
H5Prov: I/O Performance Analysis of Science
Applications Using HDF5 File-level Provenance

Tonglin Li, Quincey Koziol, Houjun Tang, Jialin Liu, and Suren Byna

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract—Systematic capture of extensive, useful science meta-
data and provenance requires an easy-to-use strategy to automat-
ically record information throughout the data life cycle, without
posing significant performance impact. Toward that goal, we have
developed a Virtual Object Layer (VOL) connector for HDF5,
the most popular I/O middleware on HPC systems. The VOL
connector, called H5Prov, transparently intercepts HDF5 calls
and records operations at multiple levels, namely file, group,
dataset, and data element levels. The provenance data produced
can also be analyzed to reveal I/O patterns and correlations
between application behaviors/semantics and I/O performance
issues, which enables optimization opportunities. In this effort, we
analyze captured provenance information from two application
benchmarks to understand HDF5 file usage and to detect I/O
patterns, with preliminary results showing good promise.

I. INTRODUCTION

The increasingly demanding data-driven sciences pose chal-
lenges to HPC systems and application data management
strategies. While computing power of mainstream HPC sys-
tems have increased exponentially with new technologies such
as GPUs/FPGAs, the performance of storage, especially I/O,
has lagged far behind.

Due to the complex nature of parallel file systems, many
scientific applications cannot achieve acceptable performance
when accessing storage with standard POSIX I/O or MPI-I/O
operations. However, the time and effort required to under-
stand the I/O stack involved and extract optimal performance
from it can be daunting for application science teams. In
response, I/O middleware packages have been created that
encapsulate this knowledge and provide it to applications with
easy-to-use API interfaces.

Adoption of these I/O middleware packages is still lim-
ited, either because application users (domain scientists) lack
knowledge and experience with them or because of the
difficulty in deploying tuned versions of these middleware
packages on all systems. Thus the efforts made for optimizing
I/O performance in the I/O middleware only benefit the
applications that are carefully prepared for the middleware, on
systems where the middleware has been performance tuned.

Hierarchical Data Format (HDF) was originally designed
as a library and data format for scientific applications. The
current version, HDF5 [1], has evolved into a parallel data
management system that bridges the gap between applications
and the complicated, constantly-changing low-level details of
storage systems. HDF5 now is the most widely used data
format and management system for scientific applications [2].

HDF5 is designed to be highly extensible, and provides
numerous possibilities to add enhancements and features with
third-party plugins. In this work, we describe our lightweight
configurable provenance logging system that records applica-
tion operations on an HDF5 file.

Provenance information is generally regarded as a method
of recording the ”who, what, where, when, and how” of
producing science results. However, we’ve determined that
provenance data can also be enhanced and analyzed to re-
veal I/O patterns and correlations between application behav-
iors/semantics and I/O performance issues, which opens up
further optimization opportunities, such as data prefetching
[3], layout reorganization [4, 5], etc.

In contrast to many I/O profiling and provenance tracking
systems, our system does not need a dedicated deployment,
always-on server instances, or even modifications to appli-
cation code. Users only need to set an environment variable
to enable the provenance feature, and the provenance plugin
will be automatically loaded by the HDF5 library when an
application operates on HDF5 files, with provenance data
recorded in a user-specified location.

Existing I/O profiling packages track low-level I/O events,
such as which process writes to a file. This data is useful
for tuning file system parameters, such as file striping and
I/O scheduling strategies. However, application logic and data
structures are invisible at that level. HDF5, on the contrary,
has semantic knowledge of science data structure organization
within a file. Recording the provenance of data production
and later access gives us a chance to look at the resulting I/O
behaviors from the application’s perspective, and measure its
performance impact upon the underlying file system.

The primary contributions of this paper are as follows:
• We have designed and implemented a new virtual object

layer (VOL) connector for HDF5 to collect provenance
on multiple levels with fine granularity.

• We have conducted large scale experiments on Cori,
the Cray XC40 system at NERSC, with various storage
system configurations to collect sample provenance traces
and to evaluate the overhead for doing so.

