley, CA, USA
asim@lbl.gov

Chunyong Kim
Dept. of Comp. Science & Engineering Dept. of Comp. Science & Engineering
Seoul National University
Seoul, Korea
cykim@dcslab.snu.ac.kr

Suren Byna
Computational Research Division
Lawrence Berkeley Nat’l Laboratory
Berkeley, CA, USA
SByna@lbl.gov

Kesheng Wu
Computational Research Division
Lawrence Berkeley Nat’l Laboratory
Berkeley, CA, USA
kwu@lbl.gov

Sunggon Kim
Dept. of Comp. Science & Engineering
Seoul National University
Seoul, Korea
skim@dcslab.snu.ac.kr

Hyeonsang Eom
Dept. of Comp. Science & Engineering
Seoul National University
Seoul, Korea
hseom@cse.snu.kr

ABSTRACT

Large high-performance computers (HPC) are expensive tools re-
sponsible for supporting thousands of scientific applications. How-
ever, it is not easy to determine the best set of configurations for
workloads to best utilize the storage and I/O systems. Users typ-
ically use the default configurations provided by the system ad-
ministrators, which typically results in poor performance. In an
effort to identify application characteristics more important to I/O
performance, we applied several machine learning techniques to
characterize these applications. To identify the features that are
most relevant to the I/O performance, we evaluate a number of
different feature selection methods, e.g., Mutual information re-
gression and F regression, and develop a novel feature selection
method based on Min-max mutual information. These feature selec-
tion methods allow us to sift through a large set of the real-world
workloads collected from NERSC’s Cori supercomputer system, and
identify the most important features. We employ a number of dif-
ferent clustering algorithms, including KMeans, Gaussian Mixture
Model (GMM) and Ward linkage, and measure the cluster quality
with Davies Boulder Index (DBI), Silhouette and a new Combined
Score developed for this work. The cluster evaluation result shows
that the test dataset could be best divided into three clusters, where
cluster 1 contains mostly small jobs with operations on standard
I/O units, cluster 2 consists of middle size parallel jobs dominated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SNTA °20, June 23, 2020, Stockholm, Sweden

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7980-9/20/06....$15.00
https://doi.org/10.1145/3391812.3396270

by read operations, and cluster 3 include large parallel jobs with
heavy write operations. The cluster characteristics suggest that
using parallel I/O library MPI IO and a large number of parallel
cores are important to achieve high I/O throughput.

CCS CONCEPTS

« Information systems — Clustering and classification; « Com-
puting methodologies — Feature selection; Machine learning;
Classification and regression trees.

KEYWORDS

High performance computing; Supercomputer; Feature selection;
Clustering; Workload characterization

ACM Reference Format:

Jiwoo Bang, Chunyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Sunggon
Kim, and Hyeonsang Eom. 2020. HPC Workload Characterization Using
Feature Selection and Clustering. In 3rd International Workshop on Systems
and Network Telemetry and Analytics (SNTA 20), June 23, 2020, Stockholm,
Sweden. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3391812.
3396270

1 INTRODUCTION

High performance computing (HPC) systems are widely used for
applications that consume or produce massive amounts of data. As
the number and diversity of HPC applications grow rapidly, I/O de-
mands vary according to applications. In order to ease the problem,
the users are provided with several tunable parameters, such as the
number of compute nodes, the number of storage nodes, and file
system striping settings. By configuring these parameters, users can
utilize HPC system efficiently and optimize I/O performance with
their applications. However, as most of the users are not familiar
with these tunable parameters, they use default configurations the
system provides. Since there is only one default configuration in

https://doi.org/10.1145/3391812.3396270
https://doi.org/10.1145/3391812.3396270
https://doi.org/10.1145/3391812.3396270

each system, some of the HPC applications do not meet the I/O
demands and often obtain low performance without knowing a
proper reason. Hence, it is necessary for system administrators to
simplify the use of system configurations, providing appropriate
system environment for different workloads. In order to understand
different I/O demands of HPC applications, it is necessary to be
characterized with a metric. Commonly used metrics to categorize
I/O behaviors in HPC applications include duration of job execu-
tion, number of CPUs used, and memory usage [18]. Further, I/O
throughput, number of IOPS, the I/O library used, and metadata
operations, etc. can classify I/O workloads in detail. However it
is challenging to figure out which of these metrics to use and on
what criteria to classify applications with. As applications run in
increasingly complicated process, trivial metrics may not capture
characteristics of applications well [11]. Moreover, it is difficult to
set certain criteria for each of the metrics and to manually cluster
the workloads according to them.

In this paper, we use an empirical approach to cluster HPC work-
loads, based on their I/O behaviors. HPC workload dataset is col-
lected from 4-month real-world application logs run on Cori system,
Cray X40 supercomputer used in NERSC. Since hundreds of applica-
tions run on the supercomputer every days, it is indispensable to use
machine learning methods to get meaningful information from big
data and cluster them. Therefore, after proper pre-processing step
is done on the dataset, several feature selection methods are used
to reduce dimensions of big data. Selected features from feature
selection algorithms can best represent the dataset, and can be used
in next phase, the clustering methods. DBI, Silhouette and Com-
bined Score cluster validity metrics are used to evaluate the impact
selected features have on clustering results. Accordingly, the results
that can best represent the dataset and the best clustering method
are selected. Thereafter, clustering result of each cluster methods
are characterized by determining features having significant val-
ues on each of the clusters. From our result, we can categorize
the HPC workloads into three clusters, each having cluster charac-
teristics of small size read requests, large size I/O operations and
large number of total requests including metadata operations. The
system administrators can get a hint from our clustering result
when suggesting users the proper system configuration setting.
The overall diagram of our work is depicted in Figure 1, including
preprocessing, clustering and characterization steps.

