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Abstract—Scientific experiments and observations store mas-
sive amounts of data in various scientific file formats. Metadata,
which describes the characteristics of the data, is commonly
used to sift through massive datasets in order to locate data
of interest to scientists. Several indexing data structures (such
as hash tables, trie, self-balancing search trees, sparse array,
etc.) have been developed as part of efforts to provide an
efficient method for locating target data. However, efficient
determination of an indexing data structure remains unclear in
the context of scientific data management, due to the lack of
investigation on metadata, metadata queries, and corresponding
data structures. In this study, we perform a systematic study
of the metadata search essentials in the context of scientific
data management. We study a real-world astronomy observation
dataset and explore the characteristics of the metadata in the
dataset. We also study possible metadata queries based on the
discovery of the metadata characteristics and evaluate different
data structures for various types of metadata attributes. Our
evaluation on real-world dataset suggests that trie is a suitable
data structure when prefix/suffix query is required, otherwise
hash table should be used. We conclude our study with a
summary of our findings. These findings provide a guideline and
offers insights in developing metadata indexing methodologies for
scientific applications.

Index Terms—Metadata Indexing, Metadata Search, Data
Management, HDF5

I. INTRODUCTION

Many scientific applications nowadays, including experi-

ments, observations, and simulations, tend to store the data in

self-describing data formats, such as HDF5 [1], netCDF [2],

ROOT files [3] and FITS [4]. A few recently developed self-

describing file formats including ADIOS-BP [5], Exdir [6],

SDXF [7], and ASDF [8], are also being used. In these file

formats, the metadata is stored alongside the data objects,

and the applications working with these data formats are able

to access the metadata and the dataset all at once. Such

characteristic makes these formats both self-describing and

self-contained.

As these scientific applications continuously generate enor-

mous amount of data [9]–[16], the rapid data growth imposes

significant challenges on scientific computing. One of the

critical challenges is to locate the desired data among a

massive number of data objects or data files. This process

is usually accomplished by metadata search, which aims to

find and collect data items (or their identifiers) wherein the

metadata attributes match with given query conditions [17]–

[21].

Traditionally, the database management systems (DBMS)

can be used for serving such query. Several state-of-the-art

examples can be seen from BIMM [22], EMPRESS [23], the

SPOT Suite [24], and JAMO [25], where relational databases

(e.g., SQLite [26], PostgreSQL [27]) and NoSQL databases

(e.g., MongoDB [28]) are used for maintaining the metadata

and providing metadata search functionality.

However, DBMS may not be the optimal solution of meta-

data search for self-describing data format due to the following

reasons:

• For self-describing data formats, to use database systems

to manage metadata and indexes, one needs to deploy

and maintain a database system that should always be

available. However, this requires substantial database

maintenance effort, which is often not what scientists

can offer with their domain knowledge or adds additional

complexity to system administrators’ daily jobs.

• To enable DBMS-powered metadata querying capability,

the metadata must be imported into the DBMS system,

which causes data duplication between the self-describing

data files and also the database. Furthermore, such a

solution introduces an additional need of synchronizing

the metadata between self-describing data files and the

database, which translates to additional latency and over-

head.

• Last but not the least, self-describing data formats ad-

vocate the self-describing and self-contained data man-

agement, and the metadata is already contained in the

data files along with the dataset. Employing an external

database for metadata search purpose, in fact, violates and

defeats the principle of self-describing and self-contained

data management.

Instead of using external databases, it is highly efficient

to build and manage metadata index via self-describing data

libraries for applications to search for data. In our recent

work [29], we have developed an in-memory index based

on adaptive radix tree and self-balancing search tree, which

obtained orders of magnitude faster than MongoDB in query-

ing scientific metadata. However, there has been no system-
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atic prior study in discovering which type of in-memory

indexes are the most beneficial for searching metadata in self-

describing file formats in different situations.

In order to investigate what might be the appropriate in-

dexing data structures for metadata search under different

circumstances, we first need to understand the critical aspects

of metadata search problem. In this study, we approach

this problem and develop in-depth understandings from three

essential and orthogonal components of the metadata search

problem, i.e., metadata, query, and index. We analyze them

in detail and we call them “metadata essentials”, “query

essentials” and “index essentials”. For metadata essentials, we

provide the definition of scientific metadata, and we study the

characteristics of the scientific metadata, including the volume

and the distribution of metadata, as well as the data types

of metadata attributes. Based on the essential data types of

metadata attributes, we further discuss the query essentials,

which refer to various essential types of scientific metadata

queries. These queries are typically different from DBMS

queries that were developed primarily for transaction process-

ing. In order to better understand scientific metadata queries

and the impact of different data structures on different queries,

we classify metadata queries and investigate the impact of

data structures on each type of metadata query. Together

with the metadata essentials and the query essentials, we also

discuss the index essentials. The index essentials are about the

indexing data structures and their performance metrics. We

conduct an empirical evaluation of indexing data structures

using a real-world scientific data set to observe how data

structures perform for different types of metadata queries.

