
Tuning Object-centric Data Management Systems
for Large Scale Scientific Applications

Houjun Tang, Suren Byna, Stephen Bailey, Zarija Lukić,
Jialin Liu, Quincey Koziol, Bin Dong

Lawrence Berkeley National Laboratory

Berkeley, California 94720

{htang4, sbyna, stephenbailey, zarija, jalnliu, koziol, dbin}@lbl.gov

Abstract—Efficient management of scientific data on high-
performance computing (HPC) systems has been a challenge, as
it often requires knowledge of various hardware and software
components of the system, as well as tedious manual effort
in optimizing parallel I/O for each application. This situation
is exacerbated by the fact that storage systems on upcoming
exascale supercomputers are equipped with an unprecedented
level of complexity due to a deep storage and memory hierarchy
with heterogeneous hardware and their management software.
Simple and effective data management methods are critical for
numerous scientific applications that are storing and analyzing
massive amounts of data on HPC systems. Object-centric data
management systems (ODMS) provide an easy-to-use interface,
allow for massive scalability with relaxed consistency, and have
been gaining popularity in the HPC community. However, tuning
an ODMS to achieve its full potential on existing HPC systems
with large-scale science use cases still remains a challenging
task. In this paper, we explore and evaluate various well-
known I/O tuning techniques on a new ODMS called Proactive
Data Containers (PDC). Our experiments using real science
applications and I/O kernels demonstrate that the benefits of
these tuning methods with up to 9X I/O performance speedup
over the previous version of PDC, and 47X over a highly
optimized HDF5 implementation.

I. INTRODUCTION

Large scale scientific simulations, experiments, and obser-

vations that use HPC systems are producing and/or analyzing

data that amounts to tens of terabytes or even several petabytes,

and this volume of data is projected to increase even further

[1]. To reduce the I/O latency in accessing data from disk-

based storage systems, HPC systems are being deployed with

SSD-based storage either on each compute node or shared

among all the compute nodes, or both. Taking advantage of

these new storage architectures that contain heterogeneous

devices managed by different software layers is a challenging

and time-consuming task for users.

Numerous I/O performance tuning techniques have been

proposed for existing storage systems such as Lustre [2]

and GPFS [3] that are file-based and follow the POSIX-IO

standards. However, these techniques have to be POSIX-IO

compliant, resulting in limited performance improvements as

the number of processes performing I/O on the same file

system scale up to the millions. This is due to POSIX-IO’s

requirement of strong consistency, which is often not necessary

in HPC environments, as scientific applications rarely write to

the same part of a file by multiple processes concurrently.

Object-based storage systems such as Amazon S3 [4], and

OpenStack Swift [5] have been deployed and used by cloud

service providers, and are able to serve a large number of

clients efficiently. Several recent efforts have been proposed

to design and develop object-based storage systems for HPC

environment, such as Ceph RADOS [6] and DAOS [7],

that tackle the challenges posed by large data volume and

heterogeneous architectures.

We have recently developed the Proactive Data Containers

(PDC) [8], [9], a user-level object-centric data management

system (ODMS). PDC provides an object-centric interface to

perform efficient data management operations at the object

granularity utilizing existing HPC system’s software and hard-

ware components, which abstracts away the complexity to

manage files across multiple layers of the memory hierarchy.

We have shown that object-centric data management with PDC

achieves better performance compared to existing POSIX-

compliant I/O libraries using several benchmarks [8].

However, in using PDC for large-scale science use cases

of managing data produced by cosmology simulations and

observations, we have uncovered various challenges and per-

formance improvement opportunities that are common to

ODMS runtime systems. The three challenges we identified

in an ODMS managing data at large scale are: (1) with an

ODMS that has I/O servers co-exist with the application, and

actively manage and move data across the memory hierarchy,

I/O performance can vary significantly with different requests

and ODMS server/client configurations. (2) while data caching

and prefetching are well-known optimization technologies in

reducing data access latency of memory or storage, strategies

that can take advantage of the additional knowledge from

an ODMS have not yet been explored. (3) While ODMS

technologies can tolerate relaxed POSIX-IO consistency, new

methods that coordinate the data and metadata operations to

reduce the I/O latency have not been explored.

We present in this study our solutions to these challenges,

where we enhanced the PDC system with a runtime decision

making method to assign workloads, using object relationships

and data access patterns to guide prefetching and caching

across the memory hierarchy, and enabling asynchronous

103

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00023

communication among servers and clients to achieve high

performance with relaxed consistency. We chose to implement

these new tuning techniques in the PDC system, as its data

and the metadata management services are deployed at the

user-level, and can be easily added and enabled. Additionally,

PDC allows users to utilize various underlying storage devices,

such as SSD-based burst buffer and disk-based file systems, as

PDC’s back-end data storage in their preferred HPC systems.

In contrast, other HPC-oriented object storage systems (such

as DAOS, Ceph RADOS, etc.) require a system-wide change

to the storage architecture implementation. In summary, con-

tributions of this study are:

• A dynamic I/O aggregation method for an ODMS that

automatically assigns the I/O workload to aggregators

and/or to application clients, based on the number of

available clients, I/O aggregators, access pattern, and data

distribution in storage devices.

• A multi-level prefetching and caching strategy to utilize

all resources across the deep memory hierarchy based on

the object relationships and I/O access pattern.

• A relaxed consistency method through asynchronous op-

erations with aggregation both on clients and on ODMS

servers.

