
Active Learning-based Automatic Tuning and
Prediction of Parallel I/O Performance

Megha Agarwal
Divyansh Singhvi

Preeti Malakar
Suren Byna

PDSW @ SC'19
November 18, 2019

Indian Institute of Technology Kanpur, India
Lawrence Berkeley Laboratory, USA

I/O Performance Statistics

Source: Huong Luu, et al., “A Multiplatform Study of I/O Behavior on Peta-
scale Supercomputers”. HPDC '15

A few applications
achieve less than 1% of
I/O throughput capacity of
file systems

2

75% of applications
achieve less than 1GB/s
I/O throughput

● Exponential growth in compute rates as compared to I/O bandwidths
● Depends on interaction of multiple layers of parallel I/O stack (I/O

libraries, MPI-IO middleware, and file system)
● Each layer of I/O stack has many tunable parameters
● I/O parameters are application-dependent

Parallel I/O – Challenges

A typical HPC application developer (expert in their
scientific domain) resorts to default parameters L

3

Parallel I/O stack – Complexity

Tunable parameters: cb_nodes, cb_buffer_size, …

Tunable parameters: stripe size, stripe count, …

HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size,
collective buffer size, collective buffer nodes, etc.)

Application

Parallel File System
(Number of I/O nodes, stripe size, enabling prefetching

buffer, etc.)

Storage HardwareStorage Hardware

4

Prior Work
● Heuristic-based search with a genetic

algorithm to tune I/O performance
● Analytical models

● Disk arrays to approximate their
utilization, response time, and
throughput

● Application-specific models
● Herbein et al. use a statistical model,

called surrogate-based modeling, to
predict the performance of the I/O
operations

5

Prior Work
● Heuristic-based search with a genetic

algorithm to tune I/O performance
● Analytical models

● Disk arrays to approximate their
utilization, response time, and
throughput

● Application-specific models
● Herbein et al. use a statistical model,

called surrogate-based modeling, to
predict the performance of the I/O
operations

Overview of Dynamic
Model-driven I/O tuning

Pruning

Model Generation

Training Phase

Develop an
I/O Model

Training
Set

Top k
Configurations

I/O Model
All Possible

Values

Overall Architecture
of I/O Autotuning

Exploration

I/O Autotuning
Framework

HPC
System

Optimize I/O

Storage
System

I/O Kernel

Top k
Configurations Re

fit
 th

e
m

od
el

(C
on

tro
le

d
by

 u
se

r)

Performance Results
Select the Best

Performing Configuration

All Possible
Configuratinos

Refitting

Executable

H5Tuner

I/O
Benchmark

XML File

6

Parameter Tuning – Challenges

● Large number of I/O parameters inter-dependent on each other.

● Real valued parameters do not allow brute forcing the parameter
space to find optimal parameters.

● Application-specific models are limited to specific I/O patterns

7

Our Contributions

An auto-tuning approach based on active learning for improving
both read and write performance

1. ExAct: An execution-based auto-tuner for I/O parameters
(achieves up to 11x speedup over default).

2. PrAct: A fast prediction-based auto-tuner for I/O parameters
(can tune I/O parameters in 0.5 minutes).

8

Bayesian Optimization

Limit expensive evaluations of the objective function by choosing the next
input values based on those that have done well in the past

Mathematically, we can represent our problem as :

x* = argmax x∈X f(x)

- f(x) represents our objective function to minimize which in our case
is run time of an application or an I/O kernel

- x is the value of parameters
- x* is best value found for each of parameters in sample space X.

9

Execution-based Auto-tuning (ExAct) Model

10

Build a “surrogate” model P(y|x)

(1) Find a set of parameters based on previous runs (random
choice of parameters for the first iteration)

(2) Run the application in the objective function with the
parameters chosen in (1) to measure I/O bandwidth

(3) Update the surrogate model incorporating the current
performance

M
AX

_E
VA

LS

Prediction-based Auto-tuning (PrAct) Model

● Developed a performance prediction model using Extreme Gradient
Boosting (XGB).

● PrAct uses predicted runtimes in the objective function in Bayesian
Optimization model.

● This reduces the time to obtain better performing I/O parameters.

11

(2) Predict I/O bandwidth with the parameters chosen in (1)

Summary of Approaches

ExAct - Objective function obtains output by
running the application on input parameters

PrAct- Objective function obtains output
by running Predict on input parameters

Predict is an offline model trained on
dataset that predicts I/O bandwidth for a
given set of input parameters.