The contributions of this study are as follows:

• We investigate and present understandings of scientific

metadata essentials including data types and characteris-

tics of scientific metadata.

• We introduce the essential types of metadata queries and

provide a classification of these queries.

• We investigate the essential supporting data structures for

different types of metadata queries and analyze how these

data structures perform.

• We present an empirical study performed on a real-world

scientific dataset to observe how various indexing data

structures perform. Based on our study, we conclude our

findings and suggest the desired data structures to use

under different metadata search circumstances.

The rest of the paper is organized as follows. In Section II,

we review the scientific metadata search essentials including

metadata characteristics, common querying patterns, and index

data structures. In Section III, we provide a detailed review

and analysis on the indexing data structures and particularly

the behavior and complexity of the supporting data structures.

In Section IV, we present our empirical study performed on

a real-world scientific data set from astronomy observations

and then summarize our findings regarding indexing data

structures. We conclude this study in Section V.

II. METADATA SEARCH ESSENTIALS

A. Overview

In self-describing data formats, such as HDF5 [1],

netCDF [2], ROOT [3], and FITS [4], metadata exists as

a collection of attributes, where each attribute (A = {k, v})

contains an attribute name k and an attribute value v. Based

on this representation, we formally define the metadata search

problem we aim at in this study as follows:

Given a collection of data files or data objects

C, the metadata search problem for scientific data

formats is to find a collection of data files or data

objects Csub, where a certain metadata attribute

A = {k, v} matches with the given query condition

Q = {kq, R, vq}, such that Csub ⊆ C. kq and vq are

the specified key and value in the query condition

and R is the relationship between kq and vq .

TABLE I: Queries over String Attribute Values

Query Type Sample Query
Exact Query All objects with attribute “OBJFILE” = “sdR-b2-00115171.fit”
Prefix Query All objects with attribute “OBJFILE” starting with “sdR-”
Suffix Query All objects with attribute “OBJFILE” ending with “.fit”
Infix Query All objects with attribute “OBJFILE” including “-b2-”

For better understanding on the definition of metadata

search problem, we provide sample metadata queries in Table I

and Table II.

TABLE II: Queries over Numeric Attribute Values

Query Type Sample Query
Exact Query All objects with attribute “DEREDSN2” is 8.3665
Range Query All objects with attribute “DEREDSN2” between 0.2 and 8.4

In our recent study [29], to address the above metadata

search problem, we have developed an approach of building

in-memory indices directly on top of the metadata without

using an external database. However, in order to better address

a variety of scientific metadata queries, it is highly desired

to understand the criteria for choosing appropriate indexing

data structures. Based on our definition of the metadata search

problem, we consider three orthogonal aspects of the problem -

the metadata itself, different types of queries, and the indexes.

We investigate the metadata search problem by categorizing

these aspects into “Essentials” as shown in Figure 1 and

discussed briefly below. We further discuss each aspect in the

remaining sub-sections.

1) Metadata Essentials - We study the data types and the

data characteristics of scientific metadata.

2) Query Essentials - The data type of metadata deter-

mines the types of queries over the metadata. Therefore,

we consider different types of queries for different

metadata.

3) Index Essentials - As there are different metadata

queries and different data types, when determining an in-

dex data structure, we must consider the data type of the

metadata, the query types a data structure can support,

and the performance of the data structure with regard to
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Figure 1: Three essential aspects of metadata search.

how the data characteristics of the metadata may affect

the performance of the indexing data structure.

B. Metadata Essentials

Scientific metadata provides users with descriptive informa-

tion about the underlying dataset and is therefore prevalently

used for finding required data. In self-describing data formats,

metadata can be seen as a collection of attributes. For each

attribute A = {k, v}, where k denotes the attribute names

that are typically strings, and the attribute value v can be of

various data types. The data types of these metadata attributes

have significant impact on possible types of metadata queries,

as well as a choice of indexing data structures. According to

the Digital Curation Conference (DCC) [30], the major data

types of metadata attribute values are strings and numbers.

Therefore, in this study, we focus on metadata queries where

qk is a string and qv is a string or a number.