We have evaluated our optimization strategies using a large-

scale cosmology simulation, a space geometry survey dataset

with millions of objects, and two I/O kernels from a particle-

in-cell code and its analysis application. These evaluations are

performed on a Cray XC40 system located at the National

Energy Research Scientific Computing Center (NERSC). We

show that using our proposed techniques, the PDC achieves a

speedup of up to 9X compared to its previous non-optimized

version and up to 47X faster than existing POSIX-compliant

I/O library, i.e., HDF5.

In the remainder of the paper, we discuss requirements

of an ODMS in the HPC environment and challenges faced

by these systems, and present our proposed solutions and an

implementation using the PDC system. We then evaluate the

performance of our proposed optimizations and related work

before concluding the paper.

II. SCOPE OF ODMS OPTIMIZATIONS

In general, an ODMS can manage any type of data, from

small objects, such as human-readable texts, to large multi-

dimensional arrays. In this section, we describe the crucial

optimizations needed in object-centric storage for large scale

scientific applications on HPC systems. They are categorized

into data movement optimizations, metadata management op-

timizations, and those common to both data and metadata

management.

A. Data Movement Optimization

1) Optimized write with log-structured storage: Log-

structured storage [10], [11] organizes data in an append-only

manner, such that whenever there is new data that needs to

be written, instead of seeking to an offset location in the

file and to a corresponding location on the storage device,

the data is simply appended to the end. With this approach,

data is always written sequentially rather than randomly, which

would significantly improve the write performance. It has been

used by I/O libraries such as PLFS [12] and ADIOS [13] that

demonstrated performance advantages.

The log-structured approach can also be used by an ODMS,

as it offers superior performance even when writing with

millions of small-sized objects, and can be implemented on

top of existing file systems. It also makes the data immutable,

guarantees that no data is overwritten, and the current version

of an object is defined to be the most recently written. As

new versions of objects are written to the log, the previous

versions of those objects are rendered obsolete. Thus, it

requires periodic garbage collection to reclaim storage space.

However, data in log-structured format brings challenges to

efficient data read operations, especially when the data read

requests differ from the writes, resulting in a large number of

costly non-contiguous accesses.

2) Caching and prefetching in a deep memory hierarchy:
With multiple layers of memory and storage devices being

deployed in upcoming supercomputing systems, such as the

NVRAM-based burst buffer and node-local SSDs. Given the

user’s data access requests, moving data to/from the closest

layer would provide the lowest latency, but requires a proactive

management of the ODMS. Caching and prefetching are effec-

tive technologies that are widely used, and with the additional

information managed by the ODMS, more accurate decisions

can be made in a timely manner. The layered storage devices

offer an opportunity for overlapping I/O with computation.

For read operations, an ODMS can prefetch and cache data in

different layers automatically and transparently, without user’s

involvement. This improves productivity by allowing scientists

to focus on science rather than on managing data. For write

operations, applications can write data to a temporary location

on faster storage devices and have the ODMS to move the data

automatically to the longer-term storage system.

3) Fine-grained data access: As scientific data is often

stored as multi-dimensional arrays, accessing a sub-region of

an array is a common practice. This is a major contrast from

cloud computing object storage, where an object is always

accessed in its entirety. Reading a big array object for using

a small portion of data is unnecessary and costly. Moreover,

techniques such as adaptive mesh refinement (AMR), produce

large volumes of data with a hierarchical, multi-level, and

multi-resolution data structure. AMR only refines the grid in

regions where a high resolution is necessary, leaving other

parts empty on finer levels. Although it is possible to map each

AMR block or cell to an object, however, it could lead to a

drastic increase in the number of objects (millions for only one

timestep data), as well as the amount of duplicated metadata

associated with each block or cell. To provide efficient fine-

grained data access, HPC-oriented ODMS requires splitting

of an object into regions when necessary, and providing

convenient subset data access APIs in addition to the entire

object access methods. Each region is immutable and the entire

object may include or remove any regions dynamically.

104

B. Metadata Management Optimization

1) Flat namespace: Traditional file systems organize files

into hierarchies (directories and sub-directories). Each file is

accessed with its full path, which could be lengthy and often

require users to store in a manifest file or a database. On the

other hand, an ODMS removes the folder hierarchy entirely,

every object is stored in a flat namespace. Users should still

able to group similar objects, by either creating containers that

include the desired objects, or adding unique attributes to the

object metadata.

2) Searchable metadata: Parallel file systems such as Lus-

tre, GPFS, and NFS typically associate each file with pre-

defined metadata attributes, which typically contains system

information, such as user ID, timestamp, access permission,

etc. Such information, however, is rarely useful to help users

find the target data for knowledge discovery. In addition, users

have limited or no ability to modify or add additional infor-

mation to the file system metadata, leaving them to manage

their user-defined metadata in an ad-hoc manner. Although

I/O libraries such as HDF5 offer the ability to store data and

user-defined metadata within the same file container, searching

those data still requires manual work and hand optimization.

Object-centric storage systems allow attaching an extensive

amount of user-defined metadata to data objects. With meta-

data being extensible, users can add any information they de-

sire to an object, including data provenance or analysis results

in the metadata. In addition to allowing rich and extensible

metadata, object-centric storage also supports searching the

metadata. Although each object has a unique ID that can be

used for direct access, a more productive and efficient way to

interact with objects is through metadata search. Users only

need to provide a few descriptions (metadata attributes) of the

data and the object-centric storage system would automatically

retrieve the corresponding data.

