
Parallel Query Service for Object-centric
Data Management Systems

Houjun Tang, Suren Byna, Bin Dong, and Quincey Koziol
Lawrence Berkeley National Laboratory

Berkeley, California 94720
{htang4, sbyna, dbin, koziol}@lbl.gov

Abstract—While large-scale scientific experiments and simula-
tions produce massive amounts of data, a small fraction of data
contains useful information. Efficient querying on such volume of
data to extract that information increases the productivity of the
scientific discovery process. Although querying has been explored
extensively in relational databases, research and adoption of
querying tools for scientific data that is stored in parallel file
systems on high performance computing (HPC) systems are still
in infancy. In this paper, we introduce a parallel query service,
called PDC-Query, for an object data management systems
(ODMS) on HPC systems. It operates on partitioned objects
in parallel, and provides several optimization strategies for fast
query evaluation. The ODMS paradigm for HPC systems is
promising in reducing the burden on users in data management
and in moving data transparently across the deep memory hier-
archy in modern HPC systems. We propose a ‘global histogram’-
based approach to accelerate query evaluation, through selectiv-
ity estimation and reducing the amount of data that needs to
be loaded from storage and processed. We compare querying
performance and demonstrate the efficiency and scalability of
different approaches PDC-Query supports, including using global
histograms, bitmap indexes, sorting, and full scan, in performing
various queries on top of a plasma physics dataset with 125 billion
particles and an astronomy dataset with 25 million objects.

I. INTRODUCTION

Scientific applications in the upcoming exascale era have
pushed data management and storage technology to advance
in order to deal with the massive data generated from sim-
ulations, experiments, and observations [1]. The deep and
heterogeneous memory hierarchy as well as simple and ef-
fective application programming interface (API) that relaxes
the POSIX-IO semantics have emerged as indispensable com-
ponents of future HPC data management systems.

Object-based storage systems that manage data as objects
can consolidate these new technologies and provide a fast and
easy-to-use storage system to users. For example, DAOS [2],
MarFS [3], and RADOS [4] have been proposed as the next
generation HPC file systems. We have recently developed the
Proactive Data Containers (PDC) system [5], [6] that runs in
user-space to provide scalable and efficient data and metadata
object management. PDC takes advantage of all layers of an
HPC system’s resources and provides an object interface that
hides the complexity of data management from the users.

Though existing object-based systems have demonstrated
high scalability and efficiency in managing data and metadata

objects, data querying, an important aspect of the scientific
discovery process in accessing only the data that matches a
user-defined condition, is yet to be addressed. Data querying
is a natural way to explore and extract information from a
massive amount of data. For example, plasma or accelerator
physicists often need to locate and/or visualize the highly en-
ergetic particles. Being able to specify a query condition, such
as “Energy > 2.0”, and to retrieve all the matching particles
efficiently increases productivity. Similar queries exist in other
areas of science as well, to retrieve information in data objects
that match value range conditions.

Existing data indexing and querying methods are not de-
signed for an object-centric data management system (ODMS),
where data are accessed as objects and the objects may reside
in different storage devices and across multiple storage layers.
For example, SDS-Query [7], FastQuery [8], and ADIOS-
Query [9], support querying directly on data files stored in
scientific file formats, such as HDF5 and ADIOS-BP, on a
single storage layer. SciDB [10] is developed to store and
query array-structured data, but it requires converting data to
its own format, which can be time-consuming and requires
extensive user involvement [11]. Database management sys-
tems (DBMS), such as PostgreSQL [12] and MongoDB [13],
provide SQL-like query interfaces. However, these systems
are not optimized for the data objects containing multi-
dimensional array data stored in parallel file systems and result
in poor performance [7]. Additionally, DBMSs typically face
scalability issues in massive parallel HPC environment and
the performance can be several times slower than methods
designed for HPC [6].

To provide a solution that overcomes these challenges, we
design PDC-Query, a parallel querying service that operates
directly on metadata and data objects with an object-centric
interface. It allows users to construct both simple and complex
query conditions, and offers efficient query processing using
a combination of global histograms, sorted data, and bitmap
indexes. We have integrated this service into the PDC system
and demonstrated its efficiency and scalability with different
types of queries. The main contributions of the paper are:

• Introduction to a set of APIs for users to specify query
conditions and to execute queries using different indexes.

• Design of a novel global histogram-accelerated parallel
query service to provide efficient query processing of

massive amounts of metadata and data objects.
• Evaluation of several query optimization strategies and

their impact on the overall query processing performance,
including region size selection, region pruning and selec-
tivity estimation with the global histogram, bitmap index,
and data reorganization with sorting.

We have evaluated the proposed data query service on
the Cori supercomputer at the National Energy Research
Scientific Computing Center (NERSC). Experimental results
show that our method achieves a multi-fold speedup compared
to the conventional approach of scanning the entire data, and
the proposed ‘global histogram’ can complement and further
speedup the query processing with indexing and reorganization
techniques. The remainder of the paper is organized as follows:
We provide a brief background to ODMS and the PDC system
in Section II before introducing the parallel query service
in Section III. In Section V, we present our experimental
setup and show results in Section VI. We discuss the relevant
literature in Section VIII and conclude the paper.

II. BACKGROUND - OBJECT-CENTRIC DATA
MANAGEMENT SYSTEM

An object-centric data management system (ODMS) can
manage any type of data, from small objects (e.g., human-
readable text) to large multi-dimensional arrays. By using the
Proactive Data Containers (PDC) system [5] as an example, we
briefly describe the major components of an ODMS developed
for large-scale scientific data management on HPC systems.

