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Abstract—Scientific applications frequently spend a large
fraction of their execution time in reading and writing data
on parallel file systems. Identifying these I/O performance
bottlenecks and attributing root causes are critical steps to-
ward devising optimization strategies. Several existing studies
analyze I/O logs of a set of benchmarks or applications
that were run with controlled behaviors. However, there is
still a lack of general approach that systematically identifies
I/O performance bottlenecks for applications running “in the
wild” on production systems. In this study, we have developed
an analysis approach of “zooming in” from platform-wide
to application-wide to job-level I/O logs for identifying I/O
bottlenecks in arbitrary scientific applications. We analyze the
logs collected on a Cray XC40 system in production over a
two-month period. This study results in several insights for
application developers to use in optimizing I/O behavior.

I. INTRODUCTION

Parallel I/O remains a critical tool for reading and writing
large volumes of data produced by scientific simulations,
experiments, and observations. Simulation codes such as
fusion [1], climate [2], and cosmology [3] produce tens to
hundreds of terabytes of data. Similarly, experimental and
observational instruments such as light sources [4] and as-
tronomy observations [5] produce terabytes of data per day.
Efficient I/O on parallel file systems of high-performance
computing (HPC) systems is critical for accelerating science.

Identifying and attributing root causes of poor I/O perfor-
mance are the crucial steps in optimizing I/O performance.
Several monitoring tools have been developed toward this
goal. Among them, Darshan [6], which has been deployed on
several HPC systems, characterizes application-level perfor-
mance [6]. File system tools such as the Lustre Monitoring
Toolkit (LMT) [7] for Lustre and ggiostat [8] for GPFS
characterize system-level performance.

Several analyses of I/O logs have identified system-level
factors such as I/O traffic and metadata server load as
contributing to poor I/O performance. For example, Yildiz
et al. [9], Lockwood et al. [10], and Lofstead et al. [11]
have analyzed the impact of file systems using a selected
group of benchmarks and applications. While system-level
analysis identifies common contributing factors affecting
broad subsets of jobs1, they do not identify contributing
factors within the applications themselves.

1We refer a single application execution as a ‘job’.

At the application level, several researchers, including
Devendran et al. [12] and Li et al. [13], analyzed I/O
behavior and identified bottlenecks by ingesting the profiling
code inside the application code. This approach requires a
nontrivial amount of manual intervention, however, and is
impractical for studying on a wide spectrum of applications.

In our previous work [8], we performed a long-running
holistic analysis to investigate how system state impacts
application I/O performance. We executed a set of bench-
marks periodically for an entire year with controlled I/O
behaviors (i.e., process count, I/O patterns, and file system
stripe settings) and studied how I/O performance of different
runs varies across both the long-term and short-term time
windows. We then attributed performance variation to sys-
tem “weather” changes. We have continued this work by
studying Darshan logs collected from the general production
job population over a two-month period. A preliminary
analysis revealed that sometimes the same application may
use different numbers of processes, choose different I/O
patterns, and select diverse file system configurations from
execution to execution. Consequently, performance of these
applications varies widely. Identifying and attributing the
application-level settings that cause poor I/O performance
are challenging tasks because of the diverse configurations.

In this study, we built on our previous work by devel-
oping techniques to systematically identify I/O bottlenecks
in arbitrary applications running “in the wild” in addition
to applications and benchmarks executed in a controlled
fashion, and we investigate the impact of system-level and
application-level factors on the I/O performance. We devised
a systematic “zoom-in” analysis strategy for identifying ap-
plications’ I/O performance bottlenecks, and we conducted a
comprehensive study of I/O logs collected over a two-month
period on a production supercomputing system.

In our analysis, we first summarize a list of common I/O
factors that impact I/O performance. These factors come
from either the system weather (e.g., storage server load)
or applications’ I/O behavior (e.g., percentage of small I/O).
We then analyze how these factors globally impact all the
jobs running on the system. To locate the key factors that
impact the individual applications’ I/O performance, we
group together the jobs belonging to the same application
(identified by name). For each application, we leverage



parallel coordinates plot to cluster together jobs bottlenecked
by the same contributing factors. We then “zoom in” on
the jobs whose performance bottleneck is indistinguishable
from the parallel coordinates plot and find out their perfor-
mance bottleneck by an in-depth analysis of their detailed
I/O behavior. With this zoom-in analysis, we are able to
identify the common performance bottlenecks that impact
I/O performance of a group of jobs or of an individual job.
We have created a set of tools that are reusable for analyzing
I/O logs collected by Darshan, the Slurm job scheduler [14],
and Lustre file system monitoring. The overall contributions
of this paper are as follows.