In summary, our contributions on this paper can be described as
follows:

e We design and implement new feature selection method,
Min-max mutual information, in order to get meaningful
information from real HPC workload data.

e We combine multiple cluster performance evaluation metrics
into new metric, Combined Score, for better understanding
of the cluster results.

e The improved feature selection method and cluster quality
score allow us to identify meaningful clusters from the large
set of application logs. For examples, one cluster contains
mostly small parallel jobs using standard I/O units for input
and output operations, which achieve very low I/O through-
put. The larger parallel jobs are clearly separated into other
groups with distinctive characteristics.

Data Preprocessing
4 ——\ 4 ™\

|
M1 <
— v » N _
é‘ —r = =
Characterization Clustering
——~ N\
|
|
—— <
S——
\I/O Heavy —Compute Heavy) _ N J)

Figure 1: Total Diagram

The rest of the paper is organized as follows. The related work
is surveyed in Section 2 and Section 3 introduces background of
our work. Section 4 how we apply preprocessing steps to our data.
Section 5 explores several feature selection methods we used and
results of each of them are discussed. Section 6 presents clustering
methods and the cluster validity metrics we use. The clustering
performance is evaluated in Section 7 and the best clustering result
is characterized and analyzed in Section 8. Finally, we conclude the
paper in Section 9.

2 RELATED WORKS

Analysis and categorization of HPC workload is a broadly studied
topic in the literature [5, 16]. Researches related to our work are in
three major categories: clustering and characterization of data logs,
error detection and analysis, and job scheduling based on past data
categorization.

A way to analyze workload logs is to categorize dataset with
feature selection and clustering. Mishra et al. [19], classify Google
Cloud task with following features: usage of CPU, memory, disk,
and network. With total 18 classes, tasks are fit according to their
quantitative characteristics. Even though our work mainly focus
on deploying I/O-related features from HPC workloads, we can
easily change our target into CPU or memory related ones using
performance and debugging tools other than Darshan, the HPC
/O characterization tool. Rodrigo et al. [21], characterize NERSC
Torque logs from 2010 to 2014, by various size, time, and diver-
sity. K-means clustering is utilized to discover minimum number
of dominant clusters in an HPC workload. Terai et al. [17], analyze
K computer workload data and classify them with k-means and
DBSCAN. The classification is focused on diagnosis of certain clus-
ters with poor performance metrics. Betke and Kunkel [3], identify
and cluster applications with similar I/O characteristics. Different
from others, monitoring data is partitioned into smaller windows
for better I/O clustering. However, most of the mentioned work
specifically choose a cluster number and does not check for validity
of clusters which is crucial for choosing the number of clusters. In
contrast, our work carefully choose the number of clusters with
credible metrics.

Another way to make use of HPC workload logs is to detect and
analyze errors and anomalies [9]. Fronza et al. [7], utilize weighted
SVM to classify log files, either fail or non-fail. With various features
such as application complexity and number of sequences, they
manage to separate failed applications and predict them for energy
efficiency. Tuncer et al. [25], present a framework to automatically

diagnose previously encountered performance anomalies in HPC
systems. Using NAS Parallel Benchmarks, feature selection are
done with random forest and ST-Lan [14]. Also, the experiments
are evaluated with five different classification methods.

As demand for I/O intensive workloads increases, researches on
efficient job scheduling with analyzing past data through machine
learning [15]. Cunha et al. [4], suggest HPC users decide where to
run jobs in HPC hybrid cloud environments. The decision relies
on queue waiting time and execution time of the jobs, which are
predicted using traces from past job scheduling data. For the feature
selection, root mean squared error is used to choose the optimal
number of features. Rodrigues et al. [22], aim to help HPC users
predict their memory requirements with four different machine
learning algorithms. From the results, there is no single method
that produces the best predictions. Different from our study, their
proposed tool leverages the predictions of all methods and select
the most promising ones at a given situation.

3 BACKGROUND

Supercomputer Cori system, a Cray X40, has been delivered since
2017 at National Energy Research Scientific Computing Center
(NERSC) [1]. Cori is comprised of 2,388 Intel Xeon Hasweell pro-
cessor nodes and 9,688 Intel Xeon Phi Knights Landing nodes. In
addition, Cori also has 1.8TB Cray Data Warp Burst Buffer with
a performance of 1.7TB/s, which user can use by specifying APIs.
All the nodes are connected with Cray Aries high-speed inter-node
network and Dragon fly topology. For efficiently handling parallel
I/O, Cori uses Lustre scratch file system as its disk-based storage
system. Lustre file system consists of 248 OSSs including 41 HDDs
and 248 OSTs, providing total 27TB of storage with peak perfor-
mance of 744GB/s. When HPC users submit their job using Slurm
workload manager, they can specify the amount of resources used
to run their applications. For example, they can specify the number
of processors or storage nodes and whether to use Burst Buffer
while running their jobs.