PDC [5] offers object-centric APIs, asynchronous data
movement across a hierarchy of memory and storage layers,
and provides extensible metadata management. PDC uses a
client-server model, where the client is a library linked with an
application and the servers run different services for metadata
management, data movement, and querying (proposed in this
paper). These servers run in the user space as additional
service processes with minimal disruption to the application.
They can also run on dedicated compute nodes away from
the application processes. With the PDC system managing
data, metadata, and their placement in the storage hierarchy
transparently, users are relieved from the burden of managing
data manually. More details of the PDC architecture are
available in our previous paper [5].

PDC organizes data as a collection of objects in a number of
containers. Object is a generic term to describe a byte stream
in an abstract manner. Each data object is associated with
metadata, including a name, ID, and other attributes such as
time of data generation, ownership, relations to other objects,
etc. Large objects are partitioned into smaller regions, where
the actual data as well as the metadata associated with it
are maintained. A region is the basic unit in PDC, and can
reside on any layer of the memory/storage hierarchy (i.e., main
memory, NVRAM, disk, tape, etc.). Such an approach enables
the flexibility to spread the data of the same or different objects
to various locations and also allow efficient data movement.

In PDC, metadata is managed as an object too. As most
metadata are naturally small in size, such as object informa-

tion, storage location, histogram, etc., they are pre-loaded at
server start time and stored as in-memory objects for efficient
operations. A metadata object is managed by only one server
to guarantee consistency and is periodically persisted to the
storage system for fault tolerance.

III. PARALLEL QUERYING SERVICE FOR OBJECTS

The PDC-Query API allows users to construct a simple
query condition on a single data object or a combination
of multiple conditions to form a complex query. Querying
on multiple objects is allowed when the object dimensions
are identical. PDC-Query returns either the number of hits
for a given query, or the locations (array coordinates) of the
matching elements, or both, which is represented as a PDC
data selection. Using this selection, a user can load the data
from the matching objects into memory. The memory objects
may have the same or different data structures from those
in the query condition. This flexibility facilitates the most
common data query use-cases in scientific applications. We
explain more details on the query interface, query evaluation,
and various query optimization techniques used in PDC-Query
in the following sub-sections.

A. PDC Query interface

We show in Fig. 1 the functions to create and execute
queries. PDCquery_create creates a query on a single ob-
ject with the object ID, the operator type (>,≥, <,≤,=), the
data type (float, double, int, unsigned int, long long, unsigned
long long, etc.) of the value, and a value pointer. To combine
multiple conditional expressions to form a more complex
query, we provide PDCquery_and and PDCquery_or,
which can be used to combine conditions either on the same
object or on multiple objects with identical array dimensions.
A user can construct complex queries by using these three
primitive calls. Additionally, the user can specify a region as
the spatial constraint of a query, where the region selection can
be arbitrary and does not need to match any of the existing
PDC internal region partitions.

The PDCquery_get* functions are used to evalu-
ate and execute queries using the PDC-Query service
and to retrieve the corresponding results to a user-
provided memory buffer when the query is completed.
PDCquery_get_selection is needed before calling
PDCquery_get_data*, as we require the user to allocate
sufficient space to store the data and is responsible to free
it afterward. PDCquery_get_data_batch is a special
case of PDCquery_get_data when the resulting data size
is too large and cannot fit in memory at one time. The
user can use this function to get and process a number
of “batches” sequentially. PDCquery_get_histogram re-
trieves the global histogram of an object that is automatically
generated by the PDC system at no additional cost. The “free”
calls are not listed in the figure. PDC APIs also include
querying on metadata and moving data, which were described
in our previous work [5]. This paper focuses on the new API
introduced above.

/ / C r e a t e a one−s i d e d d a t a que ry
p d c q u e r y t ∗PDCquery c rea te (p d c i d t o b j i d , p d c q u e r y o p t op , p d c t y p e t type , vo id ∗ v a l u e) ;
/ / Combine q u e r i e s
p d c q u e r y t ∗PDCquery and (p d c q u e r y t ∗query1 , p d c q u e r y t ∗ query2) ;
p d c q u e r y t ∗PDCquery or (p d c q u e r y t ∗query1 , p d c q u e r y t ∗ query2) ;
/ / S e t que ry r e g i o n c o n s t r a i n t
p e r r t PD C qu e r y s e t r eg io n (p d c q u e r y t ∗query , p d c r e g i o n t ∗ r e g i o n) ;
/ / Query o p e r a t i o n s
p e r r t PDCquery tag (c o n s t c h a r ∗ name , u i n t 3 2 t v a l s i z e , vo id ∗va l , i n t ∗nobj , p d c i d t ∗∗ o b j i d s) ;
p e r r t P D C q u e r y g e t n h i t s (p d c q u e r y t ∗query , u i n t 6 4 t ∗n) ;
p e r r t P D C q u e r y g e t s e l e c t i o n (p d c q u e r y t ∗query , p d c s e l e c t i o n t ∗ s e l) ;
p e r r t PDCquery ge t da ta (p d c i d t o b j i d , p d c s e l e c t i o n t ∗ s e l , vo id ∗ d a t a) ;
p e r r t P D C q u e r y g e t d a t a b a t c h (p d c i d t o b j i d , p d c s e l e c t i o n t ∗ s e l , u i n t 6 4 t b a t c h s i z e , vo id ∗ d a t a) ;
p d c h i s t o g r a m t ∗PDCquery ge t h i s tog ram (p d c i d t o b j i d) ;

Fig. 1: PDC query API.

