
Revisiting I/O Behavior in Large-Scale Storage Systems:
The Expected and the Unexpected

Tirthak Patel
Northeastern University

Suren Byna
Lawrence Berkeley National Laboratory

Glenn K. Lockwood
Lawrence Berkeley National Laboratory

Devesh Tiwari
Northeastern University

Abstract
Large-scale applications typically spend a large fraction of their
execution time performing I/O to a parallel storage system. How-
ever, with rapid progress in compute and storage system stack of
large-scale systems, it is critical to investigate and update our un-
derstanding of the I/O behavior of large-scale applications. Toward
that end, in this work, we monitor, collect and analyze a year worth
of storage system data from a large-scale production parallel stor-
age system. We perform temporal, spatial and correlative analysis
of the system and uncover surprising patterns which defy existing
assumptions and have important implications for future systems.

CCS Concepts
• Information systems→Distributed storage; • Software and
its engineering → Ultra-large-scale systems.
ACM Reference Format:
Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari. 2019.
Revisiting I/O Behavior in Large-Scale Storage Systems: The Expected and
the Unexpected. In The International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC ’19), November 17–22, 2019,
Denver, CO, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3295500.3356183

1 Introduction
Large-scale applications typically spend a significant fraction of
their execution time performing I/O (e.g., checkpointing and analy-
sis output). While the compute characteristics of large-scale HPC
applications are very well-studied, the I/O behavior of large-scale
applications does not receive the same level of attention. In the past,
some HPC facilities have attempted to address this problem by shar-
ing best operational practices [10, 11, 19, 39], analyzing I/O work-
load characteristics [30, 33–35, 52, 59], and performing controlled
experiments on a large-scale parallel storage system [36, 55, 56, 58].
However, a knowledge gap still exists in terms of understanding
the most recent trends in I/O characteristics at the back end of the
storage system and their implication for system design and oper-
ations. Bridging this gap is challenging because large-scale HPC
storage systems are complex and difficult to manage, and hence,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356183

it is hard to monitor, collect, and accurately analyze I/O data to
understand the characteristics of the system and applications - to
identify and remove the sources of inefficiency [3, 8, 41].

To address this challenge and revisit thewidely-held beliefs about
I/O behavior of large-scale applications, this study performs mea-
surement and systematic analysis of a year’s worth of I/O activity
data from National Energy Research Scientific Computing Center’s
(NERSC) HPC facility. This I/O activity data is collected during the
year 2018 for all the Object Storage Servers (OSS), Object Storage
Targets (OST), Meta Data Server (MDS), and Meta Data Target
(MDT) for the Lustre parallel storage system at NERSC shared by
Edison and Cori supercomputers. This rich data enables us to inves-
tigate patterns in time and space dimensions: fromminute to month
granularity and from one storage component in the hierarchy to all
storage components concurrently. This helps us identify subtle re-
lationships between different I/O activities and system components
over time. Overall, we make the following contributions:

⋆ We develop an analysis pipeline to examine the I/O data collected
from the shared parallel storage system at the NERSC HPC
data center. Our pipeline includes a statistical characterization
methodology to identify and analyze hidden trends in the I/O
characteristics of a large-scale parallel storage system.

⋆ We investigate temporal, spatial, and correlative behavior of
HPC I/O by analyzing different components of the storage
system (e.g., OSTs, OSSes, and MDS). Our study uncovers
surprising patterns which defy existing assumptions about HPC
I/O and have important implications for future systems [3, 41].

⋆ Our analysis reveals that HPC storage systems may no longer
be dominated by write I/O - challenging the long- and widely-
held belief that HPC workloads are write-heavy. In fact, over the
past few years, read I/O at NERSC has grown to surpass write
I/O by a margin, even after accounting for burst-buffer writes!

⋆ We confirm the conventional wisdom that HPC I/O is usually
bursty, but we show that write I/O is more bursty than read
I/O. Moreover, while HPC I/O activity does not show diurnal
patterns, write I/O shows high variance during evening
hours and weekends – identifying such periods helps prevent
scheduling of I/O-interference-sensitive jobs during these times.

⋆ Our study discovers that there is a huge load imbalance
across OSTs in terms of I/O activity even at long time-scales,
and hence, tools that perform intelligent file migration across
OSTs are highly desirable for large-scale parallel storage systems.

https://doi.org/10.1145/3295500.3356183
https://doi.org/10.1145/3295500.3356183
https://doi.org/10.1145/3295500.3356183

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

Figure 1: Cori supercomputing system overview with an SSD-
based Cray DataWarp burst-buffer and a Lustre file system [5].

⋆ Our analysis uncovers that even large-scale HPC applications
do not tend to take advantage of I/O parallelism, often using
less than 10 OSTs concurrently even during high intensity
I/O phases. This points toward the key reason for why HPC
applications often observe very small fraction of the peak I/O
bandwidth offered by large scale HPC storage systems.

⋆ We discover that the OSSes, which are typically as powerful as
the compute nodes, are often idle and have very low CPU uti-
lization. Carefully designed analytic tools can opportunistically
steal these idle cycles to perform in-situ data analysis and file
system verification tasks without interrupting I/O activities.

⋆ Our extensive temporal and spatial correlation analysis identifies
correlated storage components and I/O activities (e.g., statisti-
cal characteristics of I/O activity periods, correlation between
read and write I/O at the OST and the system level, etc.). These
findings can be leveraged for designing intelligent I/O schedul-
ing techniques that can predict and mitigate I/O contention in
HPC storage systems by coordinating the I/O intensive phases
of different applications at both, the system and the OST level.

2 Background
In this paper, we analyze the logs of a Lustre parallel file system
which is accessed by two supercomputing systems deployed at
NERSC, for the entire year of 2018. In this section, we briefly discuss
the configurations of these systems, the Lustre file system, and the
data monitoring and collection methodology.

2.1 System Architecture
The current flagship supercomputer at NERSC, named Cori, is a
Cray XC40 system with two computation partitions: the first con-
sists of energy efficient 9,688 68-core Intel Xeon Phi (Knights Land-
ing or KNL) processors and the second consists of 2,388 16-core
Intel Xeon (Haswell) processors. As shown in Fig. 1, an SSD-based
Cray DataWarp burst-buffer storage layer is available between the
compute nodes and the disk-based Lustre file system. The Lustre
file system is composed of ≈10,000 disks organized as 248 Lustre
Object Storage Targets (OST). Each OST has a corresponding Ob-
ject Storage Server (OSS) which manages the I/O requests. The file
system also has a Meta Data Server (MDS) and a Meta Data Target
(MDT) to perform I/O metadata operations. The total size of the

file system is ≈30 PB with an aggregate peak I/O bandwidth of 700
GB/s. This Lustre file system is also shared by another system, a
Cray XC30 system named Edison, which has 12-core processors on
each of its 5,586 nodes. Edison has a local Lustre file system as well,
but in this paper, we study the logs of the shared Lustre file system.

We note this study does not specifically focus on burst-buffer
I/O activities since the burst-buffer read and write activities are
still quite limited (5-15%) and the shared scratch space continues to
observe almost all the I/O traffic. However, for careful and complete
analysis, we include burst-buffer I/O activity at certain places where
our findings may have interactions with the burst-buffer activities.

2.2 Data Monitoring and Collection
The log data of Lustre is obtained by the Lustre Monitoring Tool
(LMT) [53], which is a distributed system to provide Lustre server-
side activity on various server nodes, similar to the Unix “top”
command. LMT monitors the I/O activity of the OSSes, OSTs, MDS,
and MDT and retains these data for the preceding 24 hours in a
MySQL database. A separate service queries this MySQL database
and archives the data from the previous day into an HDF5 file before
it is expired from the MySQL database. Each HDF5 file consists of
datasets which contain performance statistics such as CPU utiliza-
tion of OSSes, file operations of MDSes, and the read/write transfer
rates on the OSTs. Note that the LMT does not report the number
and size of read/write I/O requests served by the OSSes.

The logger generates one HDF5 file for every day of the year;
each file consists of 17280 entries as performance statistics are
captured every 5 seconds. Note that each entry is not expected to
accurately represent the state of the system during the previous 5-
second interval. In cases of network congestion, the User Datagram
Protocol (UDP) packets used to communicate information about
the individual LMT devices to the LMT “watcher” often get accumu-
lated in the entry when they reach the LMT watcher. This can cause
several consecutive entries to report a value of zero, followed by
an entry with large value. In order to filter out the noise generated
by this phenomenon, we use a 1-minute interval which consists of
12 entries of 5-second intervals. We found that using a 1-minute in-
terval substantially equalizes entries which are unexpectedly large
(greater than the system’s peak limit). Using a 1-minute interval
is suitable for our analysis as we focus on larger trends which are
independent of performance statistics at per-second granularity.

These monitoring data can contain corrupted or anomalous data
points. Such undesirable data points are identified via performing
simple sanity checks that verify that physical system constraints are
not violated at each sample (e.g., theoretical data transfer bandwidth
at each OST level, at the system-level, CPU utilization, etc.) We
have ensured that our analysis is not affected by such data points.
We also ensure that data points corresponding to system shutdown
periods are appropriately handled and do not bias the analysis.