C. Common Optimization to Data and Metadata Management

1) Eventual or strong consistency: To ensure high perfor-

mance, a data object in an ODMS is often “eventually consis-

tent” [5], which means a reader may not get the latest version

of an object’s data while another writer is updating, or just

completed an update. Such relaxed consistency can improve

the performance of scientific applications that produce data

and only access the data during subsequent post-processing

workflows.

In the case when the user demands a strong consistency,

locks can be used that temporarily queues the read request

until the write is finished. However, such locking mechanism

can introduce additional overhead. It is desirable to have a

system to support both consistency model and allowing the

users to select one based on their needs.

2) Asynchronous operation: Scientific data analysis of-

ten includes several phases, resulting in complex workflows

and data movement among different tasks. Supporting asyn-

chronous data movement and metadata operations would

greatly benefit the data management in these workflow sys-

tems, especially when data is expressed as objects. Asyn-

chronous operations allow various tasks of a workflow to

utilize the computing resources. For instance, with an asyn-

chronous write, a workflow engine may continue with the next

task without waiting for the write operation to complete. The

system should also be scalable with additional nodes without

performance degradation. This can be achieved with the entire

system running in user-space, and making it easy to adjust the

service processes based on the workload.

III. TUNING OBJECT-CENTRIC DATA MANAGEMENT

An ODMS hides the complexity to manage a large number

of files in different memory and storage layers from the

users. With the capability to manage both user-defined and

system collected metadata, it can proactively move the data

across the memory hierarchy with prefetching and caching,

provide scalable data and metadata operations that move be-

yond POSIX I/O semantics with a relaxed consistency model.

However, existing approaches have not yet been able to express

and utilize these optimization strategies. In this section, we

describe various data and metadata optimization methods that

we identified as suitable tuning approaches in Section II to

improve the data access efficiency of an ODMS.

A. Data Movement Optimization

As data is stored and managed as objects in an ODMS, data

access patterns can be very different from those observed in

existing parallel file systems. Small data object access is more

frequent and on a large scale.

1) Log-structured storage and I/O aggregation: As men-

tioned Section II-A1, log-structured data store provides an

efficient way to offload data from applications’ memory to

the storage system. However, reading data from log-structured

format efficiently is challenging due to a potentially large

number of non-contiguous access. For example, a dataset

generated by a dark matter survey, called BOSS (described

in detail in Section VI-A), has ≈ 2.6 million objects, each

relatively small in size (around 1MB), and is accessed through

metadata queries. These queries often result in a large number

of non-contiguous small data access, which is known to be

slow in existing disk-based storage devices. Though faster

SSD-based storage devices improve performance in these

cases, they are typically used for temporary storage. Disk-

based storage still has to be accessed either to cache data into

the SSDs or to read the data into memory.

I/O aggregation can be helpful in optimizing the read

performance with log-structured format [10]. It adds a layer

between the computing subsystem and storage subsystems

in the HPC environment that aggregates I/O requests from

many processes to fewer dedicated I/O processes. The I/O

aggregators have the opportunity to reorder and merge the

requests for faster data access. The dedicated I/O processes

may either be the user-space data movement processes (e.g.,

in [8]) or those running on dedicated I/O nodes (IBMs Blue

Gene systems).

Although I/O aggregation (sometimes referred to as “I/O

forwarding”) has been proven to be effective in traditional file

105

I/O [14], [15], [16], it has not yet been applied and evaluated

with an ODMS. Toward the application of I/O aggregation

in ODMS, we first evaluated its efficiency for different data

access patterns, by developing an I/O benchmark that performs

read operations with three types of access: 1) contiguous data

accesses, 2) non-contiguous data accesses from a small number

of storage servers, and 3) non-contiguous data access from a

large number of storage servers. For each access pattern, we

measured the I/O time by varying individual I/O request sizes

and the number of processes.

Figures 1a to 1c show the I/O time measured with the

three patterns, respectively. For the contiguous access pattern

(Figure 1a), each process reads one large chunk of data, and

fewer number of readers result in better performance for a

larger amount of data, but the performance variation with

different number of processes is insignificant as overall time is

short. Whether to enable I/O aggregation in this case requires

other considerations such as communication cost and if fast

data transfer (e.g., through shared memory) is available. On

the other hand, with the two non-contiguous access patterns

(Figures 1b and 1c), where each process reads a number of

non-contiguous 1MB chunks, the performance depends on

the number of storage servers involved. In the case where

the requested data are from only a few storage servers and

there aren’t many overlapping requests among different reader

processes, it is better to have more readers, up to a certain

extent. However, when the readers are retrieving data from

mostly same storage servers, and the number of processes is

larger (i.e., more than 4096), it results in I/O congestion and

increasing the number of readers leads to worse performance.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Case 1: Nnc < N thrs
nc ∧ Toverhead > T thrs

overhead

Case 2: Nnc > N thrs
nc ∧Ntgt < N thrs

tgt

Case 3: Nnc > N thrs
nc ∧Ntgt > N thrs

tgt ∧
(Nfwd � Ncon ∨Nclt > Ncon)

Symbol Description

Nnc Number of non-contiguous accesses.

N thrs
nc Threshold for non-contiguous access category (default: 10).

Toverhead Overhead to transfer data between I/O aggregators and clients.

T thrs
overhead Overhead threshold for inefficient data transfer.

Ntgt Number of storage servers the data objects are from.

N thrs
tgt Threshold for large number of storage servers (default: 10).

Nfwd Number of I/O aggregator processes.

Nclt Number of application (client) processes.

Ncon Number of processes that cause I/O congestion (default: 8000).