In addition to the data types of the metadata, another

important aspect of the metadata is the data characteristics,

including the volume and the distribution of the metadata.

The volume of the metadata, such as the number of unique

attribute values of a single attribute, plays an important role

in determining indexing data structures. For example, when

the number of indexed keys is high, it is prudent to choose

the indexing data structure with lower time complexity as

well as lower space complexity. However, when the number

of indexed keys is average or small, the concern regarding

space complexity tends to be less intense. Moreover, the data

distribution of the metadata may also affect the performance

of the indexing data structure. For example, while most data

structures work well with evenly distributed data items or even

linearly distributed data items, for highly skewed data items,

the choice of indexing data structures will be based on how

well the data structure can balance off the uneven distribution.

C. Query Essentials

Metadata queries supported are dependent on the data types

of the metadata. As the major data types of attribute values

are strings and numbers, we mainly focus on two categories

of metadata queries - the queries on string attribute values and

the ones on numeric attribute values.
1) String Attribute Values: For string attribute values vs,

the task of finding the data collection is usually done by finding

a resultant exact or partial match on vs. Thus, we summarize

associated typical query types as shown below:

• Exact Query: To find a collection of data objects C where

vs of the specified attribute matches with a given string

t exactly.

• Prefix Query: To find a collection of data objects C where

the first some characters in vs of the specified attribute

match with a given string t.
• Suffix Query: To find a collection of data objects C where

the last some characters in vs of the specified attribute

match with a given string t.
• Infix Query: To find a collection of data objects C where

vs of the specified attribute contains the given string t.

Table I lists sample queries on the string attribute values.
2) Queries on Numeric Attribute Values: For numeric at-

tribute values vn, they can be either integer numbers or

floating-point numbers. For both integer and floating-point

numbers, the queries can be of the following types:

• Exact Query: To find a collection of data objects C where

the value vn of the the specified attribute A is equal to

the given number qv from the query condition.

• Range Query: To find a collection of data objects C
where the value vn of the specified attributes A is within

a given range R[qmin, qmax), where R represents a range

of real numbers with lower boundary qmin inclusive and

upper boundary qmax exclusive.

Note that the data object collection C can contain zero or

more data objects and qmin can be −∞, qmax can be +∞.

Table II lists sample queries over numeric attribute values.

D. Index Essentials

The choice of optimal indexing data structures not only

relies on the time and space complexity, but also relies on

the scenarios where data structures are used. For example, the

self-balancing search tree (SBST) can be used for indexing

numbers, while the trie (a.k.a prefix tree) is more appropriate

for indexing strings other than numbers. Therefore, functional-

ity must be the first consideration when determining indexing

data structures.

The performance of indexing data structures is another

crucial factor that needs to be taken into account. However, it

is important to note that the performance of data structures can

be influenced by the characteristics of the indexed data as well.

As such, in this study we investigate the memory footprint,

the indexing performance, and the querying performance of

different data structures with respect to the characteristics of

the indexed metadata.

III. INDEXING DATA STRUCTURES

A. Overview

From the discussion in the previous section, we understand

that, for indexing data structures, we focus only on those
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that can be used to index strings and numbers. According to

[31], there are 4 basic categories of indexing data structures,

including linear data structures, trees, hash-based structures,

and graphs. While graphs are mainly used for representing

relationships between data objects, linear data structures, trees

and hash-based structures are suitable choices for strings and

numbers.

The most prominent linear data structure is an array. Arrays

are structured as a series of elements that are placed sequen-

tially in memory where each element is identified by at least

one array index or key (usually represented by integers). For

example, elements in a 1-D sparse array are accessed via an

integer number serving as the array index. In this study, we

consider a 1-D sparse array that supports fast look-up of the

indexed elements to be the representative linear data structures

for indexing numbers.

In contrast to linear data structures, trees, by design, are

always used for the representation of hierarchical organiza-

tions. Every tree is comprised of a collection of tree nodes that

are used for storing data elements or references to data items.

Each tree starts from a root node, branches out to one or more

internal nodes, and ends at various leaf nodes. Among various

trees, the self-balancing search tree (SBST) stores the indexed

elements in a hierarchy organized by the order of the index

elements, and maintains balance among the branches in terms

of the length of the branch. SBSTs can be used for indexing

real numbers by utilizing the natural total order that exists

in the set of real numbers. Another type of tree, the prefix

tree, more commonly known as a trie, does not put the data

items on the tree nodes. Instead, it transforms the data items

into a sequence of characters, and puts them into its hierarchy

according to the lexicographic order of these characters. A

trie starts with an empty node and branches out based upon

whatever the first characters in different indexed sequences.