Finally, we note that server-side I/O logs, by design, do not con-
tain client-side information such as application name, job id, or
user information. Therefore, it limits our study to perform correla-
tion between server-side and corresponding user-level information.
Performing such a correlation while useful is quite challenging
as it would require instrumenting the applications and then do-
ing accurate correlation between records with potentially different
time-stamps and without exact spatial information of I/O activities.

Revisiting I/O Behavior in Large-Scale Storage Systems SC ’19, November 17–22, 2019, Denver, CO, USA

Time

X

Y
Lag 0

X

Y
Lag 1

X

Y
Lag 2

Window

Figure 2: Capturing “lag" in correlation between two variables: Il-
lustration of lag and window when calculating correlation between
two random variablesX andY . “Lag" refers to the amount by which
Y is shifted in time when correlating with X and “window" refers
to the length of the considered time window (a single time window
may have one or more samples).

2.3 Statistical Methods
This study derives insights by observing trends and substantiates
these insights with statistical methods. In particular, we use the
following statistical methods to support our findings: (1) Probability
(PDF) and Cumulative (CDF) Density Function, (2) Coefficient of
Variance (CoV), and (3) Coefficient of Correlation (CC).

Probability Density Function (PDF) and Cumulative Density
Function (CDF): The PDF and CDF statistically represent the
distribution of the variable under study (e.g., amount of data read)
over a period of time. PDF is represented as a histogram and CDF is
presented as a curve. The sum of all bars in the histogram is 100%
and the ceiling of the CDF curve is 100%.

Coefficient of Variance (CoV): PDF and CDF are useful in rep-
resenting the distribution, but they do not directly quantify the
variance among the collected samples (e.g., data transferred at
1-minute granularity). While standard deviation can be used to
characterize the spread among the collected samples, it is biased by
the value of the mean. This is why we use the Coefficient of Vari-
ance (CoV) metric. CoV is the measure of the amount of variance
in the random variable distribution normalized by the mean of the
distribution. If the mean of the variable is µ and its variance is σ 2

(standard deviation is σ), then CoV (in %) = σ
µ × 100. A high CoV

value indicates high variance.

Coefficient of Correlation between different variables:While
the characteristics of individual variables can be captured by statis-
tical metrics such as mean, standard deviation, and CoV, we need
statistical methods to capture relationships between different vari-
ables. In this paper, we analyze different types of I/O activities (e.g.,
read and write), which may be correlated. Therefore, we use the
Coefficient of Correlation (CC) metric to determine if there is a
linear relationship between two random variables. For two random
variables, X and Y sampled n times with means µX and µY and
standard deviations σX and σY , respectively, the CC is defined as:∑n

i=1(Xi − µX)(Yi − µY)

σX ∗ σY

The value of CC can range between -1 and 1. A value of 1 in-
dicates high positive correlation (value of ith sample of Y in-
creases/decreases in perfect proportion to increase/decrease in

1 2 3 4 5 6 7 8 9 10 11 12
Month of the Year

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 D

a
ta

R
e
a
d
 (

P
iB

)

1 2 3 4 5 6 7 8 9 10 11 12
Month of the Year

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 D

a
ta

W
ri

tt
e
n
 (

P
iB

)

Figure 3: Total data read is 1.75× the total data written in 2018.

value of ith sample of X), a value of -1 indicates high negative
correlation (value of ith sample of Y decreases/increases in perfect
proportion to increase/decrease in value of ith sample of X), and a
value of 0 indicates no correlation.

The previous method is effective in capturing the correlation
between two variables at every time step. However, it is possible
that two variables are correlated with some lag. For example, read
activity on a particular OST at a particular instance might increase
the read activity on a nearby OST in future but not at the same
instance. We use the concept of “lag” to capture these potential
delayed correlations. The “lag” refers to the number of samples by
which the second random variable is shifted when calculating the
CC. For a lag of k , the CC of X and Y is defined as:∑n−k

i=1 (Xi − µX (1 : n − k))(Yi+k − µY (1 + k : n))
σX (1 : n − k) ∗ σY (1 + k : n)

We note that µ and σ are calculated only for the indicated sample
range. The lag helps detect if there is a temporal relationship be-
tween the two random variables, i.e., does an increase/decrease in
ith sample of X lead to an increase/decrease in the (i +k)th sample
of Y (as opposed to comparing with the ith sample of Y).

Fig. 2 provides a visual representation of the concept of “lag" and
how it can be used to detect delayed temporal correlations. The
“window" refers to the granularity of the considered time window.
For example, to observe trends over larger time-scales, read activity
can be accumulated at a 5-minute granularity, even though the
samples are collected every minute, and then correlated with write
activity at a 5-minute granularity. If the “window" is 5 minutes, and
the variables are highly correlated with a lag of two, this implies
the correlation is lagging by two windows (i.e., 10 minutes).

Auto-correlation:When a random variable X is correlated with
itself (i.e. Y = X), it is referred to as autocorrelation. Autocorre-
lation helps detect temporal relationship of the random variable
with itself i.e., does an increase/decrease in ith sample of X lead
to an increase/decrease in the (i + k)th sample of X . Note that
autocorrelation of a random variable with a lag of 0 is always 1.

3 Overall System-Level I/O Behavior
In this section, we study the I/O behavior at the system-level by an-
alyzing the trends in read and write I/O. First, we compare the total
amount of data transferred for read and write I/O activities. Then,
we compare the rate of data transfer of read and write activities.

Total Amount of Data Transferred: Our analysis reveals that
read activity is significantly higher than write activity on the large-
scale storage system under study (Fig. 3). In one full year, more
than 400 PiB of data is read, while the amount of data written is
less than 230 PiB. Cumulative read activity is 1.75× the cumulative
write activity. We note that this trend is consistent across the whole

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

0 500 1000 1500 2000 2500
Data Transfer Rate (GiB/min)

0

20

40

60

80

100
C

D
F

(%
)

Read CDF

Write CDF

Read Mean

Write Mean

Figure 4: Read and write data transfer rates vary significantly.

period and is not an artifact of dramatic rise in read activity during
a short period of time.

Traditionally HPC storage systems are designed and built for
write-intensive activity (such as checkpoint and analysis out-
put) [38, 39]. Recently published papers have shown that HPC
systems are mostly dominated by write-intensive workloads. Even
though read activity can be substantial, it is still lower com-
pared to write activity (less than 45%) [4, 19, 23, 38, 58]. Darshan-
tool based I/O monitoring and characterization had revealed that
some Darshan-instrumented applications can be significantly read-
intensive [10], but previous works have not shown that at the
aggregate-level, read activity is likely be to be higher than the write
activity by such a significant factor (1.75×). In 2014, the average read
and write volumes on Edison (NERSC’s then largest supercomputer)
were 139 TB/day and 303 TB/day, respectively [4]. The write volume
was over 2× the read volume then. In comparison, we have shown
that average read and write volumes in 2018 (at Cori and Edison)
were 1200 TB/day (8.5× increase since 2014) and 685 TB/day (only
2.3× increase since 2014), respectively. In this context, our finding is
critical for future storage system design as it shows that HPC work-
loads are no longer dominated by write activity; in fact, read activity
is significantly higher than write activity, at least for this particular
large-scale HPC storage system.

Data Transfer Rate: In Fig. 4, we show the CDF of data transfer
rate per minute for both read and write activities. Note that the data
transfer rate is reported as GiB/minute instead of the traditional
GiB/second metric because our sample granularity is 1 minute.
Hence, this result is not termed as read/write bandwidth, but instead
referred as data transfer rate, although the data transfer rate may
indeed be impacted by the observed I/O bandwidth from the system.

We first observe that the average amount of data transferred
during read activity is higher than the write activity (853GiB/min
vs. 487GiB/min). This is consistent with our previous observation
(Fig. 3), where the read activity is indeed 1.75× the write activity.
As noted by other studies [4, 35], the absolute data transfer rate for
this system also appears to be well below the peak I/O bandwidth
(700GB/second). One may argue that this observation is a side-effect
of having burst-buffers in the storage hierarchy which arrest most of
the writes and perhaps, not all writes are drained to the scratch space.
However, we found that this is not the case for the current NERSC
system. Over the full year 2018, the burst-buffers observed less
than 30 PiB read data and less than 40 PiB write data overall. Even
when the read and write traffic to the burst-buffer is considered in
the calculation, the overall read activity still remains significantly
higher than the write activity (≈1.9×).

Second, the difference in distribution shape between read and
write activities shows that the writes have more variance. While
more than 75% of write samples have data transfer rates less than
487GiB/min, the rest have much higher data transfer rates, which

0 5 10 15 20
0

10

20

30

40

50

60

70

M
e
a
n
 D

a
ta

 R
e
a
d
 (

T
iB

)

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

C
o
V

 o
f

D
a
ta

 R
e
a
d

0 5 10 15 20
Hour of the Day

0

10

20

30

40

50

60

70

M
e
a
n
 D

a
ta

 W
ri

tt
e
n
 (

T
iB

)

0 5 10 15 20
Hour of the Day

0.0

0.5

1.0

1.5

2.0

C
o
V

 o
f

D
a
ta

 W
ri

tt
e
n

Figure 5: Hour-of-the-day behavior of reads and writes.