TABLE I: Rules to determine usage of I/O aggregation.

Based on these observations, we propose a rule-based

optimization strategy to decide whether to enable or disable

I/O aggregation at runtime based on the data access patterns.

We list three cases in Table 1 that we found more efficient to

disable I/O aggregation and let the clients perform I/O directly.

(a) Contiguous read.

(b) Non-contiguous read from a small number of storage devices.

(c) Non-contiguous read from a large number of storage devices.

Fig. 1: Read time of three cases with different amount of total

data (8GB to 256GB). The dotted lines of each data size are

the read time by different number of processes, ranging from

256 to 16384.

Case 1 represents a near-contiguous access pattern, where

each process reads a large chunk of contiguous data. Due

to the high efficiency in reading large chunks of contiguous

data, the data transfer overhead between the I/O aggregator

and the client will influence the decision making, i.e., when

a faster layer of memory or storage, such as shared memory,

is unavailable, then having the clients read the data directly

without the aggregation would be more efficient. Case 2

represents non-contiguous data accesses and the requested data

is stored on a few storage servers. A large number of seeks

to non-contiguous locations in storage results in high latency,

and makes the communication and data transfer overhead

insignificant. Hence, I/O aggregation will not be beneficial and

the client processes should directly perform I/O. Case 3 also

targets non-contiguous access patterns, but with the requests

go to many more storage devices. When there are only a few

I/O aggregators and not too many clients, we propose not using

I/O aggregation but use more client processes that increases

106

concurrency.

2) Multi-level data caching: Caching data in memory is an

effective method to take advantage of the temporal locality of

data access. However, an obvious drawback of caching data

is the requirement of a large amount of memory space, which

may cause out-of-memory errors for applications.

To overcome this shortcoming and utilize the deep memory

hierarchy of HPC systems efficiently, we adopt a multi-level

data caching mechanism for an ODMS. We use both the

compute node’s memory and the SSD-based burst buffer layers

as cache locations. The ODMS monitors the amount of data

cached in the memory layers and automatically transfers them

to the next fastest layer (i.e., the burst buffer) when reaching

a certain limit. The replacement strategy can use any of the

popular policies, such as LRU.

3) Semantics-aware data prefetching: Data prefetching is

a widely used technique that exploits the spatial locality of

data access. As an ODMS enables storing rich metadata and

providing scalable metadata management capabilities, there is

an opportunity to perform informed data prefetching using the

rich semantic information. Though prefetching adds overhead

as more data needs to be read from storage, it can significantly

accelerate the overall data access performance when there is

a series of data requests.

An ODMS, such as the PDC system, is able to manage the

relationships among objects, either automatically recorded by

the system, or provided by the user. For example, objects that

are from the same container have implied semantic correlation

and are likely to be accessed together or sequentially. Other

objects that were previously labeled with the same tag are also

closely related. With such information available, data can be

prefetched proactively based on the current access pattern to

reduce future data access latency.

B. Metadata Optimization

Efficient metadata operations also have a major impact on

the overall performance, we describe our tuning approaches in

the following two categories.

1) Relaxed consistency and aggregation: The task to re-

lax POSIX-IO’s strong consistency can be achieved via the

metadata management of an ODMS, as all I/O tasks must

involve the operating objects’ metadata (either retrieve or

update) and are performed asynchronously. For example, when

an application does not need to read the objects immediately

after they are persisted to the storage, as seen in many scientific

simulations, it can tolerate a delay in accessing those objects

in exchange for better performance.

With relaxed consistency allowed, metadata aggregation

becomes an effective approach to reduce the overhead. When

multiple clients are sending a large number of metadata

requests around the same time, it is desirable to aggregate

them into one bulk request and send to the metadata server.

Similar to the client-side aggregation, the metadata server can

buffer and aggregate the metadata requests, such as requests

from the same origin, and process those in bulk for better

performance.

2) Asynchronous communication: The metadata operations

in existing storage systems are generally blocking (i.e., syn-

chronous), where a client must wait for its requested oper-

ation to complete before proceeding to the next task. While

performance may be acceptable for existing file-based storage

systems, as data access are often within one or a few objects,

it is no longer a viable solution for an ODMS. With metadata

playing a much more important role in finding and locating

data objects, the metadata operations are more frequent and

often arrive in bulk. To reduce the metadata access latency

and in turn avoid the busy wait, metadata communications

can be improved with asynchronous operations. That is, each

time a metadata request is sent from the origin, a confirmation

is returned back immediately from the target metadata server.

Once the metadata server retrieves the requested metadata, it

will push the data back to the origin. In this way, multiple

metadata requests can be sent and fulfilled concurrently. Note

that this is different from the previous PDC asynchronous I/O

feature, which applies to the application’s data read and write

requests and allows it to continue execution while the I/O

operation is being performed.

IV. IMPLEMENTATION IN THE PDC SYSTEM

We have implemented the proposed optimizations in the

PDC system [8], [17], which is an object-centric data manage-

ment system we have recently developed. In PDC, we offer

object-centric APIs that allow asynchronous data movement

between memory and storage hierarchy, and provide extensible

metadata management. PDC manages data and metadata as

objects across the memory hierarchy automatically and trans-

parently. This does not require the expertise and effort from the

application developers. By using the client-server approach,

the PDC servers actively (asynchronously) move data to its

destination, without blocking the client (application) to wait

for the I/O to be completed.

