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Summary

Object storage technologies that take advantage of multitier storage on HPC sys-

tems are emerging. However, to use these technologies at present, applications have

to be modified significantly from current I/O libraries. HDF5, a widely used I/O mid-

dleware on HPC systems, provides a virtual object layer (VOL) that allows applica-

tions to connect to different storage mechanisms transparently without requiring

significant code modifications. We recently designed the proactive data containers

(PDC) object-centric storage system that provides the capabilities of transparent,

asynchronous, and autonomous data movement taking advantage of multiple storage

tiers—a decision that has so far been left upon the user on most current systems. To

enable PDC's features through HDF5 without modifying application codes, we have

developed an HDF5 VOL connector that interfaces with PDC. We present in this article

the connector interface and evaluate its performance on Cori, a Cray XC40 supercom-

puter located at the National Energy Research Scientific Computing Center (NERSC).

Our evaluation demonstrates up to an 8× improvement compared with HDF5 that has

the most recent optimizations.
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1 INTRODUCTION

The challenges for scientific applications on upcoming HPC systems, when rapidly moving toward exascale, are known from three directions:

extreme parallelism, a deepening heterogeneous memory hierarchy, and massively increasing data by volume and complexity. Current data manage-

ment and I/O technologies present severe limitations in this regard: the POSIX and MPI I/O standards that are the basis for existing I/O libraries

and parallel file systems have fundamental restrictions in the areas of scalable metadata operations, semantics-based data movement, performance

tuning, asynchronous operations, and scalable consistency of distributed operations—such that simple and efficient methods of data management

that can address these challenges are critical for running scientific applications on future HPC systems.

In particular for I/O libraries, one of the challenges to address the diverse performance characteristics of deep storage hierarchy expected in

exascale systems is the capability and efficiency of data movement across storage levels. New architectures are considered to contain multiple layers

of storage, such as NVRAM on compute nodes, SSD-based burst buffers shared by compute nodes, disk or SSD-based parallel file systems, and

tape-based archival storage. Typically, parallel file systems are unaware of multilevel storage hierarchies and require the use of external middleware

to manage the hierarchy. Traditional HPC data management and movement solutions were designed for simpler systems, which are designed to

manage each storage layer separately; similarly, scientific data models were designed for a two-tiered storage hierarchy. Another critical deficiency
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of traditional file systems is metadata management, where files are managed with a small amount of prescriptive metadata leading to a performance

bottleneck from metadata servers.

Object-based storage systems provide semantics that have the potential to reduce the complexity of storage systems, as well as to improve

performance. We have developed a user-space object-centric storage and data management system, called proactive data containers (PDC).1,2 PDC

provides scalable distributed metadata management1 and the capabilities of transparent, asynchronous, and autonomous data movement to multi-

ple storage tiers.2 PDC offers a programming interface that applications can use in order to take advantage of the data and metadata management

services. A PDC container is a container that may reside in a single storage layer (ie, memory, burst buffer, disk) or span across multiple layers. It con-

tains both the metadata and data objects. The PDC system provides an interface for creating, updating, retrieving, and deleting data objects and for

managing metadata on those objects. It moves us away from existing file-oriented methods and instead allows us to explore novel object-oriented

data management methods in an autonomous way.

HDF5 has been widely used in the context of HPC and big data as an I/O middleware capable of supporting extreme scale and complex data

structures. HDF5's virtual object layer (VOL) is a storage abstraction layer within the HDF5 library that is designed to target different storage mech-

anisms while preserving HDF5 object metadata. The VOL design allows applications to connect to different storage mechanisms transparently

without significant code modifications. Several HDF5 VOL connectors have been developed, for instance, PLFS,3 Data Elevator,4 or more recently

DAOS5—offering HDF5 applications an easy way to use data storage systems transparently with a significant I/O performance increase over POSIX

I/O.