• We analyzed the sample provenance data and have found
some application misconfigurations and abnormal storage
layer behaviors. This demonstrates the many possibilities
of using HDF5 VOL connectors to optimize application
logic, storage setup and middleware (HDF5) implemen-
tation.



II. HDF5 VIRTUAL OBJECT LAYER (VOL) AND
PROVENANCE CONNECTOR

A. Virtual Object Layer
Support for Virtual Object Layer (VOL) connectors was

recently added to the HDF5 library. The VOL is an abstraction
layer within the HDF5 library that intercepts object-level
API operations on HDF5 files (such as ‘file open’, ‘dataset
write’, ‘group create’, etc) and can forward those operations
to plugins, called “VOL connectors”[6]. These connectors
are dynamically loadable at runtime and enable third-party
developers to build customized storage solutions for HDF5
users without having to change application code (figure 1).
Therefore, HDF5 applications can benefit from new optimiza-
tions and capabilities with ease.

Existing works have demonstrated the flexibility and the
benefits of using HDF5 VOL. For example, in order to exercise
various object store technologies for scientific applications,
researchers from NERSC, HDF and Intel have developed
VOL connectors for Openstack Swift, Ceph Rados, and Intel
DAOS [7]. These connectors redirect the applications’ HDF5
function calls to different underlying storage, with less than
5% code change to the application. Other connector examples
include an ADIOS connector, which maps HDF5 API calls to
the ADIOS file format [8]; Data Elevator [9] and ARCHIE [10]
which implement an efficient automatic data mover across
hierarchical storage tiers for HDF5 files.

B. Design and implementation
Our provenance connector is written as a special-purpose

pass-through VOL connector, which can be interposed above
any other VOL connector to track I/O behavior to any terminal
VOL connector the application has chosen. As the HDF5 ap-
plication performs I/O operations, the VOL framework invokes
our provenance connector, which logs information about the
operations and then re-invokes the VOL framework to call the
underlying VOL connector. In this way, the provenance con-
nector can be inserted at run-time into any HDF5 application
without even recompiling the code.

During H5Prov VOL connector design and implementation,
we follow a homomorphic approach such that not only does
every native HDF5 object have a counterpart in the virtual
object layer, the native relationships have also been preserved
in H5Prov connector. In other words, the virtual objects in the
H5Prov connector have hierarchies just like their HDF5-native
cousins.

For example, when creating a dataset, in addition to the
native dataset in the file, a virtual dataset that contains
provenance related information is also created in the H5Prov
connector’s memory. In a native file, a dataset is located in
either a file or a group, similarly, a virtual dataset will be
added to a linked list (held by the virtual file) when it’s created
or opened. The linked lists on different levels are used to
accommodate concurrent opens on the same entity, either it’s a
file, group or dataset, and to do reference counting accurately.

This homomorphic design allow us to track HDF5 behavior
statefully, thus being able to track more detailed information,

and to easily extend features. For example, if we need to know
how many times a certain dataset is accessed, we can simply
add a field cnt accessed to the virtual dataset structure, keep
updating it, and output when it’s closed. Most provenance
systems (which are stateless) simply record every event they
see as an entry, but are not aware of the relationship between
the events. To capture the number of access to a dataset, they
have to record every access to the dataset as an entry, and then
count them after the upper layer application stops.

Figure 1: HDF5 VOL architecture

At the time of this paper submission, we have built a func-
tioning and robust connector, and it has passed the extensive
HDF5 regression test suite, so we are confident of correctly
supporting any application usage of HDF5. Captured data
includes user ID, process ID, thread ID, HDF5 operation name,
duration of the operation, data object operated on (such as
file/group/dataset object), the read/write size in bytes and so
forth.

We have run large scale I/O benchmarks on NERSC’s Cori
system, with provenance tracking enabled. Because the high
level I/O patterns of these benchmarks are well defined and
thoroughly studied, we are creating an extensive HDF5 I/O
pattern reference in the form of provenance traces for IOR.
This will demonstrate the value in using provenance tracking
for system optimization and make it possible to tune HDF5
more easily for a wider range of HPC systems.