We focus on applying empirical approach to machine learning
for clustering HPC applications. So we use the raw data consists
of real-world user data log run from October 2017 to January 2018
on Cori system. Specifically, Darshan I/O profiling tool is used to
capture I/O behaviors of each of the 4-month jobs submitted and
run on HPC environment. Darshan module, as a lightweight I/O
characterization tool, can capture different I/O-related data from
/O stack from the beginning of the execution to the application
shutdown time. Moreover, Darshan interacts with Slurm workload
manager and Lustre monitoring tool to extract job information
and I/O specific data on parallel file system. All the collected data
from Darshan is merged at the time when the submitted job ends.
Darshan log is created per each job running on the system and can
be transformed into a file using the darshan-parser utility. In order
to make dataset out of tens of thousands Darshan log text files to
be used as machine learning training data, we use the approach
developed by Kim et al. [13]. This approach implements a parser
to extract meaningful information from Darshan text file. Figure 2
shows some of the features extracted from the parser. The approach
from Kim et al. calculates writeRateTotal as total I/O size from POSIX,
MPIIO and STDIO operations, divided by the largest I/O time of all

Feature Description

writeRateTotal |Total write throughput

numProc Number of processes used

numOST Number of OSTs used

stripeSize Lustre stripe size

totallOReq Total number of read/write operations

totalMetaReq [Total number of open/seek/stat operations

seqWritePct [Percentage of sequential I/O operations
totalFile

Total bytes read and written

readMorelm |Read operations with size more than 1M
ossWriteHigher4g | Number of OSSs with more than 4G write /O

Figure 2: Features extracted from Darshan Profiler

TOP 20 Most Frequently Executed Programs
14000
12000
10000

8000
6000
4000

j—

program execution count
(=)
vasp_std

% Fmm
> Qg p LXK KK SH Tg K s g8
= ess8fmgs 08828 g8 5 E
I3 = =] ® 2= & 1= T18 5 o
e 2 o Mg 7 B0 g S S G g o
22 4% =3 2889 ¢ =
o' &2 IS °HLEgE
Y &g S s g o
< | o, >
g A 23
& s 2

Figure 3: Top 20 mostly executed programs

process. In this paper, we use total 78 features obtained from the
Darshan parser.

4 DATA PREPROCESSING

Since using raw data to future processing steps can result in irrel-
evant results and low accuracy, data preprocessing is required in
machine learning process. There are five steps in our preprocessing
phase. First, the target variable is set to I/O throughput, which is
writeRateTotal in our feature set. The target is chosen because our
goal is to categorize HPC applications based on their I/O behaviors.
The applications with less I/O operations can not precisely cap-
ture the relationship between the features extracted from Darshan
module and I/O throughput. So, in order to minimize the impact
the unnecessary data has on machine learning algorithms, we only
use the dataset having more than 1GB I/O. Second, the data having
negative values are all set to zero since they are the error values in
darshan log. Third, we eliminate features with zero variance as they
always have a constant value. Fourth, the features having highly
correlated value with other features are eliminated using pandas
library. We set the correlation value threshold to 0.8. For instance, if
feature A and B have correlation value of 0.9, feature B is eliminated
from the feature set. This step is included to reduce redundancy
among the feature selection results. Since the eliminated features
are chosen from the library, some of the representative features
may not be included in the characterization result in Section 8.
Finally, all the feature data is normalized to range from 0 to 1. In
this way, features can have same scale and weight when calculated
by feature selection methods.

Figure 3 is an histogram of top 20 mostly executed applications
in our dataset. There are total 62,946 entries from 353 different
applications after preprocessing step is done.

5 FEATURE SELECTION FOR DIMENSION
REDUCTION

In order to understand the complex dataset and reduce computing
power, selecting features that can best represent the data is nec-
essary. We use five different feature selection methods to select
features highly related to our target value. Each feature selection
methods selects features with different algorithms, and has different
impact on clustering models.

5.1 Feature selection Methods

5.1.1 Mutual Information Regression. Univariate feature selection
runs statistical tests to find features having high relationship with
target value. There are several statistical tests that can be applied
to univariate method. Mutual information regression, one of the re-
gression model in univariate feature selection, captures dependency
between two features [26]. Specifically, Mutual information rep-
resents the relevance, redundancy and complementarity between
the two variables. If the feature is highly related to the target and
less redundant to the rest of the features, it scores high on Mutual
information regression.

5.1.2 F Regression. The other statistical model that can be used
in univariate feature selection is F regression. F regression method
first calculates the correlation between each features and target.
Then the calculated value is converted to F value, which is F re-
gression score in our case, on the F distribution. F value can be
calculated by the variance of the group means divided by the mean
of the within group variances. In other words, the larger the f value,
the more discriminative the feature value is. However, since F re-
gression only considers linear dependency between the feature and
target value, the result is less significant than Mutual information
regression result, which not only capture linear dependency but
also the dependency among the features.

5.1.3 Decision Tree. Decision tree algorithm can be used as one
of the regression models in feature selection. Starting from the
total dataset, Decision tree regressor splits the data by choosing a
random variable. The quality of a split is measured by several rules
including Mean Squared Error (MSE) and Mean Absolute Error
(MAE). Since we are using MSE for split criterion, the average of
MSE of each subsets is calculated for each chosen random variable.
Then Decision tree regressor splits the data in a way that results
in smallest MSE. The process is repeated for maximum depth of
the tree or until the leaf node of the tree contains certain number
of data [23][10]. In our case, the maximum depth of the tree is set
to 10. The decision tree score is computed by total reduced node
impurity by result, which is also known as Gini importance.