B. Data decomposition

The PDC system decomposes data and breaks a large
object (GBs and above) into smaller regions, so that data
operations can be easily parallelized. Each region shares the
same metadata of the object and has additional metadata such
as its offsets and sizes within the object. This approach also
allows efficient access to subsets of an object through region
selection, eliminates the need to access the entire object when
only a small amount is actually needed. All the data processing
in the PDC system is performed on these regions.

The selection of region size affects the overall query eval-
uation performance: a smaller region size allows for better
chance to prune regions that have no matching result, and
reduces the total amount of data that need to be read from
storage. However, it may also result in a large number of
regions, bringing additional overhead to store metadata and
load them from storage. On the other hand, a region size
too large may leads to reading more data than necessary and
slows down the overall performance. To determine an efficient
region size, we have used an empirical strategy of measuring
performance with various region sizes ranging from 4MB to
128MB and with different types of queries. More details on
these measurements are discussed in §VI.

C. Query processing

In Fig. 2, we illustrate the workflow of the PDC-Query
service. The application can construct query conditions on one
or more objects using the provided query API. Internally in
PDC, we use a tree structure to store and represent the query
conditions, which allows for chaining an unlimited number of
conditions. After the client application finished constructing
query conditions, it invokes the corresponding “get result”
routines to obtain the number of hits and/or the locations of all
matching data elements. The PDC client library automatically
serializes the query conditions and broadcasts them to all
available servers.

Upon the receipt of a query request, different regions of
the queried object are assigned to the servers in a load-
balanced fashion. Each server will then obtain the metadata of
its assigned regions through the PDC’s metadata management
service. After the metadata distribution process, the PDC
servers do not need to communicate with each other, thus

Fig. 2: An overview of PDC’s data query service.

reducing the communication overhead.
Once a server receives all necessary metadata of the objects

involved in a query, it starts the evaluation process. Each
server goes through all the regions assigned to it and records
the number of hits and their locations if needed. When the
query conditions include multiple objects, they are processed
sequentially with the order based on their estimated selectivity.
We will provide more details on this in §III-D2. In the case of
the intersection (AND) operator between condition statements,
we only evaluate the already selected locations matching the
first condition for the subsequent conditions, which improves
efficiency. For the union (OR) operator, we combine the results
from multiple objects and remove the duplicates with a merge
sort. A special case for the intersection case is when one query
condition has no hit, then there is no need to evaluate the
remainder of the query conditions. Similarly for the union
operation, if one part of the query selects all elements, we
can return them immediately. The servers send the result back
to the client after it finishes its query evaluation.

On the PDC client (application) side, after sending the query
requests to the servers, a client can either block and wait for
the query result or continue to other tasks when the servers
are processing, as the communication between PDC clients and
servers happens asynchronously. The client has a background
thread that aggregates the results received from all servers

before storing them in the user’s buffer.

D. Query evaluation strategies

We have implemented several strategies for query evaluation
optimization, each can be activated by the user through the
setting of an environment variable before running the PDC
servers. The histogram only approach is selected by default.

1) Full scan: To evaluate a data query, a straightforward
and baseline approach is to load all the data of the queried
object into memory, iterate through all elements, and record
the locations that satisfy the query condition. This approach is
typically called a “full scan” operation. We have implemented
this approach in the PDC system as a building block, and apply
optimizations to improve the query evaluation performance
based on it. An obvious drawback of the full scan operation
is that it requires reading all the objects’ data, even if only a
few elements satisfy the query condition. Reading data could
be costly for a large object even the data is stored in a parallel
file system. Effective reduction of the amount of data accesses
can significantly improve efficiency, and we explore several
approaches in the following sub-sections to achieve it.

2) Global histograms: The first approach we explored
to reduce data access is through the use of histograms.
Histograms are often used in database systems to estimate
selectivity for query optimization [14]. It provides a represen-
tation of the data distribution for the corresponding dataset.
It divides values into a number of bins and each bin contains
the number of occurrences of data elements in the dataset
within its range. Two common binning methods are “equal-
width” binning and “equal-height” binning. The “equal-width”
histogram divides data into a fixed number of equal-width
ranges. The corresponding height of each range represents the
number of values falling into that range. On the other hand,
“equal-height” histograms have the same number of elements
in each bin.

In PDC-Query, a “local” histogram is automatically gen-
erated for each data region when data is either produced
within PDC or imported from an outside dataset. Depending
on the region size, we use 50 to 100 bins. The histogram
is used primarily for two aspects: eliminate the need to load
regions that do not contain the queried data, and estimate the
selectivity of different objects for query optimization.

Using histogram for region elimination: Histograms contain
the minimum and maximum value of the corresponding data,
which we can use to quickly determine whether the region
has any element that satisfies the query condition. While we
only need the min and max values from a histogram for the
region elimination, we do need all the information a histogram
contains to estimate the number of hits satisfying the query
condition.

Using histogram for selectivity estimation: When a query
involves conditions on multiple objects, the execution order
has a significant impact on the overall query evaluation time.
For example, when a query has high selectivity on one object
and low selectivity on another, executing the former query
and getting the matching element locations first and only

check elements in those locations for the subsequent objects
significantly reduces the overall query execution time. As
getting an exact selectivity is costly, we chose to use a
histogram that can provide an approximate estimation at a very
low cost. To achieve this, we go through the histogram and find
all bins that overlap with the query condition, and aggregate
their count. The upper bound of the number of hits includes all
bins that are fully or partially overlap with the query condition,
while the lower bound only counts the fully overlapping bins.
Dividing the count by the total number of elements produces
the upper and lower bound of the selectivity.