12

Bias and Learning Plots in ExAct

Configuration: 200X400X400 on 4X4X8 processes S3DIO
Red - Initial probability distribution
Blue - Post training prob. distribution 13

Cb-buffer size distribution Loss distributionStripe size distribution Stripe count distribution

Romio cb_readRomio cb_writeRomio ds_read Romio ds_write

Application I/O Kernels for benchmarking

● S3D-IO: I/O kernel of S3D combustion simulation code
● 40 input configurations

● BT-IO: I/O Benchmark Using NASA's NAS BTIO Pattern
● 19 input configurations

● IOR: A commonly used file system benchmark
● 13 input configurations

● Generic I/O: A write-optimized library for writing self-describing
scientific data files
● 45 input configurations

14

System Configurations

● HPC2010 (464-node supercomputer) at Indian Institute of
Technology (IIT), Kanpur
● Used a maximum of 128 processes.

● Cori, a CrayXC40 system at NERSC, LBNL
● Used a maximum of 512 processes.

15

S3D-IO
default vs.
ExAct on
HPC2010
(16 – 128
processes, 8
ppn)

X-axis:
Increasing
data sizes

Y-axis:
I/O
bandwidths
in MBps

16

IOR I/O bandwidths for varying node counts.
Strong scaling on 16 – 256 processes.

IOR I/O bandwidths for varying transfer sizes.
Data scaling on 64 cores with 100 MB block size.

Default vs. ExAct I/O bandwidths using IOR on HPC2010
87% read and 20%
write improvements
(on average)

17

Generic-IO
default vs.
ExAct on
HPC2010 (2, 4,
16, 28 nodes)

X-axis:
number of
particles (in
millions)

Y-axis:
I/O bandwidths
in MBps

Significant
improvement with
large data sizes

19

S3D-IO
default vs.
ExAct on
Cori (2 – 16
nodes, 32
processes
per node)

X-axis:
Number of
nodes

Y-axis:
I/O
bandwidths
in MBps Weak scaling results for S3D-IO

ExAct Result Summary

Benchmark Read(Avg) Write(Avg) Read(Max) Write(Max)

S3D-IO 1.97X 2.21X 11.14X 4.03X

IOR 2.1X 1.0X 4.73X 2.23X

BT-IO 1.07X 1.76X 2.93X 4.86X

GenericIO 1.44X 1.51X 3.04X 3.06X

20

Analysis of tunable parameters
Benchmark S3D-IO (200 x 200 x 400) on 4 x 4 x 8 processors (16 nodes) on HPC2010

Default parameters stripe_size = 1 MB, stripe_count = 1, cb read/write = enable, ds
read/write = disable, cb_buffer_size = 16 MB, cb_nodes = 16

Default Read/write 3002 /1680 MBps

ExAct parameters stripe_size= 4 MB, stripe_count = 21, cb read/write = disable/disable, ds
read/write = enable/disable, cb_buffer_size = 512 MB, cb_nodes = 13

ExAct Read/write 1198 / 293 MBps

Tuning Time 12.65 minutes

21

Performance Prediction Model (Predict) Accuracy

Median absolute percentage error and R2 measure for various benchmarks on
HPC2010 (rows 1 – 4) and Cori (last row) using XGB model-based prediction

22

IOR BTIO

S3D Generic-IO

23

XGB-based Prediction Model Accuracy
Scatter plots
of XGB-
predicted
values vs.
measured
values of
write
bandwidths
for all
benchmarks
on HPC2010

(30/70 split
of train/test
data)

S3D-IO weak scaling on unseen configurations BT-IO with unseen configurations.
24

Results – PrAct

Results – PrAct

● PrAct was also evaluated for configurations that were not present in the
training data

● Maximum of 1.6x and 1.2x performance improvement in reads and writes in
S3D-IO

● Maximum of 1.7x and 2.5x performance improvement in reads and writes in
BT-IO

● Observed degradation in read bandwidths in case of IOR, especially at high
node counts. This is expected as the R2 scores were low

25

ExAct vs. PrAct – Time vs. Performance Trade-off

● Average training time of PrAct is 18 seconds whereas that of
ExAct is 13 minutes (varies with the run time of application)

● PrAct achieves a maximum performance improvement of 2.5x
whereas ExAct achieves 11x improvement

26

Conclusions
● Developed execution-based (ExAct) and prediction-based (PrAct) auto-tuners

for selecting MPI-IO and Lustre parameters
● ExAct runs the application and learns, whereas PrAct uses predicted values

from analytical model to learn
● The only system-specific input to the model is the range of stripe counts
● Observed a maximum of 11x improvement in read and write bandwidths
● ExAct is able to improve write performance of large data sizes (e.g., 1 billion

particles in GenericIO) by 3x
● Predict model uses XGBoost, and obtains less than 20% median prediction

errors for most cases, even with 30/70 train/test split
28https://github.com/meghaagr13/Autotuning-PIO

https://github.com/meghaagr13/Autotuning-PIO