Mon Tue Wed Thu Fri Sat Sun
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e
a
n
 D

a
ta

 R
e
a
d
 (

P
iB

)

Mon Tue Wed Thu Fri Sat Sun
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
V

 o
f

D
a
ta

 R
e
a
d

Mon Tue Wed Thu Fri Sat Sun
Day of the Week

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e
a
n
 D

a
ta

 W
ri

tt
e
n
 (

P
iB

)

Mon Tue Wed Thu Fri Sat Sun
Day of the Week

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
V

 o
f

D
a
ta

 W
ri

tt
e
n

Figure 6: Day-of-the-week behavior of reads and writes.

causes the high variation. To substantiate this further, we calculated
the CoV. The normalized variation of write activity is indeed higher.
The read activity CoV is 172% while write activity CoV is 245%;
there is a 73% point difference. In other words, most of the time,
the write activity is quite low compared to read activity; however,
rest of the time, the write activity is uncharacteristically high –
potentially exhibiting a bursty behavior. Prior works have shown
that HPC I/O workloads are bursty [19, 28, 29, 39], our analysis
confirms this and provide new evidence that writes have much
higher variance and “burstiness” than reads.

Observation: Production HPC storage systems may no longer be
dominated by write-intensive workloads. Surprisingly, read I/O ac-
tivity is approx. 1.75× the write I/O activity. While both read and
write I/O activity on parallel HPC storage systems continue to be
bursty [28, 39], our new evidence suggests that writes have much
higher variance and burstiness than reads.

4 Temporal I/O Characteristics
Next, we characterize and analyze the temporal behavior of I/O
activity at the system level. First, we characterize the I/O behavior
at the hour-of-day and day-of-week granularity to discover diurnal
and other related I/O patterns. Then, we classify the I/O activity in
terms of intensity and quantify the I/O characteristics during I/O
periods of different intensity.

The left column in Fig. 5 shows the mean amount of data read
and written for each hour-of-the-day (accumulated over the entire
year). We observe that both read and write activity are fairly evenly

Revisiting I/O Behavior in Large-Scale Storage Systems SC ’19, November 17–22, 2019, Denver, CO, USA

0 5 10 15 20 25 30 35 40
Length of High Read Phase (min)

0
10
20
30
40
50
60

P
D

F
(%

)

0 5 10 15 20 25 30 35 40
Inter-Arrival Time of High Read Phase (min)

0

4

8

12

16

P
D

F
(%

)

(a) High Read Activity

0 5 10 15 20 25 30 35 40
Length of High Write Phase (min)

0
10
20
30
40
50
60

P
D

F
(%

)

0 5 10 15 20 25 30 35 40
Inter-Arrival Time of High Write Phase (min)

0

4

8

12

16

P
D

F
(%

)

(b) High Write Activity (c) Statistics of High I/O Phases

Figure 7: Characteristics of high read and write I/O phases. An I/O phase is considered to have “high” intensity if it falls in the top 25% of all
I/O activity during the year. High read phases last longer than high write phases, and are less frequent than high write phases.

0 5 10 15 20 25 30 35 40
Length of Low Read Phase (min)

0
10
20
30
40
50

P
D

F
(%

)

0 5 10 15 20 25 30 35 40
Inter-Arrival Time of Low Read Phase (min)

0

4

8

12

16

P
D

F
(%

)

(a) Low Read Phases

0 5 10 15 20 25 30 35 40
Length of Low Write Phase (min)

0
10
20
30
40
50

P
D

F
(%

)

0 5 10 15 20 25 30 35 40
Inter-Arrival Time of Low Write Phase (min)

0

4

8

12

16

P
D

F
(%

)

(b) Low Write Phases (c) Statistics of Low I/O Phases

Figure 8: Characteristics of low read and write I/O phases. An I/O phase is considered to have “low” intensity if it falls in the bottom 25% of
all I/O activity during the year. Low read phases last longer than low write phases, but are less frequent than low write phases.

distributed over all hours-of-the-day and there are no significant
diurnal patterns. This is in contrast to a previous work which has
noted that read and write I/O activities change considerably during
the day [23]. However, leadership-scale HPC systems like Cori and
Edison have high resource utilization at all times and hence, are
not likely to show idle periods. The only exception is the spike at
2am in both read and write activities due to system jobs that run in
the background at night-time every day.

While the cumulative data written and read do not show diurnal
patterns, interestingly, the variability in write I/O activity does.
The right column in Fig. 5 shows that the CoV is roughly the same
for read activity over hours-of-the-day, but the CoV for the write
activity is much higher during the evening hours. This indicates that
although the total amount of data written during evening hours is
the same as the morning hours, the variability is much higher (e.g.,
some evenings might observe much lower write I/O than others).

Day-of-the-week characteristics (Fig. 6) reveal that both read and
write I/O activities are roughly consistent across days. This behavior
is expected since HPC systems have more than 90% utilization most
of the time and are not idle during the weekends. However, we
note that the variability in the total amount of data written is much
higher on Sundays compared to other days of the week.

Observation:While, average I/O activity does not have diurnal or
weekly patterns, write activity is much more variable during evening
hours and on Sundays. Therefore, interference-sensitive, QoS-aware

and reproducibility-aware jobs [22, 37] should not be scheduled
during evening hours and on weekends when the variability is higher.

Now, we investigate the temporal characteristics of I/O by an-
alyzing the I/O behavior at finer time granularity. To study this
systematically, we classify the I/O activity in terms of intensity
and quantify the I/O characteristics during I/O periods of differ-
ent intensities. We analyze the behavior of system I/O activity at
1-minute granularity and differentiate between when the intensity
of the system I/O activity is “high" and “low". We categorize sam-
ples which fall in the third quartile (75th percentile and above) as
high I/O activity and samples which are in the first quartile (below
25th percentile) as low I/O activity. We focus on only these two
extreme periods because they are most interesting ones in terms of
job scheduling, contention mitigation, and provisioning decisions.
Fig. 7 and Fig. 8 show the I/O behavior during high and low I/O
activity phases, respectively. Each figure shows the behavior for
both types of I/O. We focus on two characteristics: (1) mean length
of the high and low I/O phases, and (2) time between two such
phases (i.e., inter-arrival time between two I/O phases of the same
type). We make several interesting observations from these plots.

High intensity I/O activity phase: First, we observe that the
mean length of high read I/O phase is 50% longer than the mean
length of highwrite I/O phase (6.62minutes vs. 4.38minutes) (Fig. 7).
This indicates that when the system goes in the high read I/O phase,
it stays in that phase longer than when it enters the high write I/O

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(a) Read I/O Autocorrelation

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(b) Write I/O Autocorrelation

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(c) Read and Write I/O Correlation

Figure 9: At the aggregate system level, reads and writes exhibit a high degree of auto-correlation with 5 and 25 minute time windows, but
not at very short (1 minute) time windows. Reads and writes are only weakly correlated to each other within the same minute of each other
and much weakly correlated at longer time windows.

phase. The mean inter-arrival time of high read I/O phase is also
about 50% longer than the mean inter-arrival time of high write
I/O phase (26.46 minutes vs. 17.55 minutes).

Comparing mean inter-arrival time and mean length of high
I/O activity phase shows that, interestingly, writes are more bursty
than reads. Write activity tends to enter the high activity phase
more frequently but when write activity enters the high activity
phase, it stays in that phase for a shorter time. This is in agreement
with our observation in Sec. 3 about writes having larger variation
in data transfer rates and being more bursty.

Low intensity I/O activity phase: Fig. 8 shows that the mean
length of low I/O activity phase for reads is longer than writes –
which resembles our observation for the high I/O activity phase
(Fig. 7). Similarly, the mean inter-arrival time of low read I/O phase
is higher than the mean inter-arrival time of low write I/O phase.
These two findings, when combined, indicate that the write activity
enters the low activity phase more frequently, but stays in that phase
for shorter time compared to read activity.

Next, comparing Fig. 7 and Fig. 8, we find that (1) the mean
inter-arrival time of low (read and write) I/O phase is higher than
the mean inter-arrival time of high (read and write) I/O phase, and
therefore (2) the mean length of low (read and write) I/O phase
is typically more than the mean length of high (read and write)
I/O phase. This implies that the system goes in the high I/O activ-
ity phase more often and stays in that phase for shorter times as
compared to the low I/O activity phase.

Observation: The system enters the high I/O activity phase more
often than the low I/O activity phase. But, the system stays in the low
I/O activity phase for longer duration than the high I/O activity phase.
In other words, the system is less likely to enter dull phase, but when
it does, it stays in that phase for longer duration. The distribution and
characteristics of these phases can guide intelligent interference-aware
scheduling of “data movement” to/from the scratch file system and
job scheduling in a multi-tier storage system [21, 46, 49].