PDC currently stores its persistent data in POSIX-based

parallel file systems, such as Lustre and DataWarp. Although

PDC currently uses these file systems as the backend storage,

they are not visible to users and PDC can easily switch to

an object store such as DAOS or OpenStack Swift when they

become available. Our proposed optimizations are applicable

to any ODMS as well. PDC uses the eventual consistency

model by default, and can be configured to use strong con-

sistency similar to POSIX-IO through the explicitly locking

of an object [17]. By using eventual consistency, several

performance bottlenecks are removed and makes PDC a highly

scalable framework.

A. I/O Aggregation

PDC servers are user-space processes started by the user,

before launching their application. They provide both metadata

and data management services. The data service can aggregate

requests from the clients, and perform them in batches rather

than individually. An I/O request queue is maintained in each

server process, with the requests are implemented as remote

procedure calls (RPCs). The client request is enqueued upon

107

arrival and a confirmation is sent back immediately afterward

to avoid the client to be busy waiting. The server starts

processing the requests in the queue when it has aggregated

a number of requests (can be set via a hint by the client or

after a certain amount of idle time). For read requests, the

server needs to retrieve the metadata of their storage locations

through the PDC metadata services. The server then decides

whether to use I/O aggregation based on the rule-based model

we proposed in Section III-A1. If not, it will send the storage

metadata back to the client and inform them to perform the

read operations instead.

B. Prefetching and Caching

We have implemented prefetching and caching in the PDC

system when the server detects repetitive I/O requests. This

feature is automatically enabled in PDC and is based on the

object relationships provided by the user or observed by the

PDC servers. For example, when a majority of the objects in a

PDC container have been accessed within a short time, the rest

of the objects in that container are automatically prefetched

and cached in the server.

With compile time configuration, PDC is able to utilize fast

storage layers to cache data, typically either in the memory, in

the SSD-based burst buffer, or both. In order to avoid excessive

memory consumption, users can specify the upper limit of the

memory that the PDC server processes allocate. By default,

the (upper) limit is set to be half the total amount of memory

in each compute node, so that the server process can cache

the same amount of data left available to the client processes

on the same node. The user can estimate their application’s

memory usage and set the limit accordingly, which may be

as low as zero bytes. When the size of cached data exceeds

the limit, data is cached to the next fastest storage layer such

as node-local SSDs or a shared burst buffer using the LRU

policy.

When I/O aggregation is not used and the client performs

the I/O operation, the PDC client library will automatically

create a shared memory segment and copies the data there

before sending the information to its node-local PDC server.

Upon receiving the shared memory information, the server

either keeps the data in memory or cache to the Burst Buffer.

The overhead of this operation is minimal when the involved

data size is not too large (i.e., less than 1GB). When the

involved data is too large and would exceed the available

memory, the current PDC system would instruct the clients

to perform the I/O operations directly. We are exploring and

experimenting further optimizations for this case, such as

splitting the large I/O request into smaller ones so that we

don’t need to allocate the entire shared memory space at once.

C. Metadata Optimizations

1) Asynchronous communication: Similar to the I/O request

queue in the data service, PDC server also maintains a

metadata request queue for asynchronous metadata request

processing. Each time a metadata request is sent from the

origin (can be PDC client or server), a confirmation is returned

back immediately after it is inserted. When the server finishes

the request, it will push the corresponding result back to the

origin.

2) Client-side aggregation: A set of collective APIs is pro-

vided by PDC for fast metadata retrieval. Based on the number

of participating clients and the number of target servers, PDC

clients form groups and aggregate their requests to a selected

group leader. This significantly reduces the number of requests

to the metadata server, and reduces the access latency.

V. EXPERIMENTAL SETUP

HPC System Cori (NERSC)

Storage

Main memory

SSD-based burst buffer

Hard disk drive (Lustre)

Workloads

BOSS1: query and read

NyX2: write, strong scaling,

BD-CATS-IO3: read, weak scaling

VPIC-IO3: write, weak scaling

Comparison PDC, PDC w/ optimization, HDF5

TABLE II: System configuration and workloads used for

evaluating the optimizations.

A. Platform

To demonstrate the effectiveness of our optimizations on the

PDC system, we have performed experiments using several

applications and I/O kernels with different configurations, and

compared with either HDF5, or the original version of PDC,

or both.

We evaluated the performance of the PDC system with the

new optimizations using a series of experimental configura-

tions 1 2 3 for large-scale scientific use cases that are shown

in Table II. We ran the PDC system on the “Haswell” partition

of the Cori supercomputer located at the National Energy

Research Scientific Computing Center (NERSC). Each node of

Cori Haswell partition has 32 cores and 128GB memory. Cori

is also equipped with a Lustre storage system consists of 248
Object Storage Targets (OSTs), as well as the SSD-based burst

buffer. In our experiments, the PDC servers are collocated with

the client processes, with a 1:31 client to server ratio, sharing

the computing resources of the same node.

To compare the performance, we have measured the total

I/O time observed by the application, which is the elapsed

time from the first I/O operation to the completion of the last

operation, excluding any computation time in between. We

compare the original version of PDC (referred as PDC-vanilla)

and optimized PDC (PDC-opt) with HDF5, which is a popular

I/O library used by various scientific domains. For the PDC

system, the time includes overhead such as communication

1https://github.com/valiantljk/h5boss
2https://github.com/AMReX-Astro/Nyx
3https://sdm.lbl.gov/exahdf5/ascr/software.html

108

and internal data/metadata management. For HDF5, the time

includes the file open and close times, along with the time for

moving data from memory to a file system, such as Lustre or

burst buffer (managed by Cray DataWarp, labeled as “BB”

in the plots). HDF5 applications have been compiled with

the latest development branch that has various optimizations

including avoiding truncate at file close time and collective

metadata writes4. As the storage systems of Cori are shared

by a large number of users, we ran the experiments at least

10 times and reported numbers representing the best results,

which got least interference from other HPC users.