Tries are ideal for indexing strings that are short in the length.

In this study, we use a SBST as data structure for indexing real

numbers, while using a trie as the data structure for indexing

strings.

As another important category of the indexing data struc-

ture, hash-based data structures heavily rely on an associated

hash function to locate the indexed elements. Some hash-

based data structures, such as bloom and quotient filters,

are designed to test whether a data item belongs to a set.

Others, including the hash tree and hash trie, include trees

and take a hybrid approach. However, since the functionality

of retrieving indexed data items is so well supported in an

intuitive way, the most prominent and commonly used hash-

based data structure is still the hash table. In a hash table,

the capability for indexing numbers is similar to that of 1-D

sparse array. Therefore, we use hash table as our indexing data

structure for strings in this study.

For simplicity and coherency, we use the sample data shown

in Table III when presenting the mechanisms of various data

structures.

TABLE III: Sample Metadata Attribute Values

String Attribute Values Numeric Attribute Values
sdR-b2-00115171.fit 8.3665
sdR-r1-00119815.fit 7.72005
sdR-b2-00120324.fit 4.07625
sdR-r1-00123604.fit 2.51506
sdR-r2-00120606.fit 0.201
sdR-b2-00121908.fit 0.03108

B. Indexing Data Structures for Strings

The purpose of indexing data structures is to support various

metadata queries. As we have discussed, metadata queries for

string values can be classified into four categories - the exact

query, the prefix query, the suffix query, and the infix query.

As shown in Table IV, we examine the complexity of string-

based queries when using the aforementioned hash table and

trie as indexing data structures.

TABLE IV: Data structures for string metadata search. We use

n for the number of indexed data items, m for the number of

buckets in hash table, l for the length of the string to look up,

li for the length of infix and lavg for the average length of all

indexed strings on trie.

Query Type Hash Table Trie
Exact Query O(n/m) O(l)
Prefix Query O(n) O(l)
Suffix Query O(n) O(l)
Infix Query O(n) O(nlilavg)

1) Hash Table: A hash table [32] is comprised of m buckets

which usually can be implemented as an array of m elements.

Through the use of one or more hash functions, the data items

are mapped into different locations of the hash table. Note

that collision can occur due to limited space in the hash table

and large volumes of data items to be indexed. Two types of

collision resolution techniques are available - open addressing

and separate chaining.

The open addressing technique rehashes the conflicting

items or simply replaces them in a hash table where the

number of buckets is fixed. In contrast, the separate chaining

technique allows the total number of indexed data items to

exceed the number of buckets in the hash table by extending

collision buckets with other data structures such as linked

list or self-balancing trees. As the example demonstrated in

Figure 2, attribute value “sdR-b2-00115171.fit” and “sdR-r1-

00119815.fit” fall into the same bucket since the modulus

function yields the same result for the hash codes of these

two strings. In order to rectify this situation, they are organized

into a linked list.

0 21 3 4

sdR-b2-00115171.fit

sdR-b2-00120324.fitsdR-r1-00123604.fitsdR-r1-00119815.fit sdR-b2-00121908.fit

sdR-r2-00120606.fit

Figure 2: String metadata attribute value on hash table
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One can easily apply hash functions on strings and index

these strings using a hash table. For exact queries, hash tables

are sufficiently effective with O( n
m ) time. However, for prefix,

suffix, and infix queries, a traversal across the entire hash

table is inevitable as result of the need to perform partial

string matching against each indexed string. This forces the

worst case time complexity, O(n), for each individual query.

For example, when indexing the string values in Table III, it

would take at least 1 operation to locate a string value, but

it is necessary to go through the entire hash table in order

to collect the result matching their common prefix “sdR” or

their common suffix “.fit”, while infix search on “-001” also

requires a full scan of the entire hash table.
2) Tries: Tries [33] (a.k.a. prefix trees, Patricia trees, or

radix trees) put every character of each indexed string in the

tree nodes.
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Figure 3: String metadata attribute values on trie. We only

show the part of the trie where branching occurs.

For an exact string query with query string of length l,
there will be at most l comparisons in a trie. Thus, the time

complexity of exact query has an upper bound of O(l). As

shown in Figure 3, 19 comparisons have to be made in order

to accomplish the query against string “sdR-b2-00115171.fit”

with 19 characters.