5 Correlation Between Read and Write I/O
Activity at the System Level

As shown in Fig. 7, periods of high intensity I/O can last up to
multiple minutes. This naturally leads us to investigate if read and
write activities have predictability in the short-term. For example,
if one observes read activity for a few minutes, can it be used
as a predictor to indicate that read activity will last for the next
several minutes. This can be quantified by answering the following
question: “is the read activity auto-correlated with itself?". Therefore,

we perform three tests: (1) read I/O auto-correlation, (2) write I/O
auto-correlation, and (3) correlation between reads and writes.

As discussed earlier, to perform correlation analysis, we use the
concepts of window and lag. A window refers to the time period
during which an activity is observed and lag is used to capture
correlation between two variables that might be correlated with
some lag. By definition, a variable is perfectly auto-correlated with
itself at zero lag (i.e., coefficient of correlation (CC) is equal to 1.0).
If two variables are correlated but with some lag (say, 20 minutes),
then the CC will be high at lag = 4, if the chosen window length is
equal to 5 minutes. Alternatively, coefficient of correlation will be
high at lag = 2, if the chosen window length is equal to 10 minutes.

We make several interesting observations from Fig. 9. First,
Fig. 9(a) and (b) show that read and write I/O are not highly auto-
correlated at the system level when the timewindow is 1minute, but
the auto-correlation is significantly high when the time-window is
5 minutes or more. In other words, simply observing read/write ac-
tivity at 1-minute granularity is not a good indicator of subsequent
read/write activity over next several minutes. However, read/write
activity at a longer time period granularity (5 minutes or more) is
a good indicator, that is the system is likely to see similar activity
trends of the same type (read/write) over the next 30 minutes or
longer. This finding can be further reasoned by observing the PDF
of length of high and low I/O activity phases in Fig. 7 and Fig. 8.
Length of most of high/low I/O activities phases are often only 1 or
2 minutes long. Therefore, only observing the I/O activity for a few
minutes alone cannot act as a good predictor for future activities.

Next, Fig. 9(c) reveals a new insight: read and write I/O are very
weakly correlated with each other for all time windows and lag
units. That is, if the system is observing the read activity during
a certain period, then, it cannot act as a good indicator for write
activity in the same or subsequent windows. Note that individual
applications can have this behavior where reads and writes are
temporally interdependent, but at system-scale, read and write
activities cannot be used to predict the behavior of one another.

Observation: Observing read or write activities at the system-level
at a very small time window is not useful for predicting storage system
load/contention in the near future, but observing the I/O activity at
the system-level for longer time windows (5 minutes or more) can
act as an effective predictor for storage load/contention. This can be
exploited for coordinating the schedule of I/O intensive phases from
different applications; a system-level service that advises applications
on scheduling I/O based on probing/coordination (such as [17, 18, 45])
should consider 5 minutes or longer for history to make decisions

Revisiting I/O Behavior in Large-Scale Storage Systems SC ’19, November 17–22, 2019, Denver, CO, USA

0 50 100 150 200
0.5
1.0
1.5
2.0
2.5
3.0
3.5

D
a
ta

 T
ra

n
sf

e
rr

e
d

P
e
r

O
S
T
 (

P
iB

)

OSTs Sorted by Amount of Read Activity

Reads Writes

0 50 100 150 200
OST Id

0.5
1.0
1.5
2.0
2.5
3.0
3.5

D
a
ta

 T
ra

n
sf

e
rr

e
d

P
e
r

O
S
T
 (

P
iB

)

OSTs Sorted by Amount of Write Activity

Reads Writes

Figure 10: Load imbalance across OSTs: the total amount of data
read and written per OST during the year is 1.67 PiB and 0.95 PiB
on average, respectively. The amount of data read by an OST is not
proportional to the amount of data written to it.

instead of traditional shorter time windows. However, read and write
activities cannot act as a good predictor of future load for each other.
That is, the system may be observing high read activity during a cer-
tain period, but, it cannot act as a good indicator for high anticipated
write activity in the same or subsequent windows (and vice versa).

6 Spatial I/O Characteristics
In Sec. 4, we characterized and analyzed the temporal I/O behavior
of the storage system. Now, we investigate the spatial I/O char-
acteristics. In particular, we seek answers to the following three
questions: (1)What is the distribution of total amount of data written
and read across all OSTs? (2) What is the parallelism during read
and write activity phases? (3) Are read and write I/O correlated at the
OST-level (i.e., given a time window, can current read or write activity
on a given OST be a good indicator for future I/O on the same OST)?

Load imbalance across OSTs: In Fig. 10, we show the total
amount of data read (top) and written (bottom) per OST, sorted by
the amount of I/O activity. This result reveals the following inter-
esting trends: (1) There is much higher imbalance across OSTs in
terms of data read than data written. The most read-intensive OST
transferred over 2.5× more data than the least read-intensive OST.
On the other hand, this difference is relatively less but significant
for writes too (up to 15%). (2) Interestingly, the OSTs which are read
intensively are not necessarily written intensively, and vice versa.

These findings have important implications for load-balancing
I/O workload across OSTs. Note that existing MDS dispatcher
capacity-balances files across OSTs. However, there is no direct
support for distributing files in a manner which makes sure that
each OST is load-balanced in terms of the number of I/O requests or
the amount of data transferred. We also note that a write-intensive
OST does not necessarily experience high amount of data read
traffic and vice-versa. Therefore, load imbalance distribution across
one type of I/O cannot inform us about the load imbalance distribu-
tion across the other type. Additionally, previous works have found
that load imbalance across OSTs is a short-term phenomenon, and
that the load balances out over longer periods [23]. However, our
year-long analysis has found that even at longer time-scales, load
imbalance across OSTs persists.

0 10 20 30 40 50
Degree of Parallelism

0

20

40

60

80

100

C
D

F
(%

)

(a) Reads

0 10 20 30 40 50
Degree of Parallelism

0

20

40

60

80

100

C
D

F
(%

)

(b) Writes

Figure 11: The degree of I/O parallelism (number of OSTs with
similar read/write activity at any 1 minute time interval) is limited.
The mean degree of parallelism of reads is 5.58 OSTs and that of
writes is 5.93 OSTs.

Observation: Surprisingly, OSTs experience significant load imbal-
ance for both read and write activities. While the MDS attempts to
capacity-balance at file creation time, it does not mitigate the load
imbalance of data access and write. This finding emphasizes the need
to develop new techniques and production-level tools that periodically
change the placement of files to mitigate the side-effects of load im-
balance issues such as concentrated contention on some OSTs, disk
failure, data corruption, write endurance issues [20, 27, 50, 57].

Degree of I/O parallelism: Next, we investigate the second ques-
tion: the degree of read and write parallelism during I/O activity.
The degree of parallelism is defined as the number of OSTs which
transfer similar amount of data during a given time interval. We use
the following methodology to calculate the degree of parallelism:
at each interval, the 248 OSTs are clustered based on the similarity
of their read (write) activity. Clusters are formed such that within
each cluster, the difference in I/O activity between the OST with
the maximum read (write) activity and the minimum read (write)
activity is less than 5% of the minimum read (write) activity. The
size of each cluster is referred to as its degree of parallelism. For
example, if a cluster has 5 OSTs, its degree of parallelism is 5 as
it implies that there are 5 OSTs with similar I/O behavior at the
same time. It is important to note that using our methodology, we
are able to estimate the degree of parallelism in parallel storage
systems I/O using only server-side logs, without instrumenting the
applications or using client-side information.

Fig. 11 plots the CDF of the degree of parallelism of all such
clusters formed at all 1-minute time intervals during the year. We
observe that the average degree of parallelism is fairly low for both
read and write I/O. On average, less than 6 OSTs are in action simul-
taneously performing similar amount of data transfer. In fact, in
more than 85% of the cases, less than 10 OSTs and in more than 98%
of the cases, less than 20 OSTs appear to be acting in coordination.
This trend is true for both reads and writes. This could be due to
several reasons: (1) at NERSC, the default striping is one, and many
applications might neglect to change the striping preference, (2)
many applications might not use enough nodes to take advantage
of the parallelism offered by the storage system, and (3) Users might
be concerned that higher parallelism makes an application’s I/O
phase slower due to the higher statistical likelihood of encountering
a straggling OST. Given that over 98% of NERSC workloads run on
more than 1 core and more than 75% of them run on more than a
thousand cores [4], this finding reveals a relatively less-investigated

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

(a) Per-OST Read Activity Autocorrelation (b) Per-OST Write Activity Autocorrelation (c) Per-OST Read and Write Activity Correlation

Figure 12: I/O activity correlation on individual OSTs (one line per OST). The read activity is autocorrelated on most OSTs for up to 5
minutes, while the write activity is not autocorrelated on most OSTs. Reads and writes are not correlated with each other on the same OST.

Table 1: Number of 1-minute occurrences of different degrees of
I/O parallelism of reads and writes during their respective high I/O
phases. Write I/O is more parallel than reads in general.