5.14 Extra tree. Extra tree, which refers to extremely randomized
trees, is an ensemble model relying on independent decisions of the
trees. Extra tree increases more randomness than Decision tree by
splitting the randomly selected features. From the selected features
by each trees in Extra tree model, the best split is chosen by split
criterion, in this case, MSE. We use 100 trees to select random subset

Feature Score Feature Score Feature Score
seqWritePct | 1.233037 | totalFileSTDIO | 25849.56 | totalFileSTDIO | 0.353953
totalFile 1.138258 | totalFile 3074.00 | runTime 0.079576
totalOpenReq | 1.096744 | numProc 1281.61 || runProc 0.075793
totallOReq 1.082124 | numOST 957.34 | totalFile 0.054656
numProc 1.005036 || readLesslm 464.63 | totalReadReq | 0.053308
runTime 0.973189 | ossWriteMean 411.40 | seqWritePct | 0.050254
totalReadReq | 0.937343 | ossWriteHigherlg 294.13 || writeTimePOSIXonly | 0.049154

(a) Mutual Information (b) F Regression (c) Decision Tree
Feature Score Feature Score
totalFileSTDIO | 0.357795 | readMorelm -
runProc 0.073166 | metaTimePOSIXonly -
runTime 0.069633 | readMorelk -
totalFile 0.054624 | ossWriteHigherdg -

totalReadReq | 0.051944 | writeLesslk -
0.049576 | stripeSize -
writeTimePOSIXonly | 0.046418 | totalReadReq -

(d) Extra Tree

seqWritePct

(e) Min-max Mutual Information

Figure 4: The top 7 features selected from five different fea-
ture selection methods

of features. The extra tree score is the feature importance computed
as normalized total reduction of criterion, which is the same as
decision tree score.

5.1.5 Min-max mutual information. We also implement new fea-
ture selection method for our dataset. This new feature selection
method selects features that can best represent the data in a differ-
ent way from commonly used feature selection methods. We call
this new method as Min-max mutual information. In this approach,
features are selected in a way that selected features are less corre-
lated to each other. To do so, we use data without applying one of
the preprocessing steps: removing features having more than 0.8
correlation value with other features. From the dataset including all
the features, the first feature which has highest correlation value
with writeRateTotal is selected. After that, the second feature is
selected from ten least correlated features with the first feature,
having highest correlation value with the target among them. This
process is repeated for the rest of the features.

5.2 Analysis of Feature Selection results

Figure 4 shows the top 7 scored features from the feature selec-
tion methods. Note that since Min-max mutual information is done
with differently preprocessed dataset, selected features may not be
included in other results. Of all the feature selection methods other
than Mutual information regression, totalFileSTDIO scores the high-
est, which means totalFileSTDIO has the highest correlation value
with target variable writeRateTotal. Since totalFileSTDIO is highly
redundant to other features, it scores low on the Mutual informa-
tion regression. The selected features and their scores are similar in
Decision tree and Extra tree methods as they both gets their results
by recursively splitting the data. numProc is a reasonable feature
since the number of processors to run the job is highly related to
parallelism, having direct impact on I/O throughput. seqWritePct

is also a meaningful feature as sequential I/O operations improve
performance by accessing storage devices sequentially.

We deploy Min-max mutual information method because of the
dataset characteristic, which is that all the features are considerably
correlated to target feature. Because of this attribute, the other four
methods tend to select features which are highly correlated to each
other. By using Min-max mutual information, we can select feature
set with features less related to each other and also having strong
relationships with target variable. However, it is still necessary to
evaluate the feature selection results of all five methods. After the
clustering results using Min-max mutual information are evaluated,
we evaluate on all five feature selection methods to verify which
feature set is actually the best for our dataset. The performance eval-
uation of clustering and feature selection methods will be discussed
in the section 7.2.

6 APPLICATION OF CLUSTERING MODEL

By using the selected target-relevant features, clustering HPC ap-
plications can be done with less computation time and power. Also,
reduced dimensionality can prevent overfitting clustering model.
We evaluate three clustering models in this paper: KMeans from
centroid-based methods, GMM from model-based clustering, and
Ward linkage, one of the hierarchical clustering models. Clustering
models run based on five different feature set results from feature
selection methods, with the number of clusters ranges from 3 to 20.
Total 15 clustering results are evaluated and discussed in Section 6.

6.1 Clustering Methods

6.1.1 KMeans Clustering. KMeans clustering algorithm repeatedly
calculates distance and dissimilarity between two data to form
cluster. Its main goal is to make dataset in same cluster to have
highest inner similarity [8]. As KMeans algorithm is one of the
centroid-based methods, it iteratively updates clusters based on
centroids, which can be defined as means. This algorithm is simple,
but has weakness in handling outliers, since mean value is highly
sensitive to extreme values.

6.1.2 Gaussian Mixture Model. Model-based clustering makes an
assumption that dataset comes from mixture of two or more un-
derlying distributions. The Gaussian Mixture Model (GMM) is one
of the probabilistic models used in model-based clustering [2][20].
GMM considers each data as mixture of multiple Gaussian distri-
butions and automatically tries to find out which distributions the
data originates from.

6.1.3 Ward Linkage Clustering. Ward linkage method is classified
as agglomerative hierarchical clustering. Through the bottom-up
approach, clusters each having single data value are iteratively
merged together until the number of clusters reaches the specified
value [6]. Similarity between two clusters is calculated by increase
of Error Sum of Sqaures (ESS). If the calculated ESS is smallest
among other values, two clusters are merged together since they
have closest distance.