For prefix query on a given prefix of length l, l comparisons

must be made on the l internal nodes from the root node

to leaf nodes. For example, in Figure 3, it would take 4

comparisons to find the longest common prefix “sdR-” for all

strings indexed on that trie. The time complexity for finding

the longest prefix is therefore O(l).
Similarly, in order to support suffix query, one can insert

the inverse of each string into the trie [21]. When performing

a suffix query on the trie, each given suffix can be reversed

and the reversed suffix is then used in the query condition.

Using this approach, suffix query can be addressed in O(l)
time if the given suffix is of length l. Since the inverse of all

index strings must be inserted into the trie as well, the space

consumption will be approximately doubled.

However, to find an infix of length li over n strings, the

entire trie needs to be traversed regardless of whether or not the

inverse of string has been inserted into the trie. For example,

to find infix “-r1-” on the trie in Figure 3, a string matching on

infix “-r1-” has to be made against each branch of the root node

of the trie. This causes the time complexity to be O(nlilavg)
(where lavg represents the average length of the strings on the

trie), given that the string matching between the given infix

and the indexed strings are done with the BoyerMoore string

search algorithm [34].

C. Indexing Data Structures for Real Numbers

As discussed in Section II, there are two types of queries

against the numeric values of metadata attributes - the exact

number query and the range query. As shown in Table V, we

examine the sparse array and the SBST for indexing numeric

values.

TABLE V: Data structures for numeric metadata search. We

use n for the number of indexed data items, m for the number

of elements in the sparse array, k for the number of elements

within the given range in a range query.

Query Type Sparse Array SBST
Exact Query O(n/m) O(log n)
Range Query O(k) O(n)

1) Sparse Array: The concept of a sparse array comes

from the sparse matrix [35]. One can consider a sparse array

to be a 1-D sparse matrix with only one row but multiple

columns. In a sparse array, each element is identified by an

integer number. Therefore, when indexing real numbers, the

real numbers must first be transformed into their integer format

analogs. The original real number can then be placed at the

index corresponding to its analog in the sparse array.

0 1 2 3 4 5 6 7

0.031

2.515

8

0.201 4.076 7.720 8.366

Figure 4: Sparse array on float numbers

As shown in Figure 4, floating-point numbers 0.031 and

0.201 are both assigned to the first element, identified by

integer 0, and they are connected via a linked list. When

indexing integer numbers, each integer is indexed in a single

element of the array, and each element is only used for

indexing a single integer number.

Given a sparse array, the exact query can be addressed

by locating the element with the given integer as the array

index. Such an operation can be efficiently done in O(1)
time if the indexed real numbers are all integers. For floating-

point numbers, multiple floating-point numbers may share the

same integer digit. Therefore, the time complexity for exact

queries can be up to O(n/m) for a sparse array with m
elements. For range queries, the bounding integer(s) serve

for location purposes, and k elements within the range are
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accessed. Therefore, the time complexity of a range query is

O(k).
It is noteworthy that not all elements in sparse arrays will

be filled. It usually depends on the distribution of the numeric

attribute values among all data objects. Thus, there must be

some space overhead in reserving empty elements for possible

indexed data items. For small amount of indexed data items,

the search efficiency is good. However, when the amount of

indexed data items grows sufficiently large, the space overhead

may negate the benefit provided by its search efficiency.

2) SBST: Self-balancing search trees (SBSTs) can also

be used for indexing real numbers. The natural total order

presents in the set of real numbers makes indexing them using

SBST straightforward.

7.72005

2.51506

4.07625

8.3665

0.03108

0.201

Figure 5: Floating-point numbers on red-black tree

We take a red-black tree as an example. In Figure 5,

the floating-point number 2.51506 is larger than 0.201 and

smaller than 7.72005. Due to multiple node recoloring and

node rotation steps, 2.51506 becomes the left child of root

node 7.72005 rather than the root node of the tree.

For an exact query, in the worst case the comparisons have

to be made from the root node all the way to the leaf node.

Thus, the time complexity of exact query on red-black tree

is bounded by O(log n). In fact, for any SBST, the time

complexity of exact query is O(log n).
For a range query, the average case is that, some node

traversals can be omitted based on the given range. For

example, in Figure 5, if the given range is [2, 8), then starting

traversal from the root node 7.72005 will not require visiting

node 0.03108 for comparison. However, in the worst case,

a full scan over the tree is necessary when all the nodes in

the tree are within the given range. In this case, the time

complexity for a range query is O(n).