Degree of Parallelism Number of Occurrences
Read I/O Write I/O % Difference

≥ 10 882911 1022264 16%
≥ 25 83248 105268 27%
≥ 50 5005 11138 123%
≥ 75 872 2594 198%
≥ 100 260 884 240%

shortcoming of parallel HPC applications: "HPC applications per-
form computation in parallel, but still do not take advantage of
parallelism provided by the storage systems despite of the growing
gap between the speed of compute and storage systems".

Note that our definition of degree of parallelism is optimistic
since it does not require all OSTs to perform the exact same amount
of data transfer in a given time interval. In fact, we found that our
results and insights are not very sensitive to this range. For example,
we obtained similar results even when we increased the range from
5% to 10%. We also found that increasing the time granularity to
longer than 1 minute can slightly decrease the degree of parallelism
since the intensity of I/O activity may not sustain over a long
time duration. Note that we use a time interval of 1 minute for the
reasons outlined in Sec. 2, but, it might be argued that higher degree
of parallelism could be observed at smaller sampling granularity.
However, prior works [36] have shown that most applications who
take significant advantage of I/O parallelism either perform I/O for
longer than 1 minute or transfer ample amount of data within 1
minute for the burst to be detected, and hence, have shown that a
1-minute interval is sufficient to correlate application I/O activity
with system-wide I/O activity to detect I/O parallelism bursts.

We also performed deeper analysis to understand the distribution
of the degree of parallelism when the system is in high I/O phase, as
defined in Sec. 4, for both reads and writes during their respective
high I/O phases. We found that the average degree of parallelism
remains the same for read I/O (5.58), and is only slightly higher for
write I/O (6.22 as compared to 5.93). Table 1 shows the number of
1-minute occurrences where the degree of parallelism is higher than
10, 25, 50, OSTs etc. We observe that during high I/O phases, writes
display a higher degree of parallelism than reads. For example, we
found that write I/O has 123% more occurrences of samples where
the degree of parallelism is greater than 50 as compared to read I/O
during high I/O phase for both reads and writes. The higher degree
of parallelism for write I/O can also help explain why high write
I/O phases last for shorter durations than the high read I/O phases

1 2 3 4 5 6 7 8 9 10 11 12
Month of the Year

0

50

100

150

200

250

300

C
u
m

u
la

ti
v
e
 F

ile
 O

p
e
n
s

(B
ill

io
n
s

o
f

O
p
s)

1 2 3 4 5 6 7 8 9 10 11 12
Month of the Year

0

50

100

150

200

250

300

C
u
m

u
la

ti
v
e
 F

ile
 C

lo
se

s
(B

ill
io

n
s

o
f

O
p
s)

Figure 13: Cumulative number of file opens and closes during 2018.
Almost 20% of opened files are not closed.

(Sec. 4). Applications are more likely to use the parallel power of
storage systems when writing, but less likely to do so when reading,
possibly because they read only a subset of files (that they have
written to) at a time for analysis.

Observation: Parallel HPC applications are still far from taking
advantage of the parallelism provided by the parallel storage systems.
The degree of I/O parallelism is very limited, less than 20 OSTs in more
than 98% cases. Even during high intensity I/O phases, the degree of
I/O parallelism is small, although writes appear to achieve higher
parallelism than reads. This finding points to the key reason for why
HPC applications often observe very small fraction of the peak I/O
bandwidth offered by large scale HPC storage systems [4, 6, 7, 35, 48].
It also emphasizes the need for scaling out the I/O phase of parallel
applications so that compute node cycles can be better utilized.

Spatial autocorrelation at the OST granularity: Next, we
present the spatial autocorrelation analysis for read and write I/O
at per-OST level (recall that a similar analysis was performed in
Sec. 5 at the whole system level, but not at per-OST granularity).
Fig. 12(a) and (b) show the autocorrelation curves per OST for read
and write I/O for window length of 1 minute for 5 lag units (total
248 curves on each figures).

These results show interesting and contrasting trends, read I/O
at the OST level are highly autocorrelated at some OSTs but not
at other OSTs. While, write I/O is typically not autocorrelated at
the OST level. In other words, read I/O activity on some OSTs can
be a good indicator for more read I/O requests over the next sev-
eral minutes on the same OST, but this is not true for write I/O
requests at the OST granularity. This is particularly noteworthy
because at the whole system-level (Sec. 5) such autocorrelations
at smaller intervals were very weak (Fig. 9(a) and (b)), but at the
OST-level (fine-grained spatial location) there is some predictability
for read I/Os. Interestingly, with longer window of 5 and 25 min-
utes (not shown for brevity), both reads and writes show strong
correlation across OSTs for lag of 1. Contrasting trends between

Revisiting I/O Behavior in Large-Scale Storage Systems SC ’19, November 17–22, 2019, Denver, CO, USA

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(a) File Open Autocorrelation

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(b) File Close Autocorrelation

0 1 2 3 4 5
Lag (Respective Window)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
e
ff

ic
ie

n
t

o
f

C
o
rr

e
la

ti
o
n

Window 1 Min 5 Mins 25 Mins

(c) File Open and Close Correlation

Figure 14: File open and close activities are highly autocorrelated for longer windows for lags of up to 5 units. File open and close activities
are correlated with each other at all window lengths for lag of 0.

Ut
il.

Ut
il.

Util. Util.

Figure 15: The mean and maximum CPU utilization of each OSS
during 2018 in sorted order. Not only is the CPU utilization imbal-
anced across OSSes, but CPU cycles are also highly underutilized
as the mean CPU utilization is less than 2% across all OSSes.

the whole system-level and OST-level can be explained when we
carefully consider the degree of I/O parallelism observations. Since
I/O activities are often happening at a very small number of OSTs
concurrently, the overall effect when aggregated over all OSTs is
less pronounced for identifying correlations at the macro-level and
hence, the predictability is limited, esp. at small time windows. But,
since HPC applications often perform more than just a few seconds
of I/O, albeit only at a few OSTs at a time, observing these activities
at the fine-grained (OST) level where the I/O is taking place can
serve as a good indicator for the near-future at that particular OST.

Finally, Fig. 12(c) shows that reads and writes are not correlated
at the OST-level for window length of 1 minute. These results echo
the system-level results (Fig. 9(c)) which showed equally weak corre-
lation among reads and writes. We found similarly weak correlation
with longer time windows and lag units (not shown).

Observation: As discussed earlier, read and write activities at the
whole system granularity are not effective in predicting the near-term
load (less than 5 minutes), but our results show and explain that at the
individual OST granularity, read I/O activities in short-term can be
used effectively for both near-term and slightly long-term future load
prediction at a particular OST. This observation should be leveraged to
mitigate and manage contention at the OST-level in both short-term
and long-term (e.g., identifying and moving data at contended OSTs).

7 MDS and OSS Utilization Analysis
Meta Data Server (MDS) and Object Storage Servers (OSS) are rela-
tively less analyzed components in parallel HPC storage systems.
In this work, we analyze the MDS load and OSS utilization behavior
seeking answers to the following two specific questions: (1) What
are the characteristics of the file open and close operations on the MDS
and is there any correlation among those operations? (2)What are
the characteristics of the CPU utilization on each of the 248 OSSes?

MDS Operations: Fig. 13 shows that users perform file open
and close operations throughout the year as expected (cumulative
number of files opened is more than 300 billion). However, not all
files that are opened are closed. As shown in Fig. 13, roughly 20%
of the files opened are not closed. While, the average number of
file opens and closes is 586 thousand opens/min and 420 thousand
closes/min, respectively, this number can be as high as 327million
opens/min and 235million closes/min, respectively, during some
intervals. This indicates that file opens and closes are bursty in
behavior. The CoV of file opens and closes among 1-minute intervals
during the year is 153% and 150%, respectively.

Next, Fig. 14 shows that, similar to read and write I/O at the
system level, file open and close operations are autocorrelated at
longer time windows, but not at small intervals (e.g., 1 minute).
High autocorrelation in file open and close activities is expected
since users typically open (and close) multiple files during an I/O
phase. Also, as shown in Fig. 14 (c) file open and close activities are
correlated with each other across all window lengths for lag of 0.
This is expected as well, since users are likely to open and close the
same files during an I/O phase. As was explored in Sec. 4 (Fig. 7),
over 80% of high I/O phases last 5 minutes or less. This is reflected
in the high correlation between file open and close activities at 1
minute and 5 minute windows for lag of 0.