6.2 Cluster Validity Metrics

Good clustering tries to maximize the inter-cluster variance and
minimize the inner-cluster variance. This can be rated by clustering

validity index. In this paper, we evaluate the performance of clus-
tering techniques using two validity metrics. First, Davies-Bouldin
index (DBI) metric determines how well the clustering is done using
the ratio between distribution within the cluster and distinctness
among the clusters. The DBI score is decided by average of each
cluster and other cluster’s similarity and it ranges from 0 to 1. So if
the DBI score is low, it means each cluster size is small and distance
between the clusters is large, indicating better clustering. Second
metric is Silhouette, which calculates Silhouette Coefficient (SC)
for every data. SC is high when the inter-cluster distance is short
and nearest-cluster distance is long. Since Silhouette score is mean
SC of all the data, the higher the score means the better the cluster
quality. Silhouette score ranges from -1 to 1.

Commonly, there is trade-off between compactness and distinct-
ness when evaluating cluster performance. DBI and Silhouette can
measure both compactness and distinctness of clusters [12], but
comparing the result of both metrics can be difficult process. In
order to reduce difficulty in comparing two metrics, we also use
additional validity index, Combined Score, which combines two
metrics together [24]. Combined Score can be defined as follows:

Silhouette(x) .

==, ifDBI(x) #0
CombinedScore(x) = DBI(x) (x)

undefined, otherwise

Since Combined Score is the result of Silhouette score divided
by DBI score, the higher Combined Score means the better the
clustering result is. Combined Score may not fully combine two
metrics because it does not consider the different impacts two
metrics have on Combined Score. However it is worth to compare
two metrics and Combined Score together for better understanding
of the clustering performance.

7 PERFORMANCE EVALUATION

To evaluate cluster performance, we calculate the Silhouette and
DBI clustering validity scores from total 15 clustering results, which
are the combinations of five feature selection methods and three
clustering methods. On each combination, we change the number
of clusters ranging from 3 to 20. The evaluation of the performance
of clustering results is processed in two steps.

First, in order to find out the best clustering method, we compare
the three clustering result from KMeans, GMM, and Ward linkage,
which use the feature set of Min-max mutual information. After
the best clustering method is chosen, we verify whether Min-max
mutual information is actually the best feature selection method by
comparing the performance score of five feature selection methods.

7.1 Selecting Best Clustering Method

Using the features from Min-max mutual information, we have to
figure out the best clustering method among KMeans, GMM and
Ward Linkage. Figure 5 shows the DBI, Silhouette and Combined
Score of three different clustering methods. Higher Silhouette and
Combined Score and lower DBI score indicate the better clustering
quality. KMeans and Ward Linkage are very similar in cluster scores,
while GMM shows slightly different trend compared to other two
methods. For KMeans and Ward linkage, they both show the best
clustering performance when the number of clusters is three, then
the Silhouette score gets lower as the number of clusters increases

Min-max DBI Score

Min-max Silhouette Score

Min-max Combined Score

—=Kmeans e GMM Ward - Kmeans e GMM ward —=Kmeans —GMM ward
14 1 5
L
12 \ 6 m
1 R s
o 08 o4
S S .
3 0.6 A3 __f\"\"—I\ P
— —— o<y
0.4 2
02 1
o 6 o

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Clusters

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Clusters

3 4 5 6 7 & 0 1011 12 13 14 15 16 17 18 19 20
Number of Clusters

Figure 5: Cluster performance evaluation of clusters based on Min-max feature selection method

KMcans DBI Scorc

—s—mi —e—f_re —m—decision extra —m—minmax
07 1.05
1

0.95

0.6

0.5
© 04
S

@ 0.3

0.2

0.1

o 0.6
3 4 5 6 7 8 9 1011 12 13 11 15 16 17 18 19 20

Number of Clusters

KMeans Silhouette Score

—e—mi —e—f_re —=—decision

KMeans Combined Score

extra —m—minmax

extra —m—minmax

—s—mi —e—{f re —m—decision
7

Score
o - K W & u oo

m
<A IR i

="
N

3145 6 7 8 9 10111213 11 15 16 17 18 19 20
Number of Clusters

3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20
Number of Clusters

Figure 6: Cluster performance evaluation of clusters using KMeans clustering method

and the DBI score is stable regardless of the number of clusters.
On the contrary, Silhouette score of GMM clustering drops at first
and increase slightly as the number of clusters increases. Also, DBI
score decreases steeply for GMM clustering.

In summary, as we increase the number of clusters, cluster per-
formance of KMeans and Ward linkage tends to decrease, and per-
formance of GMM gets better. KMeans and Ward linkage show the
higher Combined Score than GMM on almost every case and it
is hard to pick the best clustering method since they both show
similar scores. Also, even though clustering by three scores high-
est, there are two elbow points of KMeans and Ward linkage from
the Combined Score, which are the cases of when the number of
clusters is 7 and 15. Since both clustering methods show similar
trend, we can conclude that the best clustering method is KMeans
clustering.

7.2 Feature Selection Methods Comparison

In order to figure out the impact the five feature selection meth-
ods have on KMeans clustering method, we evaluate the results of
KMeans clustering which use five different feature sets. Figure 6
depicts the result of DBI, Silhouette scores and Combined Score,
from the KMeans clustering result each using Mutual information,
F-regression, Decision tree, Extra tree and Min-max mutual infor-
mation. Except for the score of five clusters in DBI, Min-max mutual
information scores best in every case on every performance validity
metrics. Clearly, it can be concluded that the best feature selection
method actually is Min-max mutual information.