C. Ease of use

To utilize H5Prov, end users don’t have to change their
HDF5 application code. Instead, they just need the latest
HDF5 installed, and to set an environment variable with the
provenance trace file path and format. They don’t even need
to recompile application code – HDF5 will load the VOL
connector automatically. This non-invasive setup minimizes
users’ effort to adopt H5Prov and allows a wider range of
users and developers to trace and tune their applications and
lower level storage systems such as Lustre and NVRAM burst
buffers.



III. PERFORMANCE EVALUATION

A. Experiment setup

1) Testbed: We conducted all the experiments on the Cori
system at the National Energy Research Scientific Computing
Center (NERSC) [11]. Cori is a Cray XC40 supercomputer
with 2,388 Intel Xeon ”Haswell” processor nodes and 9,688
Intel Xeon Phi ”Knight’s Landing” nodes. Our experiments
run benchmarks on 2-128 Haswell nodes, with 64-4096 MPI
ranks respectively.

2) Storage system configuration: We used Cori’s Lustre
file system and burst buffer as storage backends for our
experiments. Lustre is configured with stripe counts of 64
and 128, and a stripe size of 16MB. Cori’s burst buffer (BB)
system is based on Cray Datawarp and has 20GB of SSD
capacity per node. Because BB resource allocation is based on
requested capacity, we requested an oversized 10TB capacity
for experiments of all scales, such that the most possible BB
nodes can be allocated, for maximum performance.

B. Benchmark setup

We used two benchmark kernels, namely VPIC and BD-
CATS (which focus on write and read-only access respec-
tively), to test HDF5 IO performance. The VPIC-IO kernel
is from a plasma physics simulation code called VPIC [12],
which simulates magnetic reconnection phenomenon in space
weather. In this kernel, each MPI process writes 8M (8 ∗ 220)
particles with each particle having 8 variables. VPIC data
structures use 1-D arrays to represent each variable. The total
length of each property array is equal to n ∗ 8 ∗ 220, where
n is the number of MPI processes. The BDCATS-IO kernel
is from a parallel clustering algorithm, used for analyzing the
data produced by particle simulations, such as VPIC. In this
kernel, data related to the particles is read among all the MPI
processes in a load-balanced distribution. While these kernels
use random data values, the I/O patterns exactly match that of
the simulation and analysis. These two kernels use HDF5 and
are highly tuned using MPI-IO and Lustre optimizations.

C. Data placement

We use the same data placement settings for VPIC and
BDCATS. For Lustre experiments, the working directory is
striped with 64 and 128 count, then the VPIC kernel run 5
times in a row, with both data and provenance trace written to
the same working directory. The BDCATS kernel then follows
the same pattern, reading the HDF5 files generated by VPIC
kernel.

For Burst-Buffer experiments, VPIC kernel writes data and
provenance traces to the same BB working directory. For
BDCATS runs, we stage in pre-generated data to the BB before
starting the kernel.

Since each process generates its own provenance file, large-
scale operation will create thousands of files. To reduce the
metadata stress on the backend storage systems, we write the
provenance files to 64 pre-created sub-directories. After the
benchmark is finished, provenance files are compressed and
the tar ball is staged out by the BB. In this way, we ensure

40960

40960

40960

5120

5120

5120

5120

file_close

file_create

group_close

group_create

dataset_close

dataset_create

dataset_write

0 10000 20000 30000 40000

Function count (1024 processors)

H
D

F
5 

fu
nc

tio
n 

ca
lls

(a) VPIC

40960

40960

40960

5120

5120

5120

5120

file_close

file_open

group_close

group_open

dataset_close

dataset_open

dataset_read

0 10000 20000 30000 40000

Function count (1024 processors)

H
D

F
5 

fu
nc

tio
n 

ca
lls

(b) BDCATS

Figure 2: Involved HDF5 functions (with 1024 processors).
The function occurrence of VPIC/BDCATS is highly concen-
trated, mostly focused on dataset read and write.

that application data and provenance data are using the same
storage setup.