OSS CPU utilization characteristics:Next, we investigate the
second question: what are the characteristics of the OSS CPU uti-
lization? We discovered that on average, OSSes have very light
CPU utilization (Fig. 15). The average CPU utilization is less than
2% for all 248 OSSes. This is expected since the the system is not
performing I/O at all times. However, even the max CPU utilization
is lower than 75% for more than 60% of the OSSes. This finding
highlights the opportunity to opportunistically but carefully ex-
ploit idle cycles on OSSes to perform in-situ data analysis, data
integration and verification. However, we caution that leveraging
this finding requires careful and efficient implementation. Some
analytic tools can behave erratically by exhausting the memory
resources on these OSSes or delaying the critical I/O requests from
compute nodes. Such cases need to be handled carefully by design-
ing strategies that mitigate such side-effects including instability
of OSS nodes. A few strategies include preemption-capable ana-
lytic tools and compute resource partitioning for isolation. First,
executing preemption-capable analytic tools on OSS enables us
to prioritize scheduling I/O requests and avoid starvation of I/O
requests. This may also require system-level capability for efficient
checkpoint-and-restart capability on OSSes. Second, explicit and de-
terministic resource isolation can ensure that OSSes do not become
unstable due to stealing of idle cycles. Execution of analytic tools

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

Figure 16: Correlation between OSS CPU utilization: the CPU uti-
lization is highly autocorrelated across OSSes for 1-minute window.

can be limited in scope by assigning them to specific cores, setting
the upper-limit on memory consumption, cache partitioning (e.g.,
Intel’s Cache Allocation Technology).

Our results also reveal that OSS CPU utilization autocorrelates
with itself for all OSSes for window length of 1 minute (Fig. 16).
This is interesting because we found that read I/O activity and write
I/O activity do not autocorrelate on many OSTs (Fig. 12(a) and (b)).
At NERSC, different factors can affect OSS CPU utilization: (1) the
number and type of I/O requests being served has a large impact on
CPU utilization as it is proportional to the number of bookkeeping
operations, (2) the number of “stat” calls on files being served has a
small but statistically significant signature on OSS CPU utilization
as every “stat” call triggers a read I/O, (3) the use of software RAID
increases CPU utilization on writes (but not reads), etc. Therefore,
in terms of I/O, OSS CPU utilization is impacted by the number
and type of I/O requests and not the amount of data transferred.
Therefore, the high autocorrelation of OSS CPU utilization shows
that an OSS is likely to observe similar quantity of I/O requests
for a few minutes on most OSSes. Autocorrelation analysis for
wider window lengths (not shown for brevity) demonstrates that
the correlation weakens across OSSes as the window gets wider,
thus showing that OSS CPU utilization remains similar for up to
4-5 minutes (lag 4-5 for 1-minute window).

Observation:MDS activities such as file open and close, as expected,
are auto-correlated. MDS activities are bursty in nature, performing
up to 327million opens/min and 235million closes/min during peak
periods. However, the CPU utilization on OSSes are relatively modest
even during high usage period (maximum CPU utilization is lower
than 75% for more than 60% of the OSSes). This finding can open-up
the opportunity to steal abundant idle cycles on OSSes to perform
other works such as in-situ data analysis, file system verification [9,
43, 47]. However, as discussed above it requires careful and efficient
implementation to avoid OSSes becoming unstable.

8 Discussion
In this section, we discuss the scope of our findings and analysis,
and identify the threats to the validity of our findings as other HPC
centers learn from our experience.

Effects of I/O Workloads and NERSC-specific environ-
ment: As expected, our findings are directly affected by the nature
of workloads being executing at NERSC and the NERSC environ-
ment. We emphasize that our findings cannot be generalized with-
out appropriately factoring into NERSC environment.

Our finding that production HPC storage systems may no longer
be dominated by write-intensive workloads only, clearly indicates
the rise in the read-heavy workloads. We anticipate that increase in
machine learning and analytic workload may attribute toward this

observed trend. Machine learning workloads are often read-heavy,
reading in the input data iteratively to converge to an accurate,
stable and refined model. Wide increase of such workloads on
leading HPC centers has been observed in recent years [1, 12, 13]
and hence, this observation may become stronger over time and at
other HPC centers in future too.

In particular, NERSC has been observing increasing in data and
learning workloads in NERSC Exascale Science Applications Pro-
gram (NESAP) [15]. Data and learning applications such as PCA and
BD-CATS are quite I/O-intensive (more than 40% of time performing
I/O) [14]. At the same time, interestingly, the applications that gen-
erate the large read workloads observed in this study are the same
applications that do not necessarily fall into the machine learning
domain and have run at NERSC for many years (QCD and quan-
tum modeling of materials). Therefore, increase in read-intensive
workloads may not be limited to data and learning workloads only.

Correlating server-side logs with application I/O patterns is a
worthy goal and may provide further insights. However, it is very
difficult because Lustre implements a client-side page cache. This
transparently restructures very small but contiguous I/Os into large
sequential writes during write-back, and this process is transparent
to both application-level profiling and the back-end file system
monitoring (which only sees the write-back traffic). NERSC sup-
ports over 7,000 users and 700 applications, and there are typically
several hundred jobs executing concurrently at any given moment
on the Cori system. In aggregate, the I/O patterns can be complex
as a result of this broad workload mix, but large bursts of I/O are
still observed with moderately sized jobs issuing parallel I/O.

Effects of Burst-Buffer. Burst-buffer usage at NERSC is still
at infancy stage; only a handful of users take advantage of burst-
buffers and rest directly use the scratch space. As discussed earlier
in Sec. 3, current level of activity at the burst-buffer does not signif-
icantly influence the findings in this study. A future useful deeper
exploration would be to analyze the burst-buffer traffic in a mature
stage. It would require distinguishing the stage-in and stage-out
data. However, current monitoring facility does not support this
capability and reports only aggregate data read and written to
the burst-buffer. For example, currently, one cannot distinguish
whether the data is read by the compute nodes or staged-in the
burst-buffer. As the burst-buffer usage matures and its monitor-
ing capability develops, we plan to perform similar analysis of the
burst-buffer I/O and how it affects I/O to the scratch space.

Effects of Lustre File System: NERSC uses Cray-maintained
Lustre which is based on an old Lustre version (2.5) but has a
lot of back-ported features and patches. The Lustre clients and
servers are also different versions, and the clients get updated
every time we patch the system. Note that the patch version of
the Cray Lustre client is useful for Cray maintenance only and
does not correspond to Lustre’s public versions. The current
server version is 2.5.1 (jenkins-Changeling_Lustre-361-361-
gbb51c1c-CHANGED-2.6.32-431.17.1.x2.0.90.x86_64) and
the client version is 2.7.5.13. We have ensured that our findings are
not a side-effect of Lustre bugs.

We note that our findings cannot be generalized or trivially
extended to other parallel file systems. For example, GPFS is a fun-
damentally different file system architecture that is block-based
rather than object-based, and the definition of a stripe is funda-
mentally different. We also note that NERSC’s default policy is

Revisiting I/O Behavior in Large-Scale Storage Systems SC ’19, November 17–22, 2019, Denver, CO, USA

no-striping because it was observed to work better with Lustre file
system and useful for file-per-process I/O pattern. Typically, HPC
centers set the default striping factor between 1 and 4 which may
not significantly affect our observations about the low degree of
I/O parallelism at NERSC, but setting the striping to higher counts
can potentially decrease the load imbalance across OSTs.

For OST file distribution, NERSC’s Lustre uses both round robin
and weighted allocator continuously based on the weighting factor.
The qos_prio_free paramter is tuned to 91% currently. The choice
of the allocator is a function of this weight and the level of OST
fullness of all OSTs at the moment every file is created.

9 Related Work
Tools for Monitoring I/O: Over the last two decades, there has
been a large interest in trying to examine, model, and predict the
I/O behavior of HPC applications. To this end, several software
implementations have been proposed to monitor I/O at job-level [10,
11, 24, 44, 54] and at storage-system-level [2, 25, 26, 49, 58]. More
recent attempts aim to develop an all-encompassing and cohesive
monitoring system which can monitor end-to-end I/O behavior of
jobs at each step along their I/O path [16, 31, 32, 40, 42, 58]. The
purpose of these works is to introduce the tools and demonstrate
how they can be used. Therefore, most of these works only provide
a few examples as case studies and do not provide an in-depth
analysis of either job-level or storage-system-level I/O behaviors.

An exception to this is a recent work by Yang et al. [58], which
studies a few job-level characteristics such as write I/O’s propor-
tion of the job’s total I/O, and system level characteristics such as
MDS utilization by login and I/O nodes. However, these are limited
to surface-level characteristics shown to demonstrate the tracing
ability of their tool, Beacon. Lockwood et al.’s work [31] provides
analysis based on profiling a few applications, but does not discover
temporal and spatial correlations at the system-level.

I/O Characterization and Analysis:Works which provide an
analysis of I/O can be broadly classified into two categories: (1)
ones which study the I/O behaviors of individual applications, and
(2) ones which study the I/O behavior of the storage system as a
whole. The former type of works study and model I/O behaviors
such as data transfer rate, I/O periodicity and repetition, and I/O
variability of individual jobs [30, 33–35, 52, 55, 56, 59]. These works
do not necessarily only rely on job-level monitoring tools. For
instance, works by Liu et al. [28, 29] look at server-side logs to
identify patterns in I/O of individual jobs, and Madireddy et al. [36]
attempt to correlate the monitoring data of job-level logs with
storage-system-level logs. These works are orthogonal to our work,
and the findings from these works can be used in conjunction with
ours to develop a holistic job-level and storage-system-level view.