Toward making PDC services available to legacy HDF5 applications with minimal source code changes, we implement and present in this article

an HDF5 VOL connector interface to PDC. This article and contributions that it presents address the following objectives:

1. Enabling object-oriented storage through HDF5 APIs and library.

2. Enabling implicit and asynchronous data movement through existing HDF5 APIs with minimal code modification.

3. Implementing data movement strategies using TCP and Cray GNI transports.

4. Evaluating and demonstrating an object-centric HPC storage system for scientific use cases using HDF5 APIs.

This article is organized as follows: we first discuss related work in Section 2, and then introduce the object-based PDC system in Section 3,

which enables asynchronous data movement. In Section 4, we focus on the HDF5 VOL and provide details of our PDC VOL connector imple-

mentation. In Section 5, we provide experimental results evaluating new methodologies in HDF5 utilizing I/O patterns representative of science

applications on HPC systems. We conclude our work in Section 6.

2 RELATED WORK

POSIX I/O6 is known for describing the file access API, data model, and data consistency semantics. Current parallel file systems, such as PVFS,7,8

Lustre,9 GPFS,10 and NFS11 were all designed to comply with the POSIX I/O standard. As the original POSIX I/O design was not intended for highly

concurrent programming models, which are common in HPC systems,12 that design has now become a performance bottleneck. With an increasing

number of memory storage layers and complexity of storage system interactions, the issue of I/O performance is getting imperative and significantly

hinders the overall performance of applications.13,14 Research efforts have been made to relax the POSIX semantics and alleviate the I/O bottleneck

from high-level libraries (eg, HDF5,15 netCDF,16 ADIOS17), I/O middleware (eg, MPI-IO,18 TAPIOCA19), to I/O forwarding layers.20 All of these provide

an array-based data model to organize the data and define data access semantics. However, deep memory and storage hierarchy introduced into

modern supercomputer systems further increase POSIX I/O limitations.

Object-based storage has been proposed21-24 to overcome the limitations of current parallel file systems, which has long been consid-

ered a potential solution for managing rich metadata in scalable environments. It describes an abstract data container that consists of many

byte-streams (or objects), each with related attributes. RADOS,25 Amazon S3,26 and OpenStack Swift27 have been developed for managing

data as objects and storing them in a flat namespace. DAOS28 is an object-based file system solution currently under development, which pro-

vides asynchronous data movement and manages objects in a hierarchical storage with multiple layers, whose scalability is still under evaluation

and the features are in development.5 Furthermore, efforts to implement object-based storage is attempted on individual layers separately,

that is, on disks, in NVRAM, and in memory. SSDUP29 proposed to redirect data writes to burst buffer when it detects random accesses for

potential high latency if writing to HDDs. The data in burst buffer are later flushed to HDDs when the size is over half of the burst buffer

capacity.

Data Elevator4 provides automatic caching and data movement across multiple levels of storage hierarchies. It uses shared burst buffer as a

caching layer before writing data to file system. UniviStor30 integrates hierarchical and distributed storage devices into a unified view of mem-

ory distributed on compute nodes and storage layers in heterogeneous HPC storage and achieves better performance than Data Elevator.4 Both

Data Elevator and UniviStor retain the supporting file format of the data management software that they use. Data Elevator transfers data asyn-

chronously to the final destination in the background, while UniviStor waits for the data to be written to persistent storage. Toward object-centric
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hierarchical storage system, PDC takes advantage of deep storage hierarchies and provides efficient strategies to support autonomous and

asynchronous data management by the PDC service, as well as targeting deep storage hierarchies.2

3 PDC SYSTEM ARCHITECTURE

In this section, we provide an overview of the proactive data containers system and focus on the capabilities and semantics that it provides. For full

details of the PDC system implementation, please refer to our previous publications.1,2

3.1 PDC data model and semantics

As shown in Figure 1A, PDC organizes data as a set of objects within a Container. Object is a generic term to describe byte streams in an abstract

manner. Parts of objects are described using the term Regions, where the actual data as well as the metadata associated with it is stored. Region

is the basic and fine-grained unit for data movement operations in PDC—these operations are further described in more details. In addition, all of

the previously mentioned entities include Properties, regarded as metadata, which contain the descriptive information that is set by the user, or

generated by PDC. The properties contain prescriptive metadata such as the data type and dimensions that describe an object and provenance such

as user and application information. These objects are managed by PDC services and can be placed at any level of the storage system, and hence,

containers, which consist of scientific data, are abstracted within the entire storage stack. This approach spreads the data over different locations

within a storage level, which we reference as storage locus. As shown in Figure 1B, this representation is also augmented by two types of operations:

object mapping operations between a memory buffer and an abstract PDC object and transformation operations while data are being moved from

one storage locus to the other.