D. Investigated HDF5 functions

In the current version, HDF5 has 68 function calls for serv-
ing wide range of user requirement. In VPIC and BDCATS,
only 10 major function calls are used:

• file_create
• file_open
• file_close
• group_create
• group_open
• group_close
• dataset_create
• dataset_open
• dataset_close
• dataset_read
• dataset_write

The occurrence frequencies can be found in Figure 2.

E. Provenance capture overhead

We evaluate the provenance overhead from two aspects,
time cost and trace file footprint. To accurately record the
time used just by the provenance operations, we put additional
timers in each of the VOL operations. Beside the timers that
measure the whole operation’s running time, another timer is
put around the underlying native HDF5 operations that we
can use to calculate the pure VOL overhead. All these times
sum up to be the measurement time overhead. For the space
overhead, we use the size of merged trace files.

For most of the scaling runs, H5Prov took less than one
second of total time to do it’s job, comparing to around
20 seconds of application total running time, this includes
wrapping native HDF5 objects, managing its metadata and
writing to trace files.

With regards to scalability, H5Prov shows good perfor-
mance. The time overhead increases gracefully, and the over-
head only start to be meaningful when it’s scaling up to 1024
processes. This is primarily due to the independent nature of
H5Prov. H5Prov benefits from the burst buffer on both time
overhead and variance 3. From a space overhead perspective,



●●

●
●
●●

●
●

●

●●
●

●

●

●

●●
●
●●

●
●
●●
●●

●
●

●
●
●
●
●

●●

●

●●●

●
●

●
●●

●

●

●●●
●
●

●

●●
●

●
●●●

●

●

●●

●●

●

●●
●
●

●

●●
●
●

●
●

●
●
●

●●
●

●

●

●
●●

●
●●
●
●
●
●
●
●
●

●●

●

●

●●

●

●
●

●●
●●

●

●●

●●

●

●

●●
●

●

●
●
●
●
●

●●
●

●●

●
●●
●
●●●
●●

●

●
●

●

●
●

●

●
●●

●

●●●
●

●
●
●

●

●

●
●
●●

●

●

●
●

●

●

●●

●

●
●

●

●●
●
●

●
●
●

●

●●
●

●●

●

●

●●●

●

●

●●
●
●
●●●

●

●●
●

●●
●●

●

●●

●●
●●
●●

●●

●

●
●●
●

●●

●

●

●

●
●●●●●
●

●
●●

●●
●

●

●
●

●

●

●
●

●

●
●●

●

●●

●
●

●●●
●●

●

●
●●
●●

●

●
●

●●
●●●

●●
●
●

●●

●

●
●
●●●

●

●

●

●
●
●●●●

●

●

●
● ●

●

●●
●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●●
●

●
●

●●
●
●

●●

●
●●●

●

●

●

●

●

●
●
●

●

●

●

●●●
●
●●

●

●

●
●

●
●
●

●
●
●●●

●

●
●

●
●

●

●

●

●
●●●●

●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●
●
●●
●●●
●

●

●
●●●●

●
●

●

●

●

●

●

●

●
●
●●

●

●
●
●

●●

●

●
●●●
●
●
●

●

●
●
●

●

●

●
●

●●

●●

●

●●

●

●

●

●
●
●●

●●

●

●●

●

●●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●
●●
●

●
●
●

●

●

●
●●

●
●
●

●

●

●

●●

●
●

●

●

●
●
●
●

●
●

●

●●

●
●
●●

●

●●

●

●

●

●

●

●●●
●
●

●
●
●

●
●

●●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●●
●

●●●
●

●

●
●●

●

●

●

●

●

●
●

●●

●●
●
●
●
●

●

●

●

●●
●
●●
●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●●
●●

●

●●●●
●●

●

●●
●

●●●

●

●●●
●●

●

●

●●●
●
●●
●
●

●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●

●●
●
●
●
●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●●●
●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●
●●
●●