8 CLUSTER CHARACTERIZATION

From the previous section, we have selected best feature selection
method and best clustering method from the selected features using
cluster performance evaluation metric. Combination of features

chosen from Min-max mutual information and data clustered by
KMeans shows best cluster performance in the all ranges of the
number of clusters. Also, we can figure out that clustering by three
scores highest from the Combined Score metric on Figure 5. Besides
the best point with highest score, there are two elbow points shown
in the figure, which are the cases with seven and fifteen clusters. In
this section, we first characterize the clustering result of the three
clusters. Each clusters is analyzed based on the data characteristics
included in the cluster.

In order to figure out each cluster’s tendency, we first average the
feature values from all data belonging to each cluster. For instance,
using clustering algorithm, our dataset is clustered into three clus-
ters: cluster 1, 2 and 3. If we want to see how many processors the
jobs included in cluster 1 are used, we can calculate it by averaging
the numProc feature values from all data in cluster 1. In this way, av-
erage numProc on every cluster can be calculated, representing the
numProc characteristics on the clusters. This averaging process is
operated on every feature we used. Note that since we choose Min-
max mutual information for our feature selection method, features
with high correlation value with other features are not removed in
the preprocessing step, which is total 46 features.

After we get the averaged values of every features, clusters can
be characterized by determining the features that have dominant
value on each cluster. So for every features, we select the cluster
having the highest averaged feature value. Then, in order to assert
that cluster has high tendency of feature, we figure out whether
the cluster has more than twice as higher feature value than that
of other features.

Figure 7 shows the cluster characterization results from KMeans
which use the features from Min-max mutual information. The
feature row with black box represents that the cluster has char-
acteristic related to the feature. For example, since the box with

Features Features Cluster index] |
consecWritePct totalSeekReq
ossWriteHigher4g totalStatReq
readLess1k totalWriteReq
readLesslm writeTimePOSIXonly
totalFileSTDIO consecReadPct
mdsOPSMin mdsCPU95
ossReadHigher4g mdsCPUMean
ossWriteHigherlg mdsOPS95
readMorelk mdsOPSMean
readMorelm numOST
stripeSize ossRead95
totalFile ossReadHigherlg
totalFilePOSIX ossReadLargest
writeMorelk ossReadMean
writeMorelm ossWrite95
metaTimePOSIXonly ossWriteLargest
numProc ossWriteMean
readTimePOSIXonly runTime
totalFileMPIIO seqReadPct
totallOReq seqWritePct
totalMetaReq writeLess1k
totalOpenReq writeLesslm
totalReadReq writeRateTotal

Figure 7: Cluster characterization result from Min-max mu-
tual information and KMeans clustering algorithms

consecWritePct feature for Cluster 1 is marked black, it means that
the Cluster 1 of KMeans includes jobs having high percentage of
consecutive write operations. The feature with no mark, such as
consecReadPct feature, represents that the averaged feature value
of all three clusters have similar value. So in this case, we can not
say which cluster has high characteristic of consecReadPct.

Figure 8 depicts the averaged value of three clusters on some of
the features. Note that features like writeLess1m represent percent-
age of the number of operations with specific size in total number
of operations. Also, the unit of writeRateTotal is MB/s. Cluster 3
shows the highest write throughput, but the size of read and write
operations is relatively small. From the feature values giving the
information about the size and the number of open, seek or stat
requests, we can assume that workloads in Cluster 3 issue lots
of metadata operations. This may harm the performance but as
these workloads use large number of processors with MPI-IO API,
Cluster 3 gives the highest I/O throughput. Compared to Cluster
3, even though workloads in Cluster 2 issue large size read and
write operations, they show relatively slow performance since they
rarely use MPI-IO for higher level of I/O parallelism and deploy
relatively small number of processors. The workloads in Cluster
1 use smallest number of processors and also issue large number of
read and write operations in their runtime, resulting in lowest I/O
throughput.

Overall, we can categorize the HPC applications with following
characteristics when clustered by three:

(1) The workloads in Cluster 1 tend to issue less than 1MB size

read and write operations compared to the other clusters.
In fact, many of the read and write operations operate on

Features Cluster index 1 2 3
numProc 412 1140 71693
totalFileMPIIO 6.69 1.31 14.33
totalSeekReq 8037382 34852 103872479
totalStatReq 17116 1804 34260138
totalOpenReq 12778 6183 34558780
readLesslm 67.20 0 3333
writeLess1m 49.13 0 33.33
readMorelm 0 100 0
writeMorelm 220 20.75 0
writeRateTotal 7844 47794 65226

Figure 8: Averaged feature values of each clusters

less 1KB blocks, and a significant amount of I/O operations
are on stdio units, which are typically slow. Furthermore,
the workloads in this cluster also use a few hundred MPI
ranks, i.e., a small fraction of the overall system. Taking
together, it is not surprising that the average I/O throughput
for Cluster 1 is only a few MB/s.
(2) The workloads in Cluster 2 tend to issue more than 1MB
size read and write operations. Especially, all the workloads
issuing more than 1MB read operations are included in this
cluster. Also, the total bytes written to the file is highest
among the clusters, which also means there are lots of I/O
operations during the processing time. These workloads are
likely to use 8MB stripe size in average, which is 8 times more
than the current default configuration, 1MB. The workloads
use about 1000 MPI ranks each time and does not spend
too much time in MPI IO. We suspect that using only a
modest number of cores and not using MPI IO for parallel
10 operations might be the reason for these workloads to
achieve the highest IO throughput.
Workloads in Cluster 3 use more than 70,000 MPI ranks
on average, which are the largest parallel jobs in our dataset.
When compared to the other clusters, the workloads in this
cluster use 62 times more processors on average. They also
issue a large number of I/O requests, including metadata
operations such as open, seek or stat requests. On average,
each MPI rank issues nearly 500 open requests, which seems
to be a high number. The block sizes of read and write op-
erations are all less than 1MB, which is lower than those in
Cluster 2. We postulate that the workloads in this cluster
deploy lots of processors for higher parallelism to achieve
the highest I/O throughput among the three clusters.