We introduced the concept of object mapping in PDC in previous work.2 As opposed to explicit read and write semantics, object mapping makes

data movement operations implicit to the user by defining a memory to storage relationship with a PDC entity. Similar to POSIX mmap() semantics,

where a file can be mapped to a region of memory, PDC's mapping operations allow PDC object regions to be accessed just like an array in a program.

All the user needs to do is to create a mapping between a region within the memory of an application and a region within a global PDC object. Once

a mapping is established, data movement can occur to keep updates globally visible. However, as opposed to standard POSIX mmap() operations,

concurrent access can and is expected to occur. Therefore, PDC applications are required to use an explicit lock operation on the object before

modifying its associated memory and to release that lock when the modification is done. Unlocking a region allows the PDC system to start data

movement and to globally propagate the modified data.

Data movement and I/O in PDC is realized asynchronously. Once the data have been transferred to a storage locus, further transfers to deeper

levels of the storage hierarchy can be realized by PDC without the need for an application to wait for their completion. This capability provides

the opportunity for applications to overlap computation with I/O operations and we can also make the safe assumption that data that are written

to deeper storage tiers will always fit into that tier, memory representing the lower level, and disk representing the higher level. It is worth noting

though that application's buffers, which are mapped, can only be reused and modified once a lock is reacquired, hence when the transfer to the

Storage Locus

Container

Objects

Object
Region

(A)High-level representation of the PDC data model with container, object, and
region relationship.

Application Memory

Burst-buffer

Disk

Mapping +
Transformation

Mapping +
Transformation

(B)Containers and objects within them can be mapped to one another temporarily
or permanently, and have transformations occur during I/O.

F I G U R E 1 PDC representation. Abstracted data can reside at any level of the storage hierarchy
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first level of storage hierarchy has completed. Figure 2 illustrates that mechanism and shows the data flow after a region unlock request has been

initiated. If the region is mapped, the data will be first moved from the client's memory to the data server, and once it is safely transferred, the region

lock can be released. PDC, in the meantime though, can carry on moving that data to other storage tiers as needed.

3.2 User-space client-server model

To execute these operations and manage data, PDC uses a client-server model. Designing a client-server middleware for HPC can be a difficult

process, both in terms of ease of deployment alongside the user's application and in terms of system resource management. PDC services, though,

are designed to run in user-space as an additional service process with minimal disruption to the application. In our client–server architecture, PDC

servers are responsible for executing both metadata and data management operations. We have currently implemented two different modes for

users to deploy the PDC servers in user-space:

1. shared mode, where the server processes run on the compute nodes alongside the client processes and share CPU and memory resources, as

shown in Figure 3A;

2. dedicated mode, where all server processes are placed on dedicated nodes that are separate from the nodes where the client processes are

running, as shown in Figure 3B.

In the first case, the PDC system can take advantage of shared-memory for efficient data movement between node-local clients and servers,

while in the second case, the PDC system must make use of the native interconnect for high-speed transfers. Users can start any number of PDC

servers suitable for the application workload. In shared mode, users are expected to only reserve one core per compute node to run a PDC server

while the rest of the cores may be used to run the application processes. In dedicated mode, servers and clients are all allocated to separate

nodes, therefore the number of servers used for PDC tasks directly depends on the user workload and the number of nodes that are available on

the system.

F I G U R E 2 Data flow
through PDC on region unlock

requests

Compute Nodes

(A) Shared server modes: servers and clients are located on the same node.

Compute Nodes Dedicated Nodes

(B)Dedicated server modes: servers are on separate nodes.