IV. EXPERIMENTAL EVALUATION

In this section, we first give a brief overview of our

experiment setup, including the platform where we run our

experiments and the data structure implementations for our

empirical study. We then present the characteristics of datasets

in our evaluation and provide our common hypothesis for all

the selected data structures according to the characteristics we

find in the dataset. Afterwards, for the string attribute values

and the numerical attribute values, we further examine the data

characteristics and we show how the selected data structures

perform in terms of indexing latency, memory consumption,

and the latency of various queries. Finally, we provide a

brief summary on the findings we observed throughout our

evaluations.

A. Experiment Setup

We conducted our experiments on Cori, a Cray XC40

supercomputing system located at the National Energy Re-

search Scientific Computing Center (NERSC). Each of the

2,388 Haswell compute nodes contains two 16-core Intel®

Xeon™ E5-2698 v3 (Haswell) 2.3GHz processors and 128GB

memory.

We test using the four data structures shown in the “Index

Essentials” table in Figure 1, i.e., hash table, trie, SBST, and

sparse array. Our discussion in the previous sections has clar-

ified how these data structures cover the 3 major categories of

indexing methods: hash-based (hash table), tree-based (SBST

and trie), and linear (sparse array). In our experiment, we use

libhl [36] for the implementation of the selected indexing

data structures, and, particularly, we use red-black tree for an

implementation of the SBST.

B. Dataset

As our study focuses on the scenario where in-memory

index is built for self-describing data format, we consider

HDF5 as a representative of the self-describing format, since

it is widely used and also the de-facto standard of scientific

data format. We choose a real-world dataset from the Baryon

Oscillation Spectroscopic Survey (BOSS) [37], which we call

the BOSS dataset. The BOSS dataset contains 400 HDF5 files

and the size of the entire dataset is over 689 GB. Each indi-

vidual HDF5 file ranges in size from 1 to 2 GB and contains

approximately 4,800 to 23,000 data objects. The entire dataset

contains 1,590,881 data objects, which makes metadata search

necessary for identifying a specific data object. We consider

that a real science dataset, i.e., BOSS, provides us with the

authenticity in terms of its volume, its organization and form

of the metadata and its data types of the metadata. We have

explored several experimental and observational datasets from

light sources, astronomy, accelerator physics, and they show

similar characteristics to the BOSS dataset. The other end of

the spectrum are simulation datasets which have a few objects

and do not suffer from metadata search challenge, and hence

are out of our consideration.

C. On String Attribute Values

Our selected dataset features metadata attributes whose

values are strings and numbers. There are 137 attributes whose

values are strings. For indexing string attribute values, we

choose to compare the performance of hash table and trie,

as mentioned in Section III.

Since it is impossible to evaluate the performance of index-

ing data structures separately for each string attribute, we need

to select representative attributes for our evaluation. Therefore,

we select four representative string attributes based on the

characteristics of their attribute values. We then investigate the

performance of different indexing data structures with respect

to the attribute value characteristics.
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Figure 6: Length of selected string attribute values

As shown in Figure 6, we select attributes “OBJFILE”,

“DATE-OBS”,“GUIDERN” and “EXPID02” for our evalu-

ation. The attribute “OBJFILE” has the largest number of

unique attribute values at over 8,000. The “DATE-OBS” and

“GUIDERN” attributes have 2,222 and 1,261 unique attribute

values, respectively. The values of these first three attributes

all consist of 19 characters. With 29 characters, the values of

attribute “EXPID02” are the longest (29 characters), however,

there are only 398 unique attribute values for this attribute.

Therefore, the selected attributes contain representative cases

for different data characteristics as detailed below. The “OBJ-

FILE” attribute features a large amount of indexed values but

moderate value length. “DATA-OBS” and “GUIDERN” both

feature moderate amounts of indexed values with moderate

value length. Finally, EXPID02 features only a small amount

of indexed values but the length of these values is the longest.

Figure 7: Insertion performance and memory consumption on

selected string attribute values

For a single given attribute, the time necessary for inserting

all its attribute values is primarily related to the number of

times memory allocation occurs. In other words, the more

memory space a data structure takes for indexing attribute

values, the more time it spends to index them. As shown in

Figure 7, a hash table takes the smallest amount of insertion

time and space to index the attribute values of our selected

attributes (less than 35 milliseconds in time and less than

1.2 MB in memory), while a trie takes the longest (49 - 279

milliseconds in time and 39 - 215 MB in memory). This is

because each character in the indexed string results in a node

creation in a trie, while hash table indexes the string as a

whole.

Figure 8: Search performance on selected string attribute

values

After creating indexes for string attribute values of our

selected attributes, we also perform metadata queries against

the string attribute values. For our queries on string attribute

values, we test each of our selected attributes using all four

aforementioned string query types (exact, prefix, suffix, infix).