While a regular histogram can achieve the above two
purposes, we found that further performance improvement can
be achieved if we can merge the local histograms of different
regions and obtain a “global” histogram of an entire object.
As the metadata is cached in all servers after the metadata
distribution, such a global histogram can be used multiple
times with very low access latency when serving a series of
queries.

3) Data reorganization with sorting: Range queries are
commonly used to explore scientific data. For example, ac-
celerator physics scientists often need to find the high energy
particles in the Vector Particle-In-Cell (VPIC) project [15].
Similarly, scientists studying combustion search for array
locations where the temperature is between two values. While
the data is typically stored based on their spatial location, the
resulting data of range queries are often scattered across many
regions. In such cases, accessing data from different regions
almost always lead to poor performance due to a large number
of non-contiguous disk accesses.

When there is prior knowledge on how the data would be
queried, sorting and reorganizing the data by value based on
one or more objects speeds up the query evaluation process.
For example, we can sort the particle data of the VPIC dataset
(more details described in the Results section), based on their
energy values as it is often the primary queried object. A query
condition with high selectivity on the energy object would
result in data clustered only in a few regions and thus lead to
high efficiency.

The reorganization of data requires additional sorting time,
and if the original data has to be kept without reorganization,
additional storage space is required to maintain the sorted
replica of the data. In PDC, we provide users the option to
specify hints on how data should be organized: whether to be
sorted and what objects the sort is based on.

4) Bitmap index: The previously mentioned approaches all
require loading the data and then going through them in the
evaluation process. An alternative method is to index the data
elements and use it for query evaluation. Bitmap index offers
efficient searching and data selection retrieval operations. It
is especially useful for scientific data as they are generally
write-once-read-many and do not require the costly bitmap
update operation. We have used the Fastbit [16] indexing
library combined with our proposed global histograms as an
attempt to speed up the query evaluation process. We construct
a bitmap for each region, with the data split into a number

of bins by Fastbit automatically. One representative key is
selected in each bin and the value of these representative
keys is used to map the original data into 0 or 1 based on
these distinct values. The Word-Aligned Hybrid compression
(WAH) method is used to reduce the index file size in Fastbit.

Querying with an index can speed up the query evaluation
process, however, it also requires extra space to store the index
itself as well as extra time to load them into memory. The
index file size is expected to be a fraction of the total object
size, and reading it is still expected to be faster than reading
more data from the storage system for getting the number of
hits and/or data selection. We used precison = 2 as the default
value to construct the Fastbit index, which is sufficient for the
queries evaluated in the results section.

E. Data retrieval

The PDC system supports different types of back-end stor-
age systems, such as Lustre and GPFS file systems. The PDC
internal data files are hidden from the user, and are not meant
to be directly accessed outside the PDC system. Users can see
and operate on objects with the PDC’s object-centric interface.
To speed up the data read performance when the actual data
is requested by the query, PDC automatically distributes the
data across the parallel file system’s storage devices, and uses
aggregation methods to merge small reads into bigger ones to
reduce the data access contention. This approach offers better
performance than setting Lustre stripe parameters of data files.

IV. GLOBAL HISTOGRAM FOR PARALLEL QUERYING

The generation of global histograms requires all the region
histograms to either share the exact same bin boundaries, or
their bin sizes are divisible and can be aligned. The former
can be achieved by pre-determining the bin boundaries and
use them for all histograms generated, however, determining
the bin boundaries that can effectively represent the data can be
very costly, as we need to scan all data elements. Additionally,
in the distributed environment, it requires global communica-
tion for parallel processing, which is rather heavyweight and
would significantly slow down the overall performance.

As the pre-determined bin boundary approach is impractical,
we propose a new method (shown in Algorithm 1) to generate
histograms with aligned and divisible bin sizes that can be
merged into a global one. We first sample the data to obtain the
approximate minimum and maximum values, and calculate the
bin width of the pre-determined number of bins (lines 1-2). To
better represent different regions that may have very different
data distribution, we use non-uniform bin width for different
region histogram, with their value rounded to a pre-defined set
that are powers of 2 (...,±0.125,±0.25,±0.5,±1,±2,±4, ...)
(line 3). With such an approach, different histograms may have
different bin widths, but their sizes are all divisible to each
other.

With the bin size determined, we still need to guarantee
that all histograms must have aligned bin boundaries so that
they can be merged. We choose to use natural numbers (N)
as the first bin boundary’s value. As a result, all bin boundary

values fall in the set of N± 2n, n ∈ N (lines 4-5). Using this
approach does not guarantee the resulting histograms have the
same bin numbers as specified, however, this is acceptable for
our purposes as using the histogram for selectivity estimation
does not require an exact number of bins. Once the bin width
and boundaries are determined, we just need to go through the
data elements and aggregate the counts (lines 6-18). The time
complexity of this algorithm is O(N).

Merging the histograms that were generated using Algo-
rithm 1 into a global one can be done with the following
process: first identify the histogram with the largest bin width,
which becomes the bin width for the resulting global his-
togram, and then iterate over each bin of all other histograms,
and aggregate the bin count into the aggregated histogram. The
merged histogram can have more bins than any of the existing
ones if there are non-overlapping bins boundaries. The time
complexity of merging histograms is also O(N).

Algorithm 1: Generate a histogram that can be merged
into a global histogram

Data: An array S of data elements with |S| = N , a
lower bound of the number of bins (Nbin).