• Propose a top-down analysis approach for systemat-
ically zooming in on applications’ I/O bottlenecks.
Using this approach, we comprehensively analyze
≈88,000 I/O logs produced during a two-month period.
Our analysis identifies the common performance bottle-
necks for any application of interest and also uncovers
several important I/O performance contributing factors
that had previously received minimal attention.

• Demonstrate that none of the system-level factors could
be identified as prominent to poor I/O performance
in analyzing a large set of Darshan logs, where the
applications were run without same configurations.

• Demonstrate that application-level configurations—
such as a single process undertaking exceptionally
heavy I/O, a single storage server storing all data,
or unbalanced I/O from application processes and to
servers—are typical causes of poor I/O performance.

• Develop a set of tools that are reusable for this analysis.
These tools are able to visualize the I/O behavior of
each job, as well as the impact of I/O contributing
factors to the I/O bandwidth of a cluster of jobs
belonging to any selected applications and users.

The remainder of the paper is organized as follows. We
briefly discuss the I/O monitoring tools and techniques used
in this study (§II). We then discuss our analysis strategy
(§III) and present an analysis of logs collected over two
months on a production system (§IV). We discuss the related
work in system-level and application-level analysis (§V) and
briefly summarize our conclusions (§VI).

II. BACKGROUND

In this section, we first provide a high-level overview of
the I/O instrumentation tools used in this study. We then
present the techniques we used for our analysis.

A. Overview of existing I/O instrumentation tools

Darshan, Slurm, and the LMT are widely adopted instru-
mentation tools on HPC systems. These tools collect job-
level I/O statistics, job-level resource utilization, and file-
system-level I/O traffic, respectively.

1) Darshan instrumentation: Darshan is a lightweight,
application-level I/O characterization tool designed to collect
compact histograms, cumulative timers, and statistics that
are representative of a job’s I/O behavior. In a parallel
program, each process independently records its per-file
statistics, such as the total bytes written/read, start and end
times of the write/read activity, and total read/write/metadata
time on each file. The per-file statistics from each process
are later aggregated before the application terminates, during
which the statistics of accessing shared files (accessed by all
or a portion of processes), private files (files accessed by one
process), and the entire job (e.g., total bytes read/written by
a job) are calculated and recorded as well.

2) Slurm logs: Slurm is a resource manager that allocates
compute node resources for jobs submitted to a batch queue.
It maintains a database that records the resource utilization
of each job. We use the node count allocated to each job,
since this information is not available in Darshan logs.

3) LMT log: The Lustre Monitoring Tool (LMT) mon-
itors the I/O activity on the Lustre file system servers
(e.g., Object Storage Servers (OSS), Object Storage Targets
(OST), and MetaData Servers (MDS)). LMT collects I/O
statistics at 5-second intervals, such as the CPU utilization
of OSSes, MDSes, and the bytes read/written on the OSTs.

B. Sweep-line-based analysis

Darshan contains I/O statistics for both private and shared
files accessed during a job’s execution, such as the start and
end times of the write/read activity on each file. Since large-
scale simulation or analysis may access tens of thousands of
files, finding I/O bottlenecks is a time-consuming process.

To tackle this, we introduced sweep-line analysis in
IOMiner [15] to select a minimal set of files whose I/O
time covers the I/O time of all file accesses in the job.
We refer to this “minimal set” as the IO covering set. In
Figure 1, six files are accessed in different periods, and the
total I/O time is 18 seconds. The entire I/O time is covered
by the I/O accesses of File1, File2, and File5. The non-
overlapped portion of these three files is marked in red and
selected as the IO covering set. The performance bottlenecks
of accessing these files now represent the bottleneck for the
entire job, since their I/O time covers this job’s I/O time.
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Figure 1. Overview of sweep-line-based analysis [15].