●●●●

●

●

●

●

●
●●
●●
●
●

●

●

●●

●
●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●●
●
●

●●
●
●●
●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●●●
●

●●●

●

●

●●●●
●
●

●●●
●
●

●

●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●●●●

●

●

●●●●

●●
●

●●
●●
●●
●
●
●

●

●

●

●●

●

●
●

●
●●
●

●
●

●

●●●

●
●●

●

●
●

●
●

●
●
●●

●
●
●●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●

●●

●

●●●

●●●

●
●
●

●
●
●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●
●

●●
●

●●●
●
●●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

1e+05

1e+06

1e+07

64 128 256 512 1024 2048 4096

Scales: Number of processors

m
ic

ro
se

c

(a) Lustre: stripe count = 128

●● ●

●●●●●

●

●
●●

●

●

●

●●

●

●●
●
●

●

●●

●
●

●
●
●
●
●
●

●
●●●

●

●
●

●
●
●

●

●
●●

●

●●●
●
●
●
●●
●●●

●●

●
●

●

●●

●

●●
●●
●●
●●
●

●

●
●
●
●●
●
●

●

●

●
●

●

●●●

●●
●●●

●●●

●●

●●●●
●●
●

●

●
●●

●

●
●●
●

●●

●

●

●●

●

●●

●

●●

●
●

●
●
●
●
●

●

●
●

●

●

●●
●
●
●
●●
●●
●
●

●●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●
●

●

●●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●
●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●
●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●
●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●●

●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●●

●

●
●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●●

●●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●●
●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●●

●

●

●

1e+05

1e+06

1e+07

64 128 256 512 1024 2048 4096

Scales: Number of processors

m
ic

ro
se

c

(b) Burst-buffer

Figure 3: H5Prov temporal overhead: accurately recorded
provenance function running time. The time overhead is pro-
portional to scale and benefits from faster storage systems such
as Burst-buffer.

16

32

64

128

256

512

1024

64 128 256 512 1024 2048 4096

Scales: Number of processors

V
P

IC
 d

at
a 

fil
e 

si
ze

 in
 G

B

(a) Accessed data size

128

256

512

1024

2048

4096

8192

64 128 256 512 1024 2048 4096

Scales: Number of processors

pr
ov

en
an

ce
 fi

le
 s

iz
e 

in
 K

B

(b) H5Prov trace file sizes

Figure 4: H5Prov spacial overhead is negligible comparing
to the accessed data volume. The only performance related
issue is the number of trace files, which equals the number of
processes.

H5Prov trace file size is directly proportional to the total
number of operations (figure 4).

IV. ANALYSIS OF HDF5 PROVENANCE DATA

In this section, we demo the analysis on H5Prov trace data.
Using H5Prov, we captured very fine granular trace for HDF5
applications. It allows us for the first time to have such a close
look at every function.

A. Finding Hot and straggler functions

H5Prov provides statistical information about every func-
tion, such as the number of times it’s called and the the
duration of the function call. This enable us to find the ”hot
functions” on both the frequency and total time cost. Since
both VPIC and BDCATS are relatively simple, and only used
limited HDF5 functions, the data may not look interesting
(figure 2). But it will give us insights when the application
is more complex and uses more HDF5 functions.

B. Data operations

Dataset read and write take the most time during BD-
CATS/VPIC operation. However, the provenance trace shows
that back-end storage systems have very different influence
on their performance. The stripe count settings for Lustre has
little impact to dataset read (figure 5a and 5b), even the burst

buffer has only marginal advantage over Lustre, although BB
helps to reduce the straggler operations slightly(figure 5c).

On the other hand, dataset write performance highly de-
pends on the storage system capability. Counter-intuitively,
with stripe count being 128, dataset write actually is mod-
erately slower than that 64 stripe count on small to moderate
scales (64 to 512 processors). We find this pattern in many
other operations, such as dataset read/open/close (figure 5, 8
and 9). But higher stripe count allow applications to scale more
smoothly, and with less variance. This is because Lustre needs
more time to coordinate between more stripes, thus a raised
baseline latency. This effort is rewarded with better utilized
parallelism on larger scales where the same workload is spread
to more servers.