B. Implementation of Science Use Cases
1) BOSS: The Baryon Oscillation Spectroscopic Survey

(BOSS [18]) data comes from the Sloan Digital Sky Survey

(SDSS) project 2, which maps the spatial distribution of

galaxies and quasars in the early universe. Each BOSS data

object is associated with rich metadata, and can be uniquely

identified from three: plate, mjd, and fiber. Plate is the SDSS

plug plate ID used to collect the spectrum, mjd is the modified

Julian date of the night of the observation, and fiber is the

observation’s fiber number, ranging from 1 to 1000. We have

obtained the BOSS data stored in the HDF5 format, which

has 276, 575 files [19]. To measure the performance using the

PDC system, we have converted ≈ 25 million BOSS objects

into the PDC system.
Data analysis on the BOSS data typically involves queries

based on the objects’ metadata (plate, mjd, fiber). The existing

query code developed by the BOSS management team accepts

a list of metadata inputs and copies the matched objects to a

new concatenated file [19], which requires a manifest file

containing all available BOSS data (stored in HDF5 format)

file paths to be specified as the query scope. The code can

also be run in parallel, and the list of metadata constraints are

divided among the processes.
2) NyX: NyX [20] is an adaptive mesh, massively-parallel,

cosmological simulation code that solves equations of com-

pressible hydrodynamics on an adaptive grid hierarchy cou-

pled with an N-body treatment of the dark matter. Particles

are evolved via a particle-mesh method, using Cloud-in-Cell

deposition/interpolation scheme. Nyx runs produce two types

of outputs: Checkpoints and Plotfiles. Checkpoints contain

all necessary data to restart the calculation from that time

step. Plotfiles are output at user-specified interval or for a

list of required (simulation) times; they contain data for

post-processing, visualization, and analytics as required by a

science case. Although the NyX code generates a large number

of AMR boxes during simulation, when writing to the plot file,

all AMR boxes from the same level are serialized into a 1D
array, and is written out as one big contiguous chunk in a

single shared file for best performance. Additionally, auxiliary

arrays that store the AMR box coordinates and box offsets

within the 1D array are also written to the HDF5 file.
We have implemented an alternative plot data write function

with our PDC APIs. We map each AMR level to a PDC object,

4https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse

and each AMR box from that level becomes a PDC region,

with sizes ranging from 32×32×32 to 64×64×64. Each object

and region contains the same metadata as those stored in the

HDF5 file, the metadata is stored in PDC server’s memory

and are only persisted to storage system periodically. When

fixing the simulation domain size, NyX can be regarded as a

strong scaling test.

3) BD-CATS-IO: BD-CATS-IO kernel is an I/O kernel that

represents the data read patterns of a parallel clustering pro-

gram that analyze the particle data produced by applications

such as VPIC [21]. In this kernel, each MPI process reads a

subset of the data with an evenly distributed workload, when

increasing the number of processes, it becomes a weak scaling
test.

4) VPIC-IO: The VPIC-IO kernel is an I/O kernel that

simulates the data write behavior by the VPIC [21] application.

The data is written into a single shared HDF5 file, and each

process writes 8M (8 × 220) particles. Each particle has 8

attributes and each process writes out 256MB data, and VPIC-

IO is a weak scaling test.

Both the original BD-CATS-IO and VPIC-IO kernels use

HDF5 for performing I/O and are highly tuned using MPI-

IO and Lustre optimizations [1], [22]. To demonstrate the

performance of PDC system, we have implemented the two

kernels using PDC APIs, with each attribute mapping to a

PDC object and is associated with various metadata.

VI. EVALUATION

A. BOSS

1) Single query: In this set of experiments, we measure the

performance of querying objects from whole plates (all 1000
fibers in each plate) and random fibers for only once (where

caching and prefetching are disabled). The “whole plate” query

results in more contiguous read patterns while the random

fiber query leads to a large number of non-contiguous reads.

We measure the query time and data read time for both the

HDF5 version and our tuned PDC approach. For PDC, under

our proposed current rule-based optimization, the whole plate

queries will activate the I/O aggregation and the PDC servers

read the data. For random fiber queries, the clients perform

the read operations after retrieving the storage locations from

the PDC metadata servers.

Figures 2 and 3 compare the performance between HDF5

and PDC for random fiber and whole plate queries, with the

number of objects from 2560 to over 1 million. For the “ran-

dom fiber” case in Figure 2, the original PDC would aggregate

the I/O requests and perform them on the servers, before

transferring back to the clients. Due to its non-contiguous

access pattern, the optimized PDC would inform the clients

to perform the I/O operations by themselves directly, with

improved I/O performance. For the “whole plate” case, the

optimized PDC does the same aggregation as the original

version, and its results are omitted. In both cases, the tuned

PDC offers significantly better performance than HDF5, with

the majority improvement resulting in from the advanced

109

Fig. 2: Time for “random fiber” queries of BOSS dataset with

HDF5 and PDC (aggregation disabled, PDC clients read data).

Fig. 3: Time for “whole plate” queries of BOSS dataset with

HDF5 and PDC(server aggregation enabled, PDC servers read

data).

metadata search optimizations. Overall, PDC achieves up to

2× speed up over HDF5.