Result: A histogram consisting an array of bin
boundaries B (|B| = 2 ∗N ′

bin), a bin count array
C (|C| = N

′

bin), and with N
′

bin ≥ Nbin.

1 Random sample 10% of the data to get approximate
min(S) and max(S)

2 Sbin = (max(S)−min(S))/Nbin

/* Round down Sbin to power of 2 */

3 S
′

bin = bSbinc, bSbinc ∈ ±2x, x ∈ N
/* Adjust min and max to be natural numbers N */

4 min(S)
′
= bmin(S)c+ S

′

bin, bmin(S)c ∈ N
5 max(S)

′
= dmax(S)e − S

′

bin, dmax(S)e ∈ N
/* Get the actual number of bins */

6 N
′

bin = (max(S)
′ −min(S)

′
)/S

′

bin

/* Generate bin boundaries */

7 for i = 0; i < N
′

bin; i = i+ 1 do
8 B[i× 2] = min(S)

′
+ i× S

′

bin

9 B[i× 2 + 1] = min(S)
′
+ (i+ 1)× S

′

bin

10 end

/* Get each bin’s count */

11 for i = 0; i < N ; i = i+ 1 do
12 Find the bin (j) that includes S[i]

13 if S[i] < min(S)
′

then
14 B[0] = min(S)

′
= S[i]

15 else if S[i] > max(S)
′

then
16 B[2×N

′

bin − 1] = max(S)
′
= S[i]

17 C[j] + +
18 end

V. EXPERIMENTAL SETUP

We ran PDC-Query on Cori supercomputer, located at
the National Energy Research Scientific Computing Center
(NERSC). Cori is a Cray XC40 system with Intel Haswell
and Intel KNL partitions. The Haswell partition, where we ran
our experiments, contains 1630 Intel Xeon “Haswell” compute
nodes, each consists of 32 cores and 128GB memory. Its
Lustre storage system is shared by all Cori users. We ran one
PDC server on each compute node in our tests that share the
compute and memory resources with the user application, that
is, the PDC server occupies one core on each compute node,
and the user’s application can run on the remaining 31 cores.
We compare various configurations of PDC, including varying
region sizes, whether to pre-load data, use of histograms,
index, and data reorganization with sorting. We set a memory
limit of 64GB (half the total amount available on a compute
node) to be used by each PDC server, which is enough to hold
the entire VPIC data for the full scan approach.

We used a 3.3TB particle data dataset, which is generated
from a plasma physics code called VPIC [17], that simulates
magnetic re-connection phenomenon in space weather. VPIC
data structure uses 1-D arrays to represent each variable, there
are ≈ 125 billion particles with 7 different properties includ-
ing: Energy, x, y, z, Ux, Uy, and Uz, with each data object
≈ 466GB in size. We have constructed 21 different queries
with single or multiple constraints to compare the performance
for different approaches. For single variable queries, the query
constraints range from 3.5 < Energy < 3.6 (0.0004%
selectivity) to 2.1 < Energy < 2.2 (1.3025% selectivity).
For multiple variable queries, it ranges from Energy > 2.0
AND 100 < x < 200 AND −90 < y < 0 AND 0 < z < 66
(0.0013% selectivity) to Energy > 1.3 AND 100 < x < 140
AND −100 < y < 0AND 0 < z < 66 (0.0442% selectivity)

In addition to the particle dataset, we also used the Baryon
Oscillation Spectroscopic Survey (BOSS [18]) data, which
maps the spatial distribution of galaxies and quasars in the
early universe. Each BOSS data object is associated with rich
metadata. We have obtained the BOSS data stored in the HDF5
format, which has 2448 files [19]. To measure the performance
using the PDC system, we have converted all of the ≈ 25
million objects into our PDC system.

For all the results presented below, unless otherwise speci-
fied, we ran the experiments with 64 PDC server processes
on 64 compute nodes (64 processes for HDF5 full scan
and 64 PDC servers for all PDC experiments). We have
measured the elapsed time, which is the end-to-end time from
the client issues the query until it receives all the query
results. We ran the experiments at least 5 times and reported
numbers representing the best performance, which have the
least interference from other users on shared system resources
(network, storage system, etc.).

VI. EVALUATION

We evaluate the performance of executing the 21 different
queries and measured the time to get the number of hits
along with the matching elements’ locations (query time), and

the time to load the actual data of matching elements into
application memory (get data time). Query time includes the
time to read the selected data or index and perform the query
evaluation. We compare the PDC-Query’s performance with a
hand-optimized parallel code using HDF5 to read data stored
in HDF5 files and to perform a full scan to obtain the query
results (labeled as “HDF5-F” in the plots below). For PDC,
we evaluated the performance with various configurations:
1) pre-load all the data of queried objects and a full scan
(similar to the HDF5 approach and labeled “PDC-F”), 2)
using histograms to reorder the query evaluation sequence
and only read and evaluate the regions that have matching
elements (labeled “PDC-H”), 3) using histograms and bitmap
indexes to obtain the result element selection without the
need to read the region’s data (labeled “PDC-HI”), and 4)
using the histogram and the sorted copy of the object’s data
to improve the data access and query evaluation efficiency
(labeled “PDC-SH”). For each PDC-Query strategy, we also
vary the region size from 4MB to 128MB. The Fastbit index
file takes 500−600GB (15% to 17% of the total data size) of
storage space with different region sizes, and the sorted copy
requires a full copy of the data, unless the original data can
be deleted. We show the results of querying on a single object
and on multiple objects, with both metadata and data query
conditions, as well as scaling the number of PDC servers in
the following sub-sections.