F I G U R E 3 PDC service deployment modes
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F I G U R E 4 PDC within virtual object layer. All of the
HDF5 I/O related calls are routed to the corresponding VOL
connector

Application

HDF5 API

HDF5 Virtual Object Layer

...

N
at
iv
e

PD
C

MPI IO PDC Service
File

System
Storage
LocusVOL connectors

F I G U R E 5 Dataset create call within the VOL. Terminal connectors interface with
storage systems while pass-through connectors may record info on the fly and reenter the
VOL

4 CONNECTING PDC TO HDF5

We present in this section the HDF5 VOL connector interface to PDC and its use by applications through the HDF5 API.

4.1 HDF5 VOL

HDF5 is a well-established I/O middleware package, used by a large number of HPC, scientific, and industrial applications. HDF5 pro-

vides them with file portability, reliability, and performance when storing their data. By default, the HDF5 library uses its native file for-

mat when storing data and makes use of MPI-IO to perform parallel I/O, as shown in Figure 4. While this has been a good choice

for many years, it also carries on the burden of POSIX I/O semantics and limits that are inherent to the existing native file format,

which defines an HDF5 file as a file structure that is contiguously mapped to a file system. For instance, the native file format has a

well-known limitation of requiring collective creation of new HDF5 objects, such that the file metadata is ensured to be coherent between

processes.

With the emergence of file and storage systems that do not strictly comply with the POSIX I/O standard, new file formats and ways of performing

I/O can be defined with additional degrees of freedom. To provide that capability and give developers the ability to store the data in the form of

their choice—while preserving the metadata that is attached to the HDF5 objects—the HDF5 library defines a virtual object layer (VOL), which will

be released in the upcoming 1.12 version of the library. The VOL effectively allows developers to redefine the HDF5 I/O API calls (ie, related to

operations on files, groups, datasets, attributes, etc) by seamlessly rerouting them to the corresponding VOL connector backend, which can in turn

translate these calls into the operations that it desires to perform.

In the case of PDC and as shown in Figure 4, those operations translate into PDC calls, which in turn interact with the PDC runtime service and

PDC storage backends. One of the main advantages of the PDC runtime is that it transparently and automatically provides new capabilities to HDF5

such as asynchronous I/O without requiring any major code change for the application user. One of the difficulties, however, is potentially for the

VOL connector developer as the semantics that the underlying layer provides may not always be a direct match with the ones that the HDF5 VOL

requires.

Figure 5 shows how the data are accessed in the file through a VOL connector callback. The VOL intercepts all HDF5 API calls that interact

with files and reroutes those calls to the associated VOL callback for the requested API function. For example, a call to H5Dcreate() would be

implemented within the HDF5 library as Figure 5, where the connector is responsible for the actual I/O operation to the storage system. Similarly,

other operations in the HDF5 library follow the same execution pattern.

In order for an application to use an HDF5 VOL connector, one must first register the connector to HDF5 by calling the

H5VLregister_connector() function. This effectively registers and initializes the VOL connector, which if successfully initialized will return

a unique VOL connector ID. That ID can then be passed to the H5Pset_vol() routine, which notifies the file access property list of the VOL
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connector it needs to use when creating or opening the file (since different VOL connectors could be initialized and used within the same applica-

tion). For convenience, the library also defines environment variables that allow this information to be set by a user and avoids code modification to

the application. Once the VOL connector information is set, the application can carry on with regular HDF5 function use.

4.2 HDF5 PDC VOL connector implementation

Our PDC VOL connector currently only implements a subset of the HDF5 APIs and in this article we focus on file and dataset operations. HDF5

files can be easily mapped to PDC containers, while HDF5 datasets are naturally mapped to PDC objects and PDC regions are similar in essence to

HDF5 selections. File create, open, and close operations are a direct match to PDC container operations, and therefore no particular implementa-

tion challenges were faced. Dataset operations, however, differ from PDC's API as the model chosen for PDC is to make data movement implicit,

whereas HDF5 chooses to make data movement explicit by providing explicit read and write semantics. We therefore walk through the details of

our implementation in this section.