On the other hand, there are also works which analyze the stor-
age system [19, 23, 39, 49, 51]. For example, Oral et al. [39] use
benchmark suites to analyze different types and configurations of
file and storage systems, and provide recommendations. But it does
not analyze traces of existing activity on existing storage systems.
These works do not provide an in-depth analysis at MDS, OSS and
OST level. They only provide the high-level characteristics at entire
storage-system level, but miss on discovering interesting insights
found in this work due to lack of detailed temporal and spatial
analysis at different levels in space and time.

10 Conclusion
In this paper, we have drawn new insights about the temporal,
spacial, and correlative behavior of HPC I/O by analyzing server-
side I/O logs. We have shown that read I/O activity dominates the
system’s I/O utilization in terms of the amount of data transferred.
In spite of this, write I/O is generally more bursty than read I/O and
it displays a higher degree of parallelism. We have also shown that
larger amount of reads and writes generally signal large amount of
reads and writes in the near future. We also found that the OSTs
are not load-balanced in terms of the amount of data transferred,
and that the OSSes go largely underutilized in terms of their CPU
cycles. We discussed how these findings can help improve the
state of practice by enhancing the scheduling and load-balancing
decisions for parallel storage systems.

Acknowledgment We are thankful to anonymous reviewers for their
constructive feedback. This work is supported by NSF Award 1910601 and
1753840, and the Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy under contract
numbers DE-AC02-05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of Energy.

References
[1] NERSC 2017 Annual Report. https://www.nersc.gov/assets/Uploads/

2017NERSC-AnnualReport.pdf, 2017.
[2] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk,

N. Naksinehaboon, J. Ogden, et al. The lightweight distributed metric service:
A scalable infrastructure for continuous monitoring of large scale computing
systems and applications. In SC’14, pages 154–165. IEEE, 2014.

[3] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, and M. Zhao. Data storage
research vision 2025 report. Technical Report, 2019.

[4] B. Austin. NERSC 2014 Workload Analysis. http://portal.nersc.gov/project/
mpccc/baustin/nersc_2014_workload_analysis_v1.1.pdf, 2014.

[5] W. Bhimji, D. Bard, D. Paul, M. Romanus, et al. Accelerating science with the
NERSC Burst Buffer Early User Program. In Cray User Group (CUG), 2016.

[6] J. Borrill, L. Oliker, J. Shalf, and H. Shan. Investigation of leading hpc i/o perfor-
mance using a scientific-application derived benchmark. In Proceedings of the
2007 ACM/IEEE conference on Supercomputing, page 10. ACM, 2007.

[7] J. Borrill, L. Oliker, J. Shalf, H. Shan, and A. Uselton. Hpc global file system
performance analysis using a scientific-application derived benchmark. Parallel
Computing, 35(6):358–373, 2009.

[8] A. Brinkmann, K. Mohror, and W. Yu. Challenges and opportunities of user-level
file systemsfor hpc. Technical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2017.

[9] J. Cao, O. R. Gatla, M. Zheng, D. Dai, V. Eswarappa, Y. Mu, and Y. Chen. Pfault: A
general framework for analyzing the reliability of high-performance parallel file
systems. In Proceedings of the 2018 International Conference on Supercomputing,
pages 1–11. ACM, 2018.

[10] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross.
Understanding and improving computational science storage access through
continuous characterization. ACM Transactions on Storage (TOS), 7(3):8, 2011.

[11] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7 characterization
of petascale i/o workloads. In 2009 IEEE International Conference on Cluster
Computing and Workshops, pages 1–10. IEEE, 2009.

[12] S. W. Chien, S. Markidis, V. Olshevsky, Y. Bulatov, E. Laure, and J. S. Vetter.
TensorFlow Doing HPC. arXiv preprint arXiv:1903.04364, 2019.

[13] S. W. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman, S. Narasimhamurthy,
and E. Laure. Characterizing Deep-Learning I/O Workloads in TensorFlow.
In 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS), pages 54–63. IEEE, 2018.

[14] C. S. Daley, D. Ghoshal, G. K. Lockwood, S. Dosanjh, L. Ramakrishnan, and N. J.
Wright. Performance characterization of scientific workflows for the optimal use
of burst buffers. Future Generation Computer Systems, 2017.

[15] J. Deslippe, D. Doerfler, B. Friesen, Y. H. He, T. Koskela, M. Lobet, T. Malas,
L. Oliker, A. Ovsyannikov, S. Williams, et al. Analyzing Performance of Selected
NESAP Applications on the Cori HPC System. In High Performance Computing:
ISC High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM,
HPC-IODC, IWOPH, IXPUG, Pˆ 3MA, VHPC, Visualization at Scale, WOPSSS, Frank-
furt, Germany, June 18-22, 2017, Revised Selected Papers, volume 10524, page 334.
Springer, 2017.

https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
https://www.nersc.gov/assets/Uploads/2017NERSC-AnnualReport.pdf
http://portal.nersc.gov/project/mpccc/baustin/nersc_2014_workload_analysis_v1.1.pdf
http://portal.nersc.gov/project/mpccc/baustin/nersc_2014_workload_analysis_v1.1.pdf

SC ’19, November 17–22, 2019, Denver, CO, USA Tirthak Patel, Suren Byna, Glenn K. Lockwood, Devesh Tiwari

[16] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello. Logaider: A tool for mining
potential correlations of hpc log events. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 442–451. IEEE,
2017.

[17] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim. Calciom: Mitigating i/o
interference in hpc systems through cross-application coordination. In 2014 IEEE
28th International Parallel and Distributed Processing Symposium, pages 155–164.
IEEE, 2014.

[18] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. Scheduling
the i/o of hpc applications under congestion. In 2015 IEEE International Parallel
and Distributed Processing Symposium, pages 1013–1022. IEEE, 2015.

[19] R. Gunasekaran, S. Oral, J. Hill, R. Miller, F. Wang, and D. Leverman. Compar-
ative i/o workload characterization of two leadership class storage clusters. In
Proceedings of the 10th Parallel Data Storage Workshop, pages 31–36. ACM, 2015.

[20] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin,
T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, et al. Fail-slow at scale: Evidence
of hardware performance faults in large production systems. ACM Transactions
on Storage (TOS), 14(3):23, 2018.

[21] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman, M. Grondona,
J. Garlick, B. Springmeyer, and M. Taufer. Scalable i/o-aware job scheduling for
burst buffer enabled hpc clusters. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pages 69–80.
ACM, 2016.

[22] D. Huang, Q. Liu, J. Choi, N. Podhorszki, S. Klasky, J. Logan, G. Ostrouchov, X. He,
and M. Wolf. Can i/o variability be reduced on qos-less hpc storage systems?
IEEE Transactions on Computers, 68(5):631–645, 2018.

[23] Y. Kim and R. Gunasekaran. Understanding i/o workload characteristics of a
peta-scale storage system. The Journal of Supercomputing, 71(3):761–780, 2015.

[24] M. Koo,W. Yoo, and A. Sim. I/o performance analysis framework onmeasurement
data from scientific clusters. 2015.

[25] J. M. Kunkel, E. Betke, M. Bryson, P. Carns, R. Francis, W. Frings, R. Laifer, and
S. Mendez. Tools for analyzing parallel i/o. In International Conference on High
Performance Computing, pages 49–70. Springer, 2018.

[26] J. M. Kunkel, M. Zimmer, N. Hübbe, A. Aguilera, H. Mickler, X. Wang, A. Chut,
T. Bönisch, J. Lüttgau, R. Michel, et al. The siox architecture–coupling automatic
monitoring and optimization of parallel i/o. In International Supercomputing
Conference, pages 245–260. Springer, 2014.

[27] S. Liang, Z. Qiao, J. Hochstetler, S. Huang, S. Fu, W. Shi, D. Tiwari, H.-B. Chen,
B. Settlemyer, and D. Montoya. Reliability characterization of solid state drives
in a scalable production datacenter. In 2018 IEEE International Conference on Big
Data (Big Data), pages 3341–3349. IEEE, 2018.

[28] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. Automatic Identification of
Application I/O Signatures from Noisy Server-Side Traces. In FAST, volume 14,
pages 213–228, 2014.

[29] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. Server-side log data analytics
for i/o workload characterization and coordination on large shared storage sys-
tems. In High Performance Computing, Networking, Storage and Analysis, SC16:
International Conference for, pages 819–829. IEEE, 2016.

[30] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J. Wright. A year in
the life of a parallel file system. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, page 74. IEEE
Press, 2018.

[31] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and K. Harms. Tokio
on clusterstor: Connecting standard tools to enable holistic i/o performance
analysis. 2018.

[32] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms, Z. Nault, and
P. Carns. Umami: A recipe for generating meaningful metrics through holistic i/o
performance analysis. In Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems, pages 55–60.
ACM, 2017.

[33] U. Lublin andD. G. Feitelson. Theworkload on parallel supercomputers: Modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing,
63(11):1105–1122, 2003.