A. Query on a single object

In Fig. 3, we show a comparison of the performance of
executing 15 different queries with varying selectivity numbers
sequentially. We plot the selectivity on the x-axis and the query
execution time on the y-axis.

For the HDF5 and PDC-Query full scan approaches (HDF5-
F and PDC-F), we show their amortized time (i.e., [total read
time / number of queries] + full scan time) as the evaluation
of the queries need to read the entire data into memory once
and scan through it to find the matching elements with the
query condition. Both times are near constant values as a
full scan has approximately the same cost for any query
condition. PDC-F achieves up to 2X better performance over
the HDF5-F in all cases because of the improvement from the
initial data read, due to the different data distribution across
storage devices and reduced access contention, as mentioned
in Section III-E. A small amount of time increase is observed
for PDC-F with lower selectivity due to the increasing amount
of data that needs to be transferred back to the client through
the network. We can also see an improved query performance
with larger region sizes (compare PDC-F in different plots
of Fig. 3), due to the larger contiguous reads of the regions.
However, when the region size increases to more than 64MB,
the performance starts to decrease, as more data need to be
loaded from the storage system even a small fraction of data
is needed.

For query processing with optimizations (i.e., ‘PDC-*
Query’ in Fig. 3), the most efficient approach for all region
sizes is with a sorted copy of the data and with a global

(a) 4MB region size. (b) 8MB region size.

(c) 16MB region size. (d) 32MB region size.

(e) 64MB region size. (f) 128MB region size.

Fig. 3: Single object (Energy) query performance comparison among different approaches and configurations using 64 processes
on 64 nodes. HDF5-F: amortized time to process query using full scan with HDF5 for all 15 queries, PDC-F: amortized time
to process query using full scan with PDC for 15 queries, PDC-H: PDC with Histogram only, PDC-HI: PDC with Histogram
and Fastbit Index, PDC-SH: PDC with Sorted data (sorted by the ‘energy’ object) and Histogram.

histogram (“PDC-SH”). This is mainly because the single
object range query processing on sorted data is efficient
because the result data are all contiguously stored. The second
best approach is “PDC-HI” that uses the Fastbit index, which
reads and reconstructs the index instead of the actual object
data. “PDC-H” uses histogram only, and is at least twice as
fast as either of the full scan approach. We have also observed
a decrease in the query evaluation time when more data is
selected, this is due to the caching mechanism provided by the
PDC, as the queries are evaluated sequentially, an increasing
number of the regions’ data are cached in the PDC servers’
memory and do not require storage access, thus reducing the
overall cost for the evaluation process. PDC-SH is over 4X
faster for a query with 1.3% selectivity, and over 1000X faster
than the full scan approach for a selectivity of 0.0004%. For
PDC-H, the speedup compared to PDC-F is between 2X and
3X , and that for PDC-HI is between 4X and 14X .

Besides getting the number of hits and the data selection,
getting the actual values of a query result is often needed.
We measured the “get data” performance (which is shown
as stacked on top of “query time” in the Fig. 3 plots). For
PDC-Query with histogram only (PDC-H) and with sorted data
(PDC-SH), the time to get the data with the query selection
is very efficient, as all the resulting elements’ data are cached
in memory during the query evaluation process, and can be
directly transferred the data back to the client. PDC-SH takes
a longer time due to the results are cached in fewer servers
and takes longer time to send to the client. For PDC-HI, since
the data is not read from the storage previously, we have to
read the regions with matching elements before sending them
to the client. As a result, although the query processing time
using an index is much faster, the total time to get query results
and the data may be similar or even longer than not using any
indexes.

B. Query on multiple objects

To further evaluate the effectiveness of PDC-Query service
for query conditions on multiple objects, we have constructed
6 queries with conditions on 4 objects, including energy, x, y,
and z. The region size has a similar impact on performance
to that on the single object queries. Due to the page limit, we
show only the results using 32MB regions, i.e., with the best
region size.

In Fig. 4, we illustrate the performance of different ap-
proaches for 6 queries on 4 different objects. We varied
the query condition on different objects to demonstrate the
effectiveness of our proposed optimizations. As more data
(all 4 objects) needs to be read from storage, and fewer
queries are evaluated, the amortized time for both approaches
increased by a significant amount compared with the single
object experiments.

The other three PDC-Query approaches also take a longer
time than the single object queries with similar selectivity,
which is due to the requirement to read and evaluate data of
multiple objects. However, they are still much faster than full
scan approaches.

Fig. 4: Multi-object (energy, x, y, z) query performance
comparison among different approaches using 32MB region
size and running with 64 processes on 64 nodes.

Comparing the three optimized PDC-Query methods, we
found them to exhibit different behavior of performance than
in the single object queries. The sorted approach is not always
the fastest to get the number of hits, especially for the last
two queries, it is slower than the index approach and takes
almost the same time as the histogram-only approach. This
is because the last two queries select very few elements of
the energy object, which is the primary sort key. In fact, the
PDC query engine evaluates the condition of object “x” first,
making the sorted reorganization less effective. As with the
first two queries that are highly selective on the energy object,
the sorted approach still shows the best performance. The
index approach offers fast evaluation in all queries regardless
of the selectivity on different objects, however, similar to the
previous experiments, it takes a longer time to get the actual
data as it needs to load actual data from the storage system.

C. Querying on both metadata and data objects

To demonstrate the ability and performance of evaluating
queries on both metadata and data, we have imported the
H5BOSS dataset (detailed description in the previous section)
into the PDC system. H5BOSS has a large number (25 million)
of relatively small objects (less than a few MBs each), and
scientists are often interested in the data values of a small
number of objects that are associated with specific metadata,
such as the number of values that are within a range of objects
that have a common metadata key-value pair.