As presented in the pseudocode below, dataset create and open operations map to PDCobj_create() and PDCobj_open().

Dataset write and read operations, however, require some extra handling as PDC does not provide explicit read and write semantics. Therefore,

in these connectors callbacks, PDCbuf_obj_map() is used to first map the region in memory to the PDC object. A pair of lock() and unlock()

calls are then also used,unlock() triggering asynchronous data movement. Finally, the region is unmapped using thePDCbuf_obj_unmap() call.

Once H5Dwrite() returns after the unlock call, the data region has been transferred from the application buffer to the PDC data server, and the

second step of data movement to further storage level can be taken care of by PDC, allowing further computation to be overlapped.

Write implementation is illustrated in the pseudocode below:

Reads are implemented similarly to writes but because PDC differentiates read locks from write locks (as read locks require less constraints

than write locks), we pass the READ flag to both lock and unlock calls. This is illustrated in the pseudocode below:
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The dataset is then closed using PDCobj_close() as illustrated below:

4.3 Application usage example with the HDF5 PDC VOL

We provide a detailed example of how an application I/O kernel can be modified to support the HDF5 PDC VOL connector in Figure 6 and mark the

two extra steps of function calls that are required in order to make use of the PDC VOL connector. As previously mentioned, HDF5 also provides a

way of specifying that information through environment variables and allowing for no code changes. For an application to use the HDF5 PDC VOL

connector for reading a dataset, it simply needs to follow the write example, usingH5Dopen() instead ofH5Dcreate(), and then callH5Dread()

instead of H5Dwrite(). All of the function mapping details from HDF5 to the underlying PDC APIs are hidden by the HDF5 VOL design and are

once again transparent to the user. The underlying VOL connector internally initiates map, lock, lock release, and unmap operations to that PDC

object to trigger data movement and enables asynchronous data movement, transparently allowing for data movement to be overlapped by the

following application computation step.

As mentioned at the end of Section 4.1, the library also defines environment variables, which allow for no code modification to the application.

To enable this feature, the user only needs to set two environmental variables: HDF5_VOL_CONNECTOR and HDF5_PLUGIN_PATH, such that the

corresponding VOL can be picked up during application execution. In the case of PDC, we set environment variables as follows:

5 EXPERIMENTAL EVALUATION

We evaluate in this section the performance of the PDC VOL connector and also demonstrate the impact of the number of servers on the perfor-

mance when PDC is deployed in dedicated mode. We compare the performance of writing multiple time steps using the PDC VOL connector with

native HDF5. Finally, we compare the read performance of the PDC VOL connector with that of native HDF5.

5.1 Experiment setup

To evaluate the performance of the PDC VOL, we ran the experiments with different configurations. We installed PDC on the Cori supercomputer

at the National Energy Research Scientific Computing Center (NERSC), which is a Cray XC40 supercomputer with 1630 Intel Xeon Haswell nodes.
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F I G U R E 6 Application usage example of the PDC VOL connector. There are three lines of code (including the creation of the file access

property list) added to the original application code to use the PDC VOL.

Each node consists of 32 cores and 128 GB of memory. The supporting storage system, Lustre, has 248 object storage targets (OSTs) and is shared

by all users.

5.1.1 Deployment

We ran the experiments using both shared and dedicated deployment modes. With a shared server and client configuration (shared mode), we

have one PDC server on each node, which utilizes one core, leaving the remaining 31 cores for user application execution. In dedicated mode, the

PDC servers and user's application are on separate nodes. PDC servers in this configuration have only one server per node that provides both

metadata server and data server services. In both configuration cases, we have relied on the Mercury31 RPC library, an HPC-optimized C library for

Remote Procedure Calls, as the communication mechanism. In our experiments, we configure Mercury with two communication protocols using

the libfabric plugin32 over TCP and Cray GNI. Note that in the latter case, the PDC server is configured to make use of Cray Dynamic RDMA

Credentials (DRC)33 to allow the user's applications and PDC server to share credentials and communicate together through GNI. GNI job runs are

therefore currently a little more complex in terms of deployment. To use Cray GNI on Cori, the PDC server/service has to first acquire a credential

and wait for the client application to start. The client application then first contacts the server over TCP so that the job can be granted access and

use the DRC token. The generated DRC credential is later passed down to Mercury and used by both server and client sides for execution. Once the

communication is established, the server and client can proceed and resume their normal execution. Using GNI currently requires the server and

client to be in separate sessions but to start at the same time. This is achieved through the srun pack-group option. The job script for that run is

attached in Appendix Figures A1 to A3.