Meanwhile the burst buffer brought 10-50x performance
gain and better scalability to VPIC (figure 6c), which spends
most of the time in dataset write. It is worth noting that
the application benefits from the burst buffer the most on
dataset write, especially with large chunks of data, but only
gets limited benefits on small I/Os, such as most of HDF5
metadata operations. This was not expected, since the burst
buffer is expected to perform better on small IOPs, and bears
further investigation.

C. Metadata operations

HDF5 metadata operations behave very differently from
data operations. They are generally very light-weight requests
and only access very small pieces of data. There are some
collective metadata operations though, and in these cases
we expected to see overhead increases proportional to the
scale. However, most of metadata operations have comparable
performance on different scales and backend storage systems
only have marginal impact on this.

1) Dataset create/open/close: Dataset create and open op-
erations show similar patterns when scaling. Both scale well,
but the latter shows less variance (figure 8 and 7). This is
because dataset create is a collective operation and needs a
synchronization (coordinated updates to the same HDF5 file)
between all processes while dataset open is an independent
and read-only operation. On dataset create, the burst buffer
helps to eliminate stragglers dramatically, thus showing a
narrower latency distribution.

On dataset open, BB haves strangely, significantly slower
than Lustre on all scales. At this time we’re still investigating
this behavior. Another unexpected result is that BDCATS’
dataset close is about 10x slower than VPIC’s (figure 9 and
10)s. Note that files in BDCATS are opened for read-only
access while they are writable in VPIC (and thus may require
a ”flush” action upon closing). This phenomenon is consistent
across all scales and backend file systems and implies there
could be different optimization solutions adopted in HDF5
core for dataset close when it handles different open mode
(read-only or append/write). Similar phenomenon can be found
in group open and group create (figure 11 and 12), but NOT
in group close (figure 13 and 14).



(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 5: Dataset read scaling: BDCATS. HDF5 dataset read is very efficient, and performs consistently across different storage
systems. Burst-buffer didn’t help much on reading.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 6: Dataset write scaling: VPIC. Involving locking mechanisms on file system access, Burst-buffer provided more than
10x performance gain comparing to Lustre. On Lustre, higher stripe count allows applications to scale more smoothly, and
with less variance, but may bring some coordination overhead between Lustre OTSs. This is significant on small scales, but is
well paid off on larger scales when the overhead is amortized.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 7: Dataset create scaling: VPIC. Faster storage helps the most to reduce variance and straggler operations, but not for
mean or median time.



(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 8: Dataset open scaling: BDCATS. This operation performs small data reading from file system’s view. Storage system
performance have little impact over dataset open. Burst-buffer’s abnormal behavior should be investigated further.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 9: Dataset close scaling: VPIC. Dataset close is a simple function, only needs to release some local resource and has
no collective operations.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 10: Dataset close scaling: BDCATS



2) Group create/open/close: We notice that group open
takes slightly longer median time to finish and has much wider
variance than does group create (figure 11 and 12), this seems
to be counter-intuitive because the collective group create
needs to sync up with all processes. We found that an internal
metadata collective read caching mechanism is not activated
by default. With the optimization enabled, group open and
file open can reach the same performance on Lustre as it on
Burst-buffer. (We didn’t run full scale test for this due to time
limitations.)

3) File create/open/close: File level metadata performance
is fairly straightforward. More Lustre OSTs and burst buffer
nodes both help to reduce the mean time and operation
variance (figure 15 and 16).

V. RELATED WORK

Darshan [13] is a well-established application-level I/O
characterization tool, that captures applications’ I/O behavior
at large scales on production systems. Darshan provides light-
weight I/O tracing, and has been deployed on many production
supercomputer systems. In contrast to the H5Prov connector,
Darshan sits between storage system and application software
stack, and focuses on very low-level information, such as
recording read, write, data volume, timestamp and so on. It’s
not aware of the I/O semantics to the application and so users
need to make sense from the trace in a statistical manner, and
”guess” the relationship between two I/O events.