We have constructed a set of queries on both metadata and
data – e.g., the metadata query condition is “RADEG=153.17
AND DECDEG=23.06”, which selects 1000 objects with
Right Ascension equal to 153.17 degrees and Declination
equals to 23.06 degrees. We vary the data query condition from
“0.0 < flux < 20” (11% selectivity) to “5.0 < flux < 20” (65%
selectivity) that finds the number of values of the specified
range from the flux of fiber objects. Being able to support
such queries significantly reduces the time and effort needed
by scientists and allowing them to focus more on science than
on managing data.

Figure 5 compares the query evaluation time between HDF5
(full scan) and PDC (with histogram only, and with histogram
and Fastbit index). From the figure we can see that querying

Fig. 5: Comparison of queries with both metadata (fixed selec-
tivity on 1000 objects) and data constraint (varied selectivity
from 11% to 65%) on the H5BOSS dataset.

Fig. 6: Query time comparison for a multi-object query
condition with 0.011% selectivity using different number of
PDC servers.

metadata and data with PDC is much more efficient than
the HDF5 approach that requires a traversal of all H5BOSS
files. The multi-fold speed up comes mostly from the efficient
metadata query service provided by PDC, as it can locate the
1000 objects instantly and start the data query process without
the need to look at other irrelevant objects. Due to the small
size of the BOSS objects, each object has one region only in
PDC-Query, and the entire region is loaded from the storage
system, thus the total query processing time does not vary
significantly with different selectivity.

D. Scalability

To demonstrate the scalability of the PDC-Query service, we
have measured the query performance with a different number
of PDC servers. By increasing the number of servers, we
increase the parallelism for the query evaluation as each server
will process less amount of data. As we only measured the
query time for one query, the results of the full scan approach
are not included, as their data read time is hundreds of times
slower than the query time. In Fig. 6, we show the time of a
multi-object query evaluation (0.011% selectivity, using 32 to
512 PDC servers. From the plot, we observe that the query
evaluation performance with all three optimizations improves
with more servers, which demonstrates the stability of our
parallel PDC query service.

VII. DISCUSSION

In summary, we have the following observations from PDC-
Query’s evaluation. (1) When partitioning a large object into
smaller regions for parallel processing, the region size influ-
ences the query evaluation performance heavily, and we found
that region sizes of 32MB or 64MB for large objects perform
well. (2) The global histogram-based querying introduced
in this paper can effectively accelerate the parallel query
planning process with evaluation ordering and hence reducing
the number of regions that need to be examined. (3) Using
an index provides superior query evaluation performance for
both single- and multiple-object queries, while the data reor-
ganization with sorting is the most effective when a query is
only on that object or is highly selective among all objects’
query conditions. (4) When the data of the query results
need to be loaded to memory, using a strategy that reads and
caches the data into memory during query processing offers
better performance than using an index for query evaluation.
(5) When the query condition includes both metadata and
data constraint, an efficient metadata query evaluation can
significantly accelerate the overall processing time.

VIII. RELATED WORK

Finding a small amount of useful information in a mas-
sive scientific dataset through querying is a crucial task for
scientific discovery. While this is novel to object-centric data
management systems, several technologies have been explor-
ing querying solutions on HPC systems.

“Object storage” is a generic term used to describe an
abstract data container that consists of many byte-streams
(or objects), each with related attributes. Several object store
technologies in development, such as DAOS [2], MarFS [3],
and RADOS [4], currently provide an object interface that
allows basic data and metadata operations, and do not support
data querying yet.

In the database community, various techniques have been
proposed for decades to optimize the query evaluation process
for different database management systems. Building an index
using B-tree and its variants [20] have proven to be effective
in various commercial DBMS such as Berkeley DB [21], Post-
greSQL [12], and MongoDB [13], etc. Object databases that
combine database capabilities with object-oriented program-
ming language capabilities have been proposed and developed,
such as Gemstone [22], IRO-DB [23], etc.. However, they are
not primarily designed to handle the multi-dimensional array
data that is commonly used in the scientific community, and
often result in poor performance on HPC systems.

SciDB [10] has been developed as a DBMS to store and
query array-structured data. However, SciDB requires convert-
ing data to its own format, and the data import process is
time-consuming and requires extensive user involvement [11].
The result produced by these DBMS is often text-based and
needs to be converted to another format for further analysis
and/or visualization. Other indexing methods such as Fastbit
[16], FastQuery [8], ISABELA [24], and PIQUE [25], have

demonstrated fast index construction, efficient index compres-
sion and high query performance.

Various indexing technologies can evaluate and return the
query results efficiently, however, the results only include
the number of hits and their array locations, while scientific
applications often need to read the actual data from the
storage system. As the resulting data elements are typically
scattered in the datasets, reading them from the storage system
can be costly and may require much more time than the
query evaluation. Block index [26] is proposed to partition
a dataset into fixed-size blocks and record their minimum
and maximum values. To speed up the data read performance,
each block with matching elements is read entirely to avoid
small non-contiguous access. The PDC-query service and the
block index share similar concepts to divide large data into
smaller parts. However, we use the global histograms to further
optimize querying performance for more complex multi-object
queries, and our approach is designed for an object-centric data
management system.