2) Iterative queries: To further demonstrate the prefetching

and caching capabilities, we formulate a sequence of queries

and perform them in order and compare with the previous

version of PDC without prefetching and caching, as shown

in Fig. 4. Since we have already shown that HDF5 is much

slower than PDC even without caching in Figures 2 and 3,

we do not include the HDF5 results. Each query includes

100k objects. For the first query (Q1), we randomly select half

objects in a container, so that the prefetch can be activated and

the whole container is read and cached by the PDC server.

In each of the next queries (Q2 to Q11), we increase the

number of objects that are in the same container with previous

queries. For example, Q2 has 10% objects that are in the same

container as queried objects from Q1, Q3 includes 20% objects

from the containers in Q1 and Q2, etc. Due to prefetching

requires reading extra data, the first few queries take longer

time than the no prefetch version, however, as more data is

cached in both memory and the burst buffer, the later queries

have significant performance improvement (up to 3×) as more

data are read from the cache instead of the slower file system.

Fig. 4: Time to query and read data with and without prefetch-

ing on a sequence of queries, with varying values of container

overlap percentages.

Fig. 5: Total write time observed from the NyX application to

write 5 timesteps of AMR data each with 512GB to Lustre

using HDF5, PDC, and PDC with asynchronous metadata

optimization (PDC-opt).

B. NyX

In Fig. 5, we show the I/O time of both methods that write

5 timesteps of AMR data each with 512GB to Lustre. We

fixed the total number of application processes for HDF5 and

PDC. In PDC’s case, we use 1 CPU core per compute node

for running I/O services. PDC shows significantly better I/O

performance taking advantage of asynchronous I/O feature

that hides most of the I/O costs from the application. The

compute time is longer than I/O time for all these cases. For

PDC, the total time includes creating objects with metadata,

sending all 5 asynchronous write requests to PDC servers, and

the wait time to write last time step. Overall, PDC achieves

up to 4× I/O time speedup compared with the synchronous

HDF5 approach. We additionally compare PDC with and

without (our previous implementation) asynchronous metadata

operation optimization, adding an extra ≈ 11% performance

improvement in the PDC optimized case.

C. BD-CATS-IO

To demonstrate PDC’s caching capability, we configured

the BD-CATS-IO application to read 5 timesteps of particle

data with computation time (longer than I/O time) between

110

each timesteps. The read time observed by the application is

measured and shown in the figure.

Fig. 6: Read time for BD-CATS-IO with different configura-

tions and number of processes.

Fig. 6 compares the performance for the BD-CATS-IO

application to read 5 timesteps of particle data using HDF5

and PDC with different configurations. For PDC, we compared

the optimized PDC (PDC-opt*) with as well as the original

version (PDC). In addition, we vary the cached data percentage

when the application’s request can be partially (50%) or fully

(100%) fulfilled by PDC. It is a weak scaling test with each

process reading an equal (256MB) amount of data. We vary

the number of processes from 4 PDC servers and 124 clients

to 64 PDC servers and 1984 clients. In the best case scenario

when all requested data are in the cache, PDC can achieve

up to 47× speedup over HDF5 and 9× speedup over original

PDC.

D. VPIC-IO

Fig. 7: Time for writing 5 timesteps of VPIC data using

HDF5 (synchronous), PDC (asynchronous), and PDC-opt

(asynchronous with metadata optimizations).

We compare I/O time of the VPIC-IO kernel using HDF5

and PDC that write to both Lustre and the SSD-based Burst

Buffer as shown in Fig. 7. Similar to our previous experiments,

PDC achieves 4× speedup because of asynchronous writes.

On top of the already highly optimized PDC-vanilla with

log-structured write, the optimized PDC achieves another

10% performance improvement with data aggregation and

asynchronous metadata optimizations.

VII. RELATED WORK

Object-based storage systems [23] [6] [4][5] [7] have been

proposed to overcome the limitations of existing parallel file

systems and provide efficient and scalable I/O performance

to meet the need of the ever-increasing computing power of

high performance computers. Instead of managing data in a

hierarchical structure of directories and files, the object storage

systems view data as objects in a flat namespace, and each

object can be associated with rich metadata.

The advent of object storage systems brings many oppor-

tunities and challenges to provide more efficient and scalable

I/O performance to the upcoming exa-scale supercomputers.

Moving beyond POSIX-IO is among the most significant ones.

The POSIX-IO, as part of the POSIX standard [24], defines the

file access API, data model, and data consistency semantics.

Originally designed for the single node computing systems,

it requires strong consistency for data accesses and is often

regarded as a major limitation to scalable I/O performance

for existing parallel file systems including Lustre [2], PVFS

[25], GPFS [3], NFS [26], etc. Several research efforts, such

as RADOS [6] and DAOS [7] have focused on relaxing the

POSIX semantics and on defining new data models in these

systems. However, there are still several optimization aspects,

such as semantic-aware prefetching, multi-level caching, I/O

aggregation, etc. to be evaluated and integrated into the context

of object storage.

Additionally, these object-based storage systems have not

sufficiently addressed the challenges in metadata management.

Systems such as TagIt [27] and DART [28] do not support

asynchronous metadata operations and request aggregation,

which could be a performance bottleneck when receiving a

large number of requests. Toward an efficient and scalable

object data management system, PDC takes advantage of the

client-server architecture, the semantic information embedded

in objects, and the deep storage hierarchy.