—
[SY)
=

We also analyze the characteristics of the clusters when the
number of clusters is seven and fifteen, since the Combined Score
for cluster quality are at their local maximum at this cluster sizes.
However, as we increase the number of clusters, the dataset is split
in a way that small size clusters are divided into much smaller
clusters. This leaves one big cluster including most of the dataset.
Also, since there are too many clusters, the result shows that three
out of seven clusters and nine out of fifteen clusters have no distinct
characteristic. From our analysis, we can assume that increasing

the number of clusters leads to inequality of cluster size which also
results in multiple clusters with no specific aspects.

9 CONCLUSION

As the complexity of HPC cluster grows and more resources are
managed in the supercomputer system, users are provided with
different kinds of configuration settings. In order to simplify the
use of system configuration, it is critical to categorize the HPC
applications with proper standards. In this paper, we focused on
categorizing four-month HPC workload data run on NERSC Cori su-
percomputer. After extracting several features from the log, we used
several machine learning techniques, including feature selection
and clustering methods. We used Mutual information regression,
F-regression, Decision tree, Extra tree and Min-max mutual infor-
mation to select features best representing the data. Then, using
the selected features, we applied them to clustering models such as
KMeans, GMM and Ward linkage to cluster the data. By evaluating
the clustering performance with cluster validity metrics, we could
select the best clustering method and feature selection method. Our
result shows that using KMeans clustering method with features
selected from the Min-max mutual information makes the best clus-
tering result when clustered by three. Finally, we characterized each
clusters by analyzing the included data. Using our observations, we
can provide system designers better understanding of HPC appli-
cations running on the system, thus simplifying the configuration
settings provided to users for better performance.

10 ACKNOWLEDGMENTS

This work was supported by the Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of En-
ergy under Contract No. DE-AC02-05CH11231, and also used re-
sources of the National Energy Research Scientific Computing Cen-
ter (NERSC). It was also supported by National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIP)(NRF-
2016M3C4A7952587), BK21 Plus(21A20151113068) for Pioneers in
Innovative Computing (Dept. of Computer Science and Engineer-
ing, SNU), and by the Korea Institute of Science and Technology
Information (Grant No.K-20-L02-C08).

REFERENCES

[1] 2019. Cori. https://www.nersc.gov/systems/cori/

[2] Jean Patrick Baudry, Adrian E. Raftery, Gilles Celeux, Kenneth Lo, and Raphaél
Gottardo. 2010. Combining mixture components for clustering. Journal of
Computational and Graphical Statistics 19, 2 (jun 2010), 332-353. https://doi.org/
10.1198/jcgs.2010.08111

[3] Eugen Betke and Julian Kunkel. 2019. Footprinting Parallel I/O - Machine
Learning to Classify Application’s I/O Behavior. In High Performance Computing,
Michéle Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode (Eds.). Springer
International Publishing, Cham, 214-226.

[4] Renato L.F. Cunha, Eduardo R. Rodrigues, Leonardo P. Tizzei, and Marco A.S.
Netto. 2017. Job placement advisor based on turnaround predictions for HPC
hybrid clouds. Future Generation Computer Systems 67 (2017), 35 — 46. https:
//doi.org/10.1016/j.future.2016.08.010

[5] Christopher S. Daley, Prabhat, Sudip Dosanjh, and Nicholas J. Wright. 2017.
Performance Analysis of Emerging Data Analytics and HPC Workloads. In Pro-
ceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data In-
tensive Scalable Computing Systems (PDSW-DISCS ’17). Association for Computing
Machinery, New York, NY, USA, 43-48. https://doi.org/10.1145/3149393.3149400

[6] Renato Cordeiro de Amorim. 2015. Feature Relevance in Ward’s Hierarchical
Clustering Using the Lp Norm. Journal of Classification 32, 1 (apr 2015), 46-62.
https://doi.org/10.1007/s00357-015-9167-1

[7] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena Vlasenko.
2013. Failure prediction based on log files using Random Indexing and Support
Vector Machines. Journal of Systems and Software 86 (01 2013), 2-11. https:
//doi.org/10.1016/j.js5.2012.06.025

[8] Greg Hamerly and Charles Elkan. 2002. Alternatives to the k-means algorithm
that find better clusterings. Technical Report.

[9] Olumuyiwa Ibidunmoye, Francisco Hernandez-Rodriguez, and Erik Elmroth. 2015.
Performance Anomaly Detection and Bottleneck Identification. ACM Comput.
Surv. 48, 1, Article Article 4 (July 2015), 35 pages. https://doi.org/10.1145/2791120