[34] J. Lüttgau, S. Snyder, P. Carns, J. M. Wozniak, J. Kunkel, and T. Ludwig. Toward
understanding i/o behavior in hpc workflows. In Proc. of Workshop in conjunction
with ACM/IEEE Supercomputing Conference, Dallas, TX, USA, 2018.

[35] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna,
and Y. Yao. A multiplatform study of i/o behavior on petascale supercomputers.
In Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, pages 33–44. ACM, 2015.

[36] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, and S. M.
Wild. Analysis and Correlation of Application I/O Performance and System-Wide
I/O Activity. In Networking, Architecture, and Storage (NAS), 2017 International
Conference on, pages 1–10. IEEE, 2017.

[37] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and R. Ricci.
Taming performance variability. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 409–425, 2018.

[38] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S. Vazhkudai, F. Wang,
Y. Kim, J. Rogers, J. Simmons, et al. Olcfs 1 tb/s, next-generation lustre file system.

In Proceedings of Cray User Group Conference (CUG 2013), pages 1–12, 2013.
[39] S. Oral et al. Best practices and lessons learned from deploying and operating

large-scale data-centric parallel file systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 217–228. IEEE, 2014.

[40] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann. Big data meets hpc log
analytics: Scalable approach to understanding systems at extreme scale. In 2017
IEEE International Conference on Cluster Computing (CLUSTER), pages 758–765.
IEEE, 2017.

[41] R. Ross, L. Ward, P. Carns, G. Grider, S. Klasky, Q. Koziol, G. K. Lockwood,
K. Mohror, B. Settlemyer, and M. Wolf. Storage systems and i/o: Organizing,
storing, and accessing data for scientific discovery. Technical report, USDOE
Office of Science (SC)(United States), 2019.

[42] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed systems tracing
infrastructure. 2010.

[43] H. Sim, Y. Kim, S. S. Vazhkudai, D. Tiwari, A. Anwar, A. R. Butt, and L. Ramakr-
ishnan. Analyzethis: an analysis workflow-aware storage system. In SC’15:
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–12. IEEE, 2015.

[44] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J. Wright. Modular
hpc i/o characterization with darshan. In 2016 5th Workshop on Extreme-Scale
Programming Tools (ESPT), pages 9–17. IEEE, 2016.

[45] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang. Server-side i/o coordination
for parallel file systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, page 17. ACM, 2011.

[46] K. Tang, P. Huang, X. He, T. Lu, S. S. Vazhkudai, and D. Tiwari. Toward managing
hpc burst buffers effectively: Draining strategy to regulate bursty i/o behavior. In
2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 87–98. IEEE, 2017.

[47] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, and Y. Solihin.
Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale
machines. In Presented as part of the 11th {USENIX} Conference on File and Storage
Technologies ({FAST} 13), pages 119–132, 2013.

[48] A. Uselton and N. Wright. A file system utilization metric for i/o characterization.
In Proc. of the Cray User Group conference, 2013.

[49] S. S. Vazhkudai, R. Miller, D. Tiwari, C. Zimmer, F. Wang, S. Oral, R. Gunasekaran,
and D. Steinert. Guide: A scalable information directory service to collect, fed-
erate, and analyze logs for operational insights into a leadership hpc facility.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 45. ACM, 2017.

[50] L. Wan, F. Wang, S. Oral, D. Tiwari, S. S. Vazhkudai, and Q. Cao. A practical
approach to reconciling availability, performance, and capacity in provisioning
extreme-scale storage systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, page 75. ACM,
2015.

[51] F. Wang, S. Oral, S. Gupta, D. Tiwari, and S. S. Vazhkudai. Improving large-scale
storage system performance via topology-aware and balanced data placement.
In 2014 20th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pages 656–663. IEEE, 2014.

[52] T. Wang, S. Snyder, G. Lockwood, P. Carns, N. Wright, and S. Byna. Iominer:
Large-scale analytics framework for gaining knowledge from i/o logs. In 2018
IEEE International Conference on Cluster Computing (CLUSTER), pages 466–476.
IEEE, 2018.

[53] C. H. Wartens and J. Garlick. Lmt-the lustre monitoring tool, 2010.
[54] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. Herdman, I. Miller,

A. Vadgama, A. Bhalerao, and S. A. Jarvis. Parallel file system analysis through
application i/o tracing. The Computer Journal, 56(2):141–155, 2012.

[55] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Podhorszki.
Characterizing output bottlenecks in a supercomputer. In SC’12: Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 1–11. IEEE, 2012.

[56] B. Xie, Y. Huang, J. S. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and S. Oral. Predicting
output performance of a petascale supercomputer. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing,
pages 181–192. ACM, 2017.

[57] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu. Lessons and actions: What we learned
from 10k ssd-related storage system failures. In 2019 USENIX Annual Technical
Conference.

[58] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,
J. Zhai, et al. End-to-end i/o monitoring on a leading supercomputer. In 16th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
19), pages 379–394, 2019.

[59] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu. On the root causes
of cross-application i/o interference in hpc storage systems. In 2016 IEEE Int’l
Parallel and Distributed Processing Symposium (IPDPS), pages 750–759, 2016.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
As described in the paper, we analyzed the logs of a Lustre parallel
file system, which is accessible to two supercomputing systems
deployed at the National Energy Research Scientific Computing
Center (NERSC), for the entire year of 2018. The current flagship
supercomputer at NERSC, named Cori, is a Cray XC40 system with
two computation partitions: the first is based on energy efficient
68-core Intel Xeon Phi (Knights Land-ing or KNL) processors and
the second is based on 16-core Intel Xeon (Haswell) processors.
The first partition contains 9,688 nodes and the latter has 2,388
nodes. As shown in Figure 1, an SSD-based Cray DataWarp burst
buffer storage layer is available between the compute nodes and the
disk-based Lustre file system. The Lustre filesystem is composed
of 10,000 disks organized as 248 Lustre Object Storage Servers
(OSSs) with an equal number of Object Storage Targets (OSTs).
The total size of the file system is 30 PB with an aggregate peak
I/O bandwidth of 700 GB/s. This Lustre file system is also shared
by another system, Cray XC30 system named Edison, which has
12-core processors on each of the 5,586 nodes. Edison has a local
Lustre file system as well, but in our paper, we study the logs of the
shared Lustre file system.

The log data of Lustre is obtained by the Lustre Monitoring Tool
(LMT), which is a distributed system to provide Lustre server-side
activity on various server nodes, similar to the Unix “top” command.
LMT monitors the I/O activity of Object Storage Servers (OSS),
Object Storage Targets (OST), Meta Data Servers (MDS), and Meta
Data Targets (MDT) and retains these data for the preceding 24
hours in a MySQL database. A separate service queries this MySQL
database and archives the data from the previous day into an HDF5
file before it is expired from the MySQL database. Each HDF5 file
consists of datasets that contain performance statistics such as CPU
utilization of OSSes, file operations of MDSes, and the read/write
transfer rates on the OSTs. Note that the LMT does not report the
number and size of read/write I/O requests served by the OSSes.
The dataset we have analyzed in this study is from the entire year
of 2018. The system generates one HDF5 file for every day of the
year; each file consists of 17280 entries as performance statistics
are captured at every 5-second interval.

NERSC uses Cray-maintained Lustre which is based on an old
Lustre version (2.5) but has a lot of back-ported features and patches.
The Lustre clients and servers are also different versions, and the
clients get updated every time we patch the system. Note that the
patch version of the Cray Lustre client is useful for Cray mainte-
nance only and does not correspond to Lustre’s public versions.
The current server version is 2.5.1 (jenkins-Changeling
Lustre − 361 − 361 − дbb51c1c − CHANGED − 2.6.32 −

431.17.1.x2.0.90.x86
64)andtheclientversionis2.7.5.13.

ARTIFACT AVAILABILITY
Software Artifact Availability: There are no author-created soft-

ware artifacts.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
N/A

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: CORI: 9,688 68-core Intel Phi and
2,388 Intel Haswell Xeons, Edison: 5,586 12-core Intel IvyBridge
Processors. Lustre client 2.5.1, Lustre server 2.7.5.13.

Operating systems and versions: CORI and Edison: CNL OS; com-
pute nodes run a lightweight kernel and run-time environment
based on the SuSE Linux Enterprise Server (SLES) Linux distribu-
tion.

Compilers and versions: N/A

Applications and versions: N/A

Libraries and versions: N/A

Key algorithms: PDF, CDF, Coefficient of Variance, Coefficient
of Correlation, Shifted Correlation, Auto-Correlation

Input datasets and versions: Lustre LMT HDF5 logs, one for each
day, each with 17280 entries, during the year 2018

	Abstract
	1 Introduction
	2 Background
	2.1 System Architecture
	2.2 Data Monitoring and Collection
	2.3 Statistical Methods

	3 Overall System-Level I/O Behavior
	4 Temporal I/O Characteristics
	5 Correlation Between Read and Write I/O Activity at the System Level
	6 Spatial I/O Characteristics
	7 MDS and OSS Utilization Analysis
	8 Discussion
	9 Related Work
	10 Conclusion
	References