5.1.2 Applications and methodology

We used a plasma-physics application's I/O kernel, called VPIC-IO to evaluate the PDC system's performance. VPIC-IO is extracted from VPIC,34 a

code developed for simulating several plasma physics phenomena, including magnetic reconnection in space weather. In VPIC-IO, each MPI process

writes a region of 8M (8 × 220 ) particles and each particle has eight properties. Each region is represented with a 1-D array with a size of 8M on

one process. VPIC data structures use 1-D arrays for representing each property and each property is retreated as an object in our design. We



MU ET AL. 9 of 14

also evaluate the read performance by the BD-CATS I/O kernel,35 which is extracted from a parallel clustering algorithm, used for analyzing the

data produced by particle simulations. It reads data generated by VPIC or VPIC-IO using the same I/O trace as the BD-CATS implementation of the

DBSCAN algorithm. In this kernel, data related to the particles are read among all of the MPI processes in a load-balanced distribution. The original

kernels use HDF5 for performing I/O and are highly tuned using MPI-IO and Lustre optimizations.36,37 In this article, we simply reuse those I/O

kernels to make them use the PDC VOL connector instead of going through native HDF5 and MPI I/O. The total data size being accounted for goes

from 248 GB for 992 processes on 32 nodes, to 3968 GB for 15 872 processes on 512 nodes.

5.2 HDF5 write performance comparison

We compare the H5Dwrite() performance of VPIC-IO in Figure 7 using the following methodologies: HDF5 collective I/O, HDF5 independent

I/O, HDF5 Data Elevator VOL, PDC VOL in shared server mode, PDC VOL in dedicated server mode using TCP protocol and PDC VOL in dedicated

server mode using Cray GNI. The H5Dwrite() function using the PDC VOL connector involves the times to map the memory buffer to a remote

object and to lock and then release the lock on an object without waiting for data to be flushed to disk, while the native H5Dwrite() function is

issuing MPI I/O calls directly to the file system. For all the evaluations presented in this section, we run the experiments at least 10 times and report

best numbers. Since there are eight properties in VPIC-IO, the H5Dwrite() function is called eight times. The time is measured by adding an MPI

barrier before the first call and another after the last call to the H5Dwrite() function. The total write time for all the eight properties is collected

and used for evaluation in this section. The x-axis shows the number of client processes with the number of PDC servers (in brackets, in these plots

as well as in the remaining plots in this section, unless specified otherwise). The native HDF5 I/O performance (collective and independent) was

observed on Cori at our time of experiment, which could vary depending on the system software stack installed and system load.

The performance of the PDC VOL connector in shared server mode is 1.7× to 4.9× faster compared with independent native HDF5 method,

with an average of 3.3× ; is 2.9× to 4.2× faster compared with collective native HDF5 method, with an average of 3.5× ; and is 1.6× to 2.7× faster

compared with Data Elevator, with an average of 2.2× . In dedicated server mode, with additional nodes utilized as servers, the PDC VOL connector

achieves 3.1× to 6.7× better performance compared with collective HDF5 I/O, with an average of 4.7× ; achieves 3.8× to 4.8× better perfor-

mance compared with independent native HDF5, with an average of 4.4× ; and achieves 2.4× to 3.3× better performance compared with Data

Elevator, with an average of 2.8× . To further improve the performance, we evaluate the performance with Cray GNI. It allows 4.6× to 15.6× speedup

compared with collective native HDF5, with an average of 8.3× ; allows 6.1× to 7.6× speedup compared with independent native HDF5, with an

average of 6.6× ; and allows 3.7× to 5.9× speedup compared with Data Elevator, with an average of 4.8× . With native HDF5, collective or inde-

pendent, the data are written directly to the lustre file system. With Data Elevator, the data are first staged on SSD-based burst buffer, and then

asynchronously transferred to the file system in the background. With all the other three PDC VOL asynchronous methods, the data are moved

to PDC servers when H5Dwrite() returns, allowing for further data movement to the file system to be overlapped with following computation.