[10] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2000. An
introduction to Statistical Learning. Vol. 7. Springer, New York. 995-1039 pages.
https://doi.org/10.1007/978-1-4614-7138-7 arXiv:arXiv:1011.1669v3
Xu Ji, in Wuxi, Bin Yang, Tianyu Zhang, Xiaosong Ma, Xiupeng Zhu, Xiyang
Wang, Nosayba El-Sayed, Jidong Zhai, Weiguo Liu, and Wei Xue. [n.d.]. This
paper is included in the Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST ’19). Open access to the Proceedings of the 17th USENIX
Conference on File and Storage Technologies (FAST °19) is sponsored by Automatic,
Application-Aware I/O Forwarding Resource Allocation Automatic, Application-
Aware I/O Forwarding Resource Allocation. https://www.usenix.org/conference/
fast19/presentation/ji
Ling Jin, Doris Lee, Alex Sim, Sam Borgeson, Kesheng Wu, C Anna Spurlock, and
Annika Todd. 2017. Comparison of Clustering Techniques for Residential Energy
Behavior using Smart Meter Data. Technical Report. www.aaai.org
Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang, Yongseok Son, and
Hyeonsang Eom. 2019. DCA-IO: A dynamic I/O control scheme for parallel and
distributed file systems. In Proceedings - 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2019. Institute of Electrical and
Electronics Engineers Inc., 351-360. https://doi.org/10.1109/CCGRID.2019.00049
Zhiling Lan, Ziming Zheng, and Yawei Li. 2010. Toward Automated Anomaly
Identification in Large-Scale Systems. IEEE Trans. Parallel Distrib. Syst. 21 (02
2010), 174-187. https://doi.org/10.1109/TPDS.2009.52
Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. 2016. Server-Side Log Data
Analytics for I/O Workload Characterization and Coordination on Large Shared
Storage Systems. In SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 819-829.
[16] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study of
1I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’15).
Association for Computing Machinery, New York, NY, USA, 33-44. https://doi.
org/10.1145/2749246.2749269
[17] Terai Masaaki, Kashiwaki Riku, and Shoji Fumiyoshi. 2017. Workload Classifi-
cation and Performance Analysis using Job Metrics in the K computer. Technical
Report 13. RIKEN Advanced Institute for Computational Science, Graduate School
of Simulation Studies, Univeristy of Hyogo, RIKEN Advanced Institute for Com-
putational Science.
Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R Das. [n.d.].
Towards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. Technical Report.
Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010.
Towards Characterizing Cloud Backend Workloads: Insights from Google Com-
pute Clusters. SIGMETRICS Perform. Eval. Rev. 37, 4 (March 2010), 34-41.
https://doi.org/10.1145/1773394.1773400
[20] Kevin P. Murphy. 2012. Machine learning : a probabilistic perspective. MIT Press,
Cambridge, Mass. 1067 pages.
Gonzalo P. Rodrigo, P.-O. Ostberg, Erik Elmroth, Katie Antypas, Richard Gerber,
and Lavanya Ramakrishnan. 2018. Towards understanding HPC users and sys-
tems: A NERSC case study. J. Parallel and Distrib. Comput. 111 (2018), 206 — 221.
https://doi.org/10.1016/j.jpdc.2017.09.002
[22] E.R. Rodrigues, R. L. F. Cunha, M. A. S. Netto, and M. Spriggs. 2016. Helping
HPC Users Specify Job Memory Requirements via Machine Learning. In 2016
Third International Workshop on HPC User Support Tools (HUST). 6-13.
Carolin Strobl, James Malley, and Gerhard Tutz. 2009. An Introduction to Recur-
sive Partitioning: Rationale, Application, and Characteristics of Classification
and Regression Trees, Bagging, and Random Forests. Psychological Methods 14, 4
(dec 2009), 323-348. https://doi.org/10.1037/a0016973
[24] Wiebke Toussaint and Deshendran Moodley. 2019. Comparison of clustering
techniques for residential load profiles in South Africa. Technical Report.
[25] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung,
Manuel Egele, and Ayse K. Coskun. 2017. Diagnosing Performance Variations
in HPC Applications Using Machine Learning. In High Performance Computing,
Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes (Eds.). Springer
International Publishing, Cham, 355-373.
Jorge R. Vergara and Pablo A. Estévez. 2014. A review of feature selection methods
based on mutual information. , 175-186 pages. https://doi.org/10.1007/s00521-
013-1368-0 arXiv:1509.07577

—_
o

[12

(13

[14

[15

[18

[19

[21

[23

[26

https://www.nersc.gov/systems/cori/
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1198/jcgs.2010.08111
https://doi.org/10.1016/j.future.2016.08.010
https://doi.org/10.1016/j.future.2016.08.010
https://doi.org/10.1145/3149393.3149400
https://doi.org/10.1007/s00357-015-9167-1
https://doi.org/10.1016/j.jss.2012.06.025
https://doi.org/10.1016/j.jss.2012.06.025
https://doi.org/10.1145/2791120
https://doi.org/10.1007/978-1-4614-7138-7
http://arxiv.org/abs/arXiv:1011.1669v3
https://www.usenix.org/conference/fast19/presentation/ji
https://www.usenix.org/conference/fast19/presentation/ji
www.aaai.org
https://doi.org/10.1109/CCGRID.2019.00049
https://doi.org/10.1109/TPDS.2009.52
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1145/1773394.1773400
https://doi.org/10.1016/j.jpdc.2017.09.002
https://doi.org/10.1037/a0016973
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1007/s00521-013-1368-0
http://arxiv.org/abs/1509.07577

	Abstract
	1 Introduction
	2 Related Works
	3 Background
	4 Data Preprocessing
	5 Feature Selection for Dimension Reduction
	5.1 Feature selection Methods
	5.2 Analysis of Feature Selection results

	6 Application of Clustering Model
	6.1 Clustering Methods
	6.2 Cluster Validity Metrics

	7 Performance Evaluation
	7.1 Selecting Best Clustering Method
	7.2 Feature Selection Methods Comparison

	8 Cluster Characterization
	9 Conclusion
	10 Acknowledgments
	References