TOKIO [14]is a framework for holistic characterization and
analysis of I/O workloads on HPC systems. The implementa-
tion of TOKIO is PyTOKIO [15]. TOKIO provides an abstrac-
tion layer between component-level monitoring tools already
deployed on HPC platforms (such as topology information
from Slurm and Cray SDB, application I/O from Darshan,
file system load information from LMT) and higher-level I/O
analysis tools that utilize this data. TOKIO plays the role of
an aggregator that receives traces from various sources on
different levels and outputs a organized and unified data for
further analysis. TOKIO tracks many aspects of a production
system, but it lacks of the semantics application I/O that
H5Prov can gather.

IOMiner [16] is an I/O log analysis framework. IOMiner
provides an interface for analyzing trace or log data, a unified
storage schema that hides the heterogeneity of the raw in-
strumentation data, and a sweep-line-based algorithm for root
cause analysis of poor application I/O performance. IOMiner
can be used to analyze H5Prov provenance data.

VI. CONCLUSION

In this paper, we describe the design, implementation and
application of H5Prov, a new provenance virtual object layer
(VOL) connector for HDF5. We have shown that H5Prov
trace is a powerful tool to detect application I/O patterns
and unusual storage behaviors. With large scale experiments,
we have verified that H5Prov is lightweight, scalable and
extensible, and is capable of revealing many I/O issues that
are difficult to find with other tracing tools.

Even without the knowledge of the HDF5 library implemen-
tation, H5Prov can provide us useful insights about application
I/O. It is worth noting that the sample data we analyzed
only covers function names and the duration of the function
calls for simplicity, but this is just a small subset of what
H5Prov can record. With all the data fields enabled and adding
new features such as tracking collective I/O, we will be able
to reveal more hidden facts about HDF5 applications’ I/O
behavior and use them to improve HDF5 and application
performance.

VII. FUTURE WORK

Based on this work, we will collect provenance traces
from a larger number of applications and will analyze the
provenance data with data mining/machine learning techniques
to find correlation and/or causation between I/O patterns and
performance degradation. With the knowledge about these I/O
pattern relationships and performance, we plan to optimize
HDF5 operations, and the optimizations can be verified by
benchmarks and real applications, using the provenance con-
nector.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, under contract number DE-AC02-05CH11231. This
research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] “The HDF5 library and file format,” https://www.
hdfgroup.org/solutions/hdf5/, accessed: 2019-04-26.

[2] “Automatic Library Tracking Database at
NERSC,” https://sdm.lbl.gov/exahdf5/papers/
201810-HDF5-Usage.pdf, accessed: 2019-4-28.

[3] H. Tang, X. Zou, J. Jenkins, D. A. Boyuka, S. Ranshous,
D. Kimpe, S. Klasky, and N. F. Samatova, “Improving
read performance with online access pattern analysis
and prefetching,” in European Conference on Parallel
Processing. Springer, Cham, 2014, pp. 246–257.

[4] H. Tang, S. Byna, S. Harenberg, X. Zou, W. Zhang,
K. Wu, B. Dong, O. Rubel, K. Bouchard, S. Klasky et al.,
“Usage pattern-driven dynamic data layout reorganiza-
tion,” in 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE,
2016, pp. 356–365.

[5] H. Tang, S. Byna, S. Harenberg, W. Zhang, X. Zou, D. F.
Martin, B. Dong, D. Devendran, K. Wu, D. Trebotich
et al., “In situ storage layout optimization for amr spatio-
temporal read accesses,” in 2016 45th International Con-
ference on Parallel Processing (ICPP). IEEE, 2016, pp.
406–415.

[6] “HDF5 VOL User Guide,” https://support.hdfgroup.org/
HDF5/doc/UG/HDF5 Users Guide.pdf, accessed: 2019-
1-18.