Figure 7 shows the actual wait time in the H5Dwrite() call for the user and not the total time for data movement down to the file system.

5.3 Varying servers in dedicated mode

In the previous experiments in dedicated mode, we had a configuration of one server per node and the number of server processes was the same as

the number of client nodes. In this section, we evaluate the impact of the number of servers on the performance of H5Dwrite(). The experiments

F I G U R E 7 H5Dwrite() performance using different
methodologies for one time step. Total data size goes from 248 GB
for 992 processes to 3968 GB for 15 872 processes. The number of

PDC servers for each configuration is equal to the number of
compute nodes, indicated in parentheses
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F I G U R E 8 H5Dwrite() performance using dedicated server
mode with varying the number of servers. Total data size is 248 GB for
992 processes

F I G U R E 9 Total time including H5Dwrite() for five time
steps and H5Dclose()

are run with 992 client processes on 32 nodes and involve varying numbers of additional nodes, from 4 to 32, for 32 servers in total. The total size of

data to be written is 248 GB. Figure 8 shows one time step of H5Dwrite() time, increasing when fewer servers are available. More servers would

naturally provide more bandwidth and achieve the best performance depending on the system resources availability, though fewer servers are still

able to provide a reasonable performance.

5.4 Multiple time steps

We mentioned in Section 5.2 that data movement is still happening after the H5Dwrite() call returns, unless the application user chooses to wait

for the data to be flushed to disk. We experimented with five successive time steps of I/O usingH5Dwrite() calls for each dataset to highlight that

behavior and show the results in Figure 9. In this case, all data will be flushed between time steps. We use the PDC VOL connector in shared server

mode for this experiment and observed 4.8× to 9.5× speedup compared with native HDF5 collective I/O, 3.8× to 8.3× speedup compared with

native HDF5-independent I/O, and 2.1× to 3.0× speedup compared with HDF5 Data Elevator VOL, with an average speedup of 7.3× , 6.6× and,

2.6× , respectively.

5.5 Total execution time for VPIC-IO

To reflect the total time consumed by the VPIC-IO application, we measured the time from the first HDF5 file create operation until file close. In this

experiment we only covered one time step for each property within VPIC-IO. The more time steps the application executes, the more performance

benefits it gains by utilizing the PDC VOL connector. Figure 10 shows the real total execution time of VPIC-IO covering just one time step. We can

see that the PDC VOL in shared server mode is 1.5× to 3.1× faster compared with native HDF5 collective I/O, 1.5× to 2.2× faster than HDF5

independent I/O, and 1.4× to 2.7× faster compared with Data Elevator. For the best case, using a PDC separate server and GNI, it achieves 1.4×
to 5.4× , 2.0× to 2.6× , and 1.0× to 1.9× performance speedup compared with HDF5 collective, independent I/O, and Data Elevator, respectively.

This time reflects when the user chooses to wait for the data to be flushed to disk and then exits from the application. If the user chooses not to wait

for the data to be flushed but lets the server handling the transfer, as shown in Figure 11, the performance becomes 2.1× to 3.8× and 1.8× to 3.2×
better compared with HDF5 collective and independent I/O methods, respectively.
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F I G U R E 10 Total elapsed time for the execution of
VPIC-IO

F I G U R E 11 Total elapsed time for the execution of
VPIC-IO if the user chooses not to wait for data to be flushed
to disk

F I G U R E 12 H5Dwrite() strong scaling performance
using native HDF5 and HDF5 PDC VOL for H5BOSS
benchmark writing 250 000 datasets from 992 processes to
15 872 processes. The number of PDC servers for each

configuration is equal to the number of compute nodes,
indicated in parentheses

5.6 HDF5 write performance with H5BOSS

In this section, we evaluated the performance of the H5BOSS benchmark,38 which writes 250 000 datasets out of 25 000 000 datasets in total.