For example, for attribute “OBJFILE” and its value “sdR-

b2-00115171.fit”, we perform an exact query on “sdR-b2-

00115171.fit”, prefix query on “sdR-”, suffix query on “.fit”,

and also an infix query on “-b2-” (more examples can be seen

in Table I). As shown in Figure 8, for exact queries, the hash

table outperforms trie and offers the fastest response time (less

than 2,000 microseconds) for all 4 selected attributes, which

is slightly faster than that of the trie. This is because the exact

search on hash table takes O(1) time which is slightly lower

than the O(k) time of trie. However, when it comes to prefix

and suffix queries, the hash table is the most time-consuming

while the trie takes the least amount of time. This is a result

of the fact that the hash table requires a full scan of the target

value, using O(n) time for both prefix and suffix queries,

while the trie only needs to compare the l characters of the

prefix/suffix. The latter operation can performed in O(l) time.

When it comes to infix search, once again, the trie again takes

the longest time for all four attributes and the hash table is

relatively more efficient. The reason for this is still the same

as we have discussed for infix search on attribute names.

D. On Numeric Attribute Values
In our BOSS dataset, there are 179 numeric attributes, of

which 127 are floating-point attributes and 52 are integer
attributes. We select 4 representative attributes for the integer
attributes and also 4 representative attributes for the floating-
point attributes. We insert the attribute values of each of these
attributes into sparse array and SBST - the selected data
structures for indexing numeric values, and we show how
these data structures perform when indexing different series
of attribute values.

As shown in Figure 9, we selected “EXPOSURE”,
“COLLB”, “DUSTA”, and “TILEID” to be the four repre-
sentatives of integer attributes. The total number of distinct
values for these attributes are 2222, 1108, 830, and 394
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Figure 9: Attribute value distribution of selected integer at-

tributes

respectively. The values of different attributes tend to be
distributed within a specific range. For example, the values
of attribute “EXPOSURE” are mostly distributed within the
range between 100,000 and 135,000, all values of attribute
“COLLB” and attribute “DUSTA” are within the range of -
20,000 to 50,000 and the range of 0 to 200,000, respectively.
For attribute “TILEID”, all of its values are within the range
between 10,000 to 11,000.

Figure 10: Insertion performance and memory consumption

on selected integer attribute values

We insert the values of each attribute into the selected data
structures and report the memory consumption and insertion
time in Figure 10. In general, the sparse array requires the
largest amount of memory while consuming the smallest in-
dexing time (insert time). Orthogonally, SBST has the smallest
memory consumption and a moderate indexing time. We can
also see that for the sparse array, it would take the most amount
of time and space to index the value of “DUSTA”, the second
most for “EXPOSURE”, followed by “COLLB”, and finally
the least for “TILEID”. Sparse arrays must allocate memory
for every possible index mapping. However, application behav-
ior often maps values to only a small subset of these indexes.
As a result, large amounts of memory space are wasted. This
is particularly true for the values of “DUSTA”. The entire
value range of this attribute falls between 0 and 200,000,
but most values are within the range of 0 to 20,000, which
causes an excess of wasted memory space. However, for the
SBST, the memory consumption is directly proportional to the
actual number of indexed data items. Therefore, it consumes
less memory space. However, every node in the SBST is
individually allocated, and each node corresponds to only a
single value, indexing a large number of values can take a
significant amount of time.

Figure 11: Search performance on selected integer attribute

values

After indexing the attribute values of each attribute using
the selected data structures, we issue both exact number
queries and range queries to test the performance of these data
structures. For each selected attribute on a given data structure,
we issue 1000 exact number of queries (exact search), 1000
range queries with query range across 20 integer numbers
(range 20), 1000 range queries with query range across 40
integer numbers (range 40), and 1000 range queries with query
range across 60 integers (range 60). For each range query we
issued, the query range starts from a different value randomly
selected from the value set of the given attribute. In this case,
regardless of the range size, the 1000 range queries still covers
a large portion of the actual value range for any selected
attribute.

As shown in Figure 11, exact queries on the sparse array
spend the least amount of time while the time spent by the
SBST remains stable. For all range queries, the sparse array
outperforms the SBST in terms of search time. One subtle
detail of the range query performance on the sparse array
for attribute “TILEID” deserves mentioning. As the range
increases from 20 to 60, the query time also grows from 3 ms
to 10 ms. The reason for this is that all of attribute “TILEID”s
values are in the range between 10,000 to 11,000 while our
range queries spanned at most 60 integers. As a result, most of
the range queries collected an empty element for each integer
in the range. In contrast, the ranges of the other attributes are
not fully filled due to the skewed distribution of their values.