(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 11: Group create scaling: VPIC. Group create is a small but collective function, thus suffers from straggler operations.
The burst buffer has much lower response time, so it eliminates the stragglers and speeds up the collective operation as a
whole.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 12: Group open scaling: BDCATS. Similar to group create, group open gets benefits from Burst-buffer, but because the
cache for collective metadata reading is disabled by default, it shows a moderate scalability issue.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 13: Group close scaling: BDCATS



(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 14: Group close scaling: VPIC

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 15: File open scaling: BDCATS. In this function, one data file is opened in read-only mode by all processes. Note
that this involves with a file system metadata request, and there are only 5 metadata servers (MDT) in Cori’s Lustre setup,
having more stripe count accesses more MDT servers, thus the workload is better distributed and shows lower mean time and
variance.

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 16: File create scaling: VPIC. File create is similar to file open, except for a write mode, so it shows same pattern as
file open does.



(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 17: File close scaling: VPIC

(a) Lustre: stripe count = 64 (b) Lustre: stripe count = 128 (c) Burst-buffer

Figure 18: File close scaling: BDCATS

[7] J. Liu, Q. Koziol, G. F. Butler, N. Fortner, M. Chaarawi,
H. Tang, S. Byna, G. K. Lockwood, R. Cheema, K. A.
Kallback-Rose, D. Hazen, and M. Prabhat, “Evaluation
of HPC Application I/O on Object Storage Systems,” in
2018 IEEE/ACM 3rd International Workshop on Parallel
Data Storage Data Intensive Scalable Computing Sys-
tems (PDSW-DISCS), Nov 2018, pp. 24–34.

[8] “ADIOS VOL,” https://bitbucket.org/berkeleylab/
exahdf5/src/master/vol\ plugins/swift/, accessed: 2019-
4-20.

[9] B. Dong, S. Byna, K. Wu, , H. Johansen, J. N. John-
son, and N. Keen, “Data Elevator: Low-Contention Data
Movement in Hierarchical Storage System,” in 2016
IEEE 23rd International Conference on High Perfor-
mance Computing (HiPC), Dec 2016, pp. 152–161.

[10] B. Dong, T. Wang, H. Tang, Q. Koziol, K. Wu, and
S. Byna, “ARCHIE: Data Analysis Acceleration with
Array Caching in Hierarchical Storage,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE,
2018, pp. 211–220.

[11] “Cori the supercomputer at NERSC,” http://www.nersc.
gov/users/computational-systems/cori, accessed: 2018-
10-9.

[12] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat,

R. Aydt, Q. Koziol, and M. Snir, “Taming Parallel
I/O Complexity with Auto-tuning,” in Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 68:1–68:12.
[Online]. Available: http://doi.acm.org/10.1145/2503210.
2503278

[13] P. Carns, K. Harms, W. Allcock, C. Bacon,
S. Lang, R. Latham, and R. Ross, “Understanding
and Improving Computational Science Storage Access
Through Continuous Characterization,” ACM Trans.
Storage, vol. 7, no. 3, pp. 8:1–8:26, Oct. 2011. [Online].
Available: http://doi.acm.org/10.1145/2027066.2027068

[14] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns,
and N. J. Wright, “A Year in the Life of a Parallel File
System,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’18. Piscataway, NJ, USA:
IEEE Press, 2018, pp. 74:1–74:13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291656.3291755

[15] G. Lockwood, N. Wright, S. Snyder, P. Carns, G. Brown,
and K. Harms, “TOKIO on ClusterStor: Connecting Stan-
dard Tools to Enable Holistic I/O Performance Analy-
sis,” https://escholarship.org/uc/item/8j14j182, accessed:



2019-4-18.
[16] T. Wang, S. Snyder, G. Lockwood, P. Carns, N. Wright,

and S. Byna, “IOMiner: Large-Scale Analytics Frame-
work for Gaining Knowledge from I/O Logs,” in 2018
IEEE International Conference on Cluster Computing
(CLUSTER), Sep. 2018, pp. 466–476.