H5BOSS enables parallel processing and searching of millions of objects in Baryon Oscillation Spectroscopic Survey (BOSS) based on a HDF5-based

python package. Compared with large file size of VPIC-IO, each of the H5BOSS I/O transaction size becomes relatively small, ranging from several

hundreds of kilobytes to a few megabytes. As shown in Figure 12, we use the PDC VOL connector in shared server mode for this experiment and

observed 1.5× to 2.0× faster (in terms of execution time) compared with native HDF5 collective I/O (native HDF5 collective I/O achieves a better

performance than independent I/O in this case), with an average of 1.8× .

5.7 HDF5 read performance comparison

BD-CATS-IO is a read I/O kernel, which reads data produced by VPIC-IO in a load balanced way. In Figure 13, we show the performance of reading a

single time step of data that were written in previous VPIC experiments, calling instead theH5Dread() function. The PDC VOL connector in shared
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F I G U R E 13 H5Dread() performance using different
methodologies for one time step. Total data size goes from
248 GB for 992 processes to 3968 GB for 15 872 processes.
The number of servers for each setup is the number in

parentheses

server mode achieves 1.3× to 1.7× better performance compared with native HDF5 collective I/O and 1.4× to 2.8× better performance compared

with native HDF5-independent I/O. The PDC VOL connector in dedicated server mode is 1.8× to 3.4× faster compared with native HDF5 collective

I/O and is 2.7× to 4.6× faster compared with native HDF5-independent I/O. With Cray GNI, the PDC VOL in dedicated server mode executed 2.1×
to 5.3× faster compared with native HDF5 collective I/O and 4.1× to 5.8× faster compared with HDF5-independent I/O. The read performance

speedup is not as large as for the write due to the fact that H5Dread() requires the data to be fetched by the PDC data server from the backend

file system and then transferred back to the application.

6 CONCLUSION AND FUTURE WORK

In this article, we presented how to take advantage of PDC through HDF5 by developing an HDF5 VOL connector, which enables implicit and asyn-

chronous data movement to different storage tiers with minimal to zero code modification, and is able to be deployed in different scenarios using

native network fabric transports such as Cray GNI on modern supercomputers. We also evaluated and demonstrated that interface at scale, which

showed a significant performance gain over native HDF5, as file system accesses are no longer issued directly by the application, but are instead

handled by the PDC service.

When mapping HDF5 to PDC, one apparent limitation of HDF5 that transpired is its current inability to provide to the application a way of

directly exposing the user's memory, as PDC is able to do through map operations. We will in future work study how that type of semantic could be

brought into HDF5, allowing users to establish a direct mapping of the application memory to the storage, which similarly to mmap() operations

can allow more efficient transfers and paging to take place and be handled by the PDC system, such that users do not have to explicitly direct of the

amount data that need to be written at a given time. This naturally requires applications to adapt their code in order to reflect this type of change

and would hence be more intrusive than the current solution presented in the article.
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APPENDIX

In Figures A1, A2, and A3, we provide sample Slurm job scripts for running the PDC VOL using Cray GNI on the Cori supercomputer at NERSC. The

first script (Figure A1) is used to launch a test application with the PDC VOL using Cray GNI. It has foursrun commands: Dynamic RDMA credentials

(DRC) server, DRC client, PDC server, and the HDF5 application. In Figure A2, we show the script (drc_server.sh) to obtain DRC server tokens

and in Figure A3, we show the script for running the client and request access to the server using TCP

F I G U R E A1 A sample Slurm job script used to launch a test application with PDC VOL connector using Cray GNI

F I G U R E A2 A sample job server script (drc_server.sh), used to obtain dynamic RDMA credentials

F I G U R E A3 A sample job client script (drc_client.sh), which is used to request access to the server