VIII. CONCLUSIONS AND FUTURE WORK

Object-centric data management systems provide new op-

portunities and challenges toward efficient and scalable data

management for the upcoming exa-scale computing. We ex-

plored and evaluated various I/O related tuning approaches

such as asynchronous data and metadata operations, dynamic

I/O workload aggregation, semantic-aware prefetching, multi-

level caching, etc. We designed and developed these tech-

niques, and applied to the Proactive Data Containers system.

Experimental results demonstrate that these tuning techniques

are effective and have a multi-fold performance speedup

compared to the original approach.

Our future work includes new methods to intelligently move

the data between the memory layers based on dynamic data

access pattern analysis, as well as in-transit proactive data

analysis that performs the analysis closer to the data storage

location.

111

ACKNOWLEDGMENT

This work is supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231 (Project: Proactive Data Containers, Program

manager: Dr. Laura Biven). This research used resources of

the National Energy Research Scientific Computing Center,

which is a DOE Office of Science User Facility supported by

the Office of Science of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231.

REFERENCES

[1] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi et al., “Parallel
I/O, Analysis, and Visualization of a Trillion Particle Simulation,” in
Supercomputing, 2012, pp. 59:1–59:12.

[2] P. J. Braam et al., “The Lustre storage architecture,” 2004.
[3] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System

for Large Computing Clusters.” in FAST, vol. 2, 2002, pp. 231–244.
[4] Amazon. (2019) Amazon Web Services. Http://s3.amazonaws.com.
[5] J. Arnold, OpenStack Swift: Using, administering, and developing for

swift object storage. O’Reilly Media, Inc., 2014.
[6] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “RADOS: A

Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters,”
in PDSW, 2007, pp. 35–44.

[7] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“DAOS and Friends: A Proposal for an Exascale Storage System,” in
Supercomputing, 2016, pp. 50:1–50:12.

[8] H. Tang, S. Byna, F. Tessier, T. Wang, B. Dong, J. Mu, Q. Koziol,
J. Soumagne, V. Vishwanath, J. Liu et al., “Toward scalable and
asynchronous object-centric data management for hpc,” in CCGrid,
2018, pp. 113–122.

[9] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “SoMeta: Scalable
Object-centric Metadata Management for High Performance Comput-
ing,” in CLUSTER, 2017, pp. 359–369.

[10] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems
(TOCS), vol. 10, no. 1, pp. 26–52, 1992.

[11] M. I. Seltzer, K. Bostic, M. K. McKusick, C. Staelin et al., “An
implementation of a log-structured file system for unix.” in USENIX
Winter, 1993, pp. 307–326.

[12] J. Bent et al., “Plfs: a checkpoint filesystem for parallel applications,”
in Supercomputing. IEEE, 2009, pp. 1–12.

[13] Q. Liu, J. Logan, Y. Tian et al., “Hello ADIOS: the challenges and
lessons of developing leadership class I/O frameworks,” Concurrency
and Computation: Practice and Experience, vol. 26, no. 7, pp. 1453–
1473, 2014.

[14] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable i/o forwarding framework
for high-performance computing systems,” in Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on.
IEEE, 2009, pp. 1–10.

[15] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and Y. Ishikawa, “Opti-
mization techniques at the i/o forwarding layer,” in Cluster Computing
(CLUSTER), 2010 IEEE International Conference on. IEEE, 2010, pp.
312–321.

[16] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. E.
Papka, R. Ross, and K. Yoshii, “Accelerating i/o forwarding in ibm blue
gene/p systems,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, 2010, pp. 1–10.

[17] J. Mu, J. Soumagne, H. Tang, S. Byna, Q. Koziol, and R. Warren,
“A server-managed transparent object storage abstraction for hpc,” in
Cluster Computing (CLUSTER), 2018 IEEE International Conference
on, 2018.

[18] K. S. Dawson, D. J. Schlegel, C. P. Ahn, S. F. Anderson, and et al., “The
Baryon Oscillation Spectroscopic Survey of SDSS-III,” Astronomical
Journal, vol. 145, p. 10, Jan. 2013.

[19] J. Liu, D. Bard, Q. Koziol, S. Bailey et al., “Searching for millions of
objects in the boss spectroscopic survey data with h5boss,” in Scientific
Data Summit (NYSDS), 2017 New York. IEEE, 2017, pp. 1–9.

[20] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel,
“Nyx: A massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

[21] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh Performance Three-dimensional Electromagnetic Relativistic
Kinetic Plasma Simulation,” Physics of Plasmas, vol. 15, no. 5, 2008.

[22] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel I/O autotuning with performance modeling,” in HPDC, 2014,
pp. 253–256.

[23] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka, “A cost-effective,
high-bandwidth storage architecture,” in ACM SIGOPS operating sys-
tems review, vol. 32, no. 5. ACM, 1998, pp. 92–103.

[24] S. R. Walli, “The POSIX Family of Standards,” StandardView, vol. 3,
no. 1, pp. 11–17, 1995.

[25] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “PVFS: A Parallel
Virtual File System for Linux Clusters,” Linux J., 2000.

[26] S. Microsystems, “NFS: Network File System Protocol Specification,”
1989.

[27] H. Sim, Y. Kim, S. S. Vazhkudai, G. R. Vallée, S.-H. Lim, and A. R.
Butt, “Tagit: an integrated indexing and search service for file systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 5.

[28] W. Zhang, H. Tang, S. Byna, and Y. Cheng, “Dart: Distributed adaptive
radix tree for efficient affix-based keyword search on hpc systems,”
in The 27th International Conference on Parallel Architectures and
Compilation Techniques, 2018.

112