After investigating the performance of the selected data
structures on integer values, we also selected 4 floating-point
attributes for evaluation. As shown in Figure 12, the four at-
tributes we selected still have different number of values (8112
for “DEREDSN2”, 2576 for “AZ”, 1928 for “RMSOFF20”,
and 1804 for “ARCOFFX”). The values of “DEREDSN2”
range between 0 and 26, and the values of “AZ” range between
-100 and 300. For attributes “RMSOFF20”, the values are
floating-point numbers between 0 and 0.05, and for “AR-
COFFX”, the values are all between -0.006461 and 0.005509.

As before, we insert the values of each floating-point at-
tribute into the selected data structures. As shown in Figure 13,
overall the sparse array has the shortest insertion time and the
least memory consumption. This is because the values of the
selected attributes are all mapped into a very small integer
range. Some attributes like “RMSOFF20” and “ARCOFFX” ,
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Figure 12: Attribute value distribution of selected floating-

point attributes

Figure 13: Insertion performance and memory consumption

on selected floating-point attribute values

have their values mapped exclusively to integer 0. In this case,
the initial size of our sparse array implementation (4096) is
sufficient. Then, the SBST takes the longest insertion time
and the largest memory consumption, as its space complexity
is O(n) and allocating nodes for the indexed values will take
O(n) time.

Figure 14: Search performance on selected floating-point at-

tribute values

After indexing the selected floating-point attributes, we

continue to investigate the search performance. As reported

in Figure 14, we can see that the sparse array still offers the

shortest exact search time, while SBST takes longer. This is

because, in the sparse array, after mapping a floating-point

number into its integer form, locating the element only takes

O(1) time, but the SBST can take O(log n) time. For range

queries, all three data structures report long search times on

attribute “AZ” as compared to other attributes. We attribute this

behavior to the fact that the value range of “AZ” is the largest

and most evenly distributed among all the selected attributes.

As such, the range queries performed on ”AZ” consistently

operate on more value-filled ranges than are typically found

within other attributes. Therefore, the range queries on “AZ”

will go through more data element or nodes in the selected data

structures than on other attributes. The range queries on SBST

for “DEREDSN2” still take longer than on the sparse array

since the range query time complexity for the SBST is O(n),
but the sparse array takes constant time. Overall, the sparse

array still takes the least amount of time for range queries and

outperforms the SBST.

E. Summary
Throughout our empirical study, we evaluated a combination

of six indexing scenarios, including indexing strings and
indexing real numbers. For each scenario, we tested 3 selected
data structures. In conclusion, we summarize our findings in
Table VI.

TABLE VI: Summary of the empirical study

Query Scenarios Abundant Memory Limited Memory
Exact String Query Hash Table Hash Table

Prefix Query Trie Trie
Suffix Query Trie Trie
Infix Query Hash Table Hash Table

Exact Number Query Sparse Array SBST
Numeric Range Query Sparse Array SBST

In this table, we report our findings regarding the in-
dexing data structure best suited to optimized performance
with respect available system memory. If only exact query is
needed, it is always better to use a hash table for indexing
data structures. Whenever prefix/suffix queries are needed, we
suggest using a trie regardless of the amount of available
memory. For infix queries, a hash table remains the optimal
choice regardless of how much memory is available.

For exact queries and range queries on numeric values,
when abundant memory is available, we suggest using a sparse
array since it outperforms other indexing data structures in
terms of search time. In contrast, when utilizing a system
with a limited amount of memory, an SBST is the best choice
for saving memory while achieving the second best search
performance.

V. CONCLUSION

In this study, we investigated the essentials of metadata
search problem comprehensively. These include the metadata
essentials regarding the definition and key properties of the
metadata, the query essentials regarding the type of various
metadata queries and their formations, and also the index
essentials regarding the supporting data structures and their
performance requirements. Based on the metadata essentials
and the query essentials, we analyze the supporting data
structures with respect to how they actually work when
indexing metadata attributes and we provided an analysis of
their time and space complexity. Our empirical study based
on the real-world scientific data set provided a comprehensive
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evaluation on the selected supporting data structures, and we
analyzed the performance of each data structure as well. We
also concluded with our suggestions on which data structures
are desired for use under different circumstances, including
the cases when abundant memory is available and the case
when memory limitation is enforced. This study provided
guidelines and insights for developing advanced metadata
indexing methodologies for increasingly critical scientific data
management.
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