IX. CONCLUSIONS AND FUTURE WORK

Most scientific discoveries rely on finding a small fraction of
key information in massive amounts of data. Data querying is
a crucial tool for efficient information retrieval that enhances
scientific productivity. With the rapidly growing importance
of object-centric data management, developing indexing and
querying on data objects is of critical requirement. In this
work, we presented PDC-Query, a new object-centric data
indexing and querying service, that is highly efficient and
scalable. We also proposed a novel indexing with global
histograms to accelerate parallel querying on objects by con-
sidering object regions. Our evaluation shows these methods
are up to 2X to 1000X faster than scanning the entire data.

Our future work aims at bringing query optimization tech-
niques used by relational database management systems to
object-centric data management, as well as other data reor-
ganization methods that can provide better performance for
multiple variable query conditions.

ACKNOWLEDGMENT

This work is supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 (Project: Proactive Data Containers, Program
manager: Dr. Laura Biven). This research used resources of
the National Energy Research Scientific Computing Center,
which is a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi et al., “Parallel
I/O, Analysis, and Visualization of a Trillion Particle Simulation,” in
Supercomputing, 2012, pp. 59:1–59:12.

[2] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“DAOS and Friends: A Proposal for an Exascale Storage System,” in
Supercomputing, 2016, pp. 50:1–50:12.

[3] J. Inman, D. Bonnie, M. Broomfield, H.-B. Chen et al., “MarFS, Version
1,” LANL, Tech. Rep., 2015.

[4] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “RADOS: A
Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters,”
in PDSW, 2007, pp. 35–44.

[5] H. Tang, S. Byna, F. Tessier, T. Wang, B. Dong, J. Mu, Q. Koziol,
J. Soumagne, V. Vishwanath, J. Liu et al., “Toward scalable and
asynchronous object-centric data management for hpc,” in Proceedings
of the 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE Press, 2018, pp. 113–122.

[6] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “SoMeta: Scalable
Object-centric Metadata Management for High Performance Comput-
ing,” in CLUSTER, 2017, pp. 359–369.

[7] B. Dong, S. Byna, and K. Wu, “Parallel query evaluation as a scien-
tific data service,” in 2014 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2014, pp. 194–202.

[8] J. Chou, K. Wu et al., “Fastquery: A parallel indexing system for
scientific data,” in 2011 IEEE International Conference on Cluster
Computing. IEEE, 2011, pp. 455–464.

[9] J. Gu, S. Klasky, N. Podhorszki, J. Qiang, and K. Wu, “Querying
large scientific data sets with adaptable IO system ADIOS,” in Asian
Conference on Supercomputing Frontiers. Springer, 2018, pp. 51–69.

[10] P. G. Brown, “Overview of SciDB: Large Scale Array Storage, Process-
ing and Analysis,” in SIGMOD, 2010, pp. 963–968.

[11] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data
analysis directly on scientific file formats,” in SIGMOD. ACM, 2014,
pp. 385–396.

[12] PostgreSQL Global Development Group. PostgreSQL.
Http://www.postgresql.org.

[13] MongoDB. MongoDB. Https://www.mongodb.com/.
[14] S. Chaudhuri, “An overview of query optimization in relational systems,”

in Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 1998, pp. 34–43.

[15] K. J. Bowers, B. J. Albright, L. Yin, W. Daughton, V. Roytershteyn,
B. Bergen, and T. Kwan, “Advances in petascale kinetic plasma sim-
ulation with vpic and roadrunner,” in Journal of Physics: Conference
Series, vol. 180, no. 1. IOP Publishing, 2009, p. 012055.

[16] K. Wu, “Fastbit: an efficient indexing technology for accelerating data-
intensive science,” in Journal of Physics: Conference Series, vol. 16,
no. 1. IOP Publishing, 2005, p. 556.

[17] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh Performance Three-dimensional Electromagnetic Relativistic
Kinetic Plasma Simulation,” Physics of Plasmas, vol. 15, no. 5, 2008.

[18] K. S. Dawson, D. J. Schlegel, C. P. Ahn, S. F. Anderson, and et al., “The
Baryon Oscillation Spectroscopic Survey of SDSS-III,” Astronomical
Journal, vol. 145, p. 10, Jan. 2013.

[19] J. Liu, D. Bard, Q. Koziol, S. Bailey et al., “Searching for millions of
objects in the boss spectroscopic survey data with h5boss,” in Scientific
Data Summit (NYSDS), 2017 New York. IEEE, 2017, pp. 1–9.

[20] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR),
vol. 11, no. 2, pp. 121–137, 1979.

[21] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’99. Berkeley, CA, USA: USENIX Association, 1999, pp. 43–43.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1268708.1268751

[22] P. Butterworth, A. Otis, and J. Stein, “The gemstone object database
management system,” Communications of the ACM, vol. 34, no. 10, pp.
64–78, 1991.

[23] G. Gardarin, S. Gannouni, B. Finance, P. Fankhauser et al., “Iro-db-a
distributed system federating object and relational databases,” in Object-
Oriented Multidatabase SystemsA Solution for Advanced Applications,
chapter 20. Citeseer, 1995.

[24] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” in European Confer-
ence on Parallel Processing. Springer, 2011, pp. 366–379.

[25] D. A. Boyuka II, H. Tang, K. Bansal, X. Zou, S. Klasky, and N. F.
Samatova, “The hyperdyadic index and generalized indexing and query
with pique,” in Proceedings of the 27th International Conference on
Scientific and Statistical Database Management. ACM, 2015, p. 20.

[26] T. Wu, J. Chou, S. Hao, B. Dong, S. Klasky, and K. Wu, “Optimizing
the query performance of block index through data analysis and i/o
modeling,” in Supercomputing. ACM, 2017, p. 12.