Table I
KEY FACTORS THAT AFFECT I/O BANDWIDTH

1 Data size (Datasize)
total number of bytes
written/read by
all MPI processes

2 Process count (nprocs) # of MPI processes
3 Node count (nnodes) # of compute nodes

4 Metadata overhead (Mtime)

% of CPU cycles spent
on metadata operations
over total CPU cycles
spent on I/O

5 Collective I/O (Col) use of collective buffering

6 Storage server count (OST #) # of storage servers
used by a job

7 Small I/O percent (Small (%))
% of small I/O (<1KB)
among all the
number of reads/writes

8 Sequential I/O percent (Seq (%))
% of sequential I/O requests
among all the
number of reads/writes

9
Data size distribution
among processes
(MaxRankIO)

distribution of
bytes written/read
among all
the processes

10 Request count distribution
among processes

distribution
of number of read/write
requests among processes

11 Data size distribution
among storage servers

distribution of
bytes written/read among
all the storage servers

12 Request count distribution
among storage servers

distribution of
read/write requests
issued to the storage servers

13 OSS CPU utilization
(ossAvgCPU (%))

average CPU utilization
of job’s storage servers
5-second before it starts

14 MDS CPU utilization
(mdsAvgCPU(%))

average CPU utilization
of the metadata server
5-second before job starts

15 OST I/O traffic
(ostAvgIO (MB))

average bytes read/written
on job’s storage servers
5-second before it starts

III. ZOOM-IN ANALYSIS APPROACH FOR I/O
BOTTLENECK DETECTION AND ATTRIBUTION

In this section, we present our approach for I/O bottleneck
analysis. We first summarize the factors contributing to I/O
performance, then outline the workflow and tools developed
for our proposed approach.

A. Key factors contributing to I/O performance

In Table I, we summarize an extensive list of factors
that affect I/O performance. The factors numbered 1 to 8
(shown in gray) are the those widely considered as important
in previous studies. For instance, factors 1 to 6 have been
frequently discussed in previous literature [16], [17], [18].
Factors 7 and 8 are those that I/O tuning techniques aim to
optimize [19], [20]. Factors 9 to 12 (shown in blue) are the
factors identified as important during this study. Factors 13
to 15 (in yellow) are the key factors that show the current
status (“I/O weather”) of the system, identified as important
in our previous study [8]. In this study, we consider a job’s
“weather” 5-second before it starts.

B. Zoom-in analysis on the performance impact of different
contributing factors

We investigate the performance impact of the factors in
Table I in different scopes. At the system or platform level,
we identify the factors that have high impact across all the
jobs running on the entire computing system. Optimizing
these factors can potentially have platform-wide I/O perfor-
mance improvement. We build a correlation matrix based on
the contributing factor values and I/O bandwidth of each job,
for measuring the global correlation of these factors with I/O
bandwidth; and we visualize this matrix using a heatmap.

At the application level, our analysis identifies the most
significant factors that impact the individual application’s
I/O bandwidth, enabling application developers to optimize
these factors. Since jobs belonging to the same applications
can be launched by different users with various configu-
rations (e.g., process count, data size, I/O pattern), their
bandwidth often falls into different categories (e.g., (0,
1] GB/s, (1, 10] GB/s, (10, 100] GB/s). To cluster the
jobs based on their key performance-impacting factors (i.e.,
performance bottlenecks), we use parallel coordinates plots
to cluster jobs first based on their users, since the same users
often run applications with similar configurations, resulting
in groups of jobs with similar I/O bandwidth and key
performance-impacting factors. For each user, our parallel
coordinates plot further clusters its jobs based on their
bandwidth categories and performance-contributing factor
values. This gives us insights into how these factors impact
jobs in each bandwidth category.

Job-level analysis is needed when the performance bottle-
neck is indistinguishable from the parallel coordinates plot.
We visualize I/O activity of jobs using sweep-line analysis
(e.g., Figure 1) and investigate potential bottlenecks of the
I/O accesses to the job’s IO covering set files.

C. Tools developed for the zoom-in analysis

We have developed several tools for our top-down anal-
ysis, including ones to generate heatmaps and parallel co-
ordinates plots for platform- and application-wide analysis,
respectively, and a tool to visualize the sweep-line method
for job-level analysis. Furthermore, we have developed a tool
to extract important statistics for IO covering set files.

IV. BOTTLENECK ANALYSIS ON I/O LOGS

In this section, we first conduct a platform-wide analysis
of the contributing factors listed in Table I, and then inves-
tigate how they impact the individual applications and jobs.
We end the section with a summary of the key discoveries.

We perform our analysis on all available Darshan logs
collected from runs on the Cori supercomputer hosted at
the National Energy Research Scientific Computing Center
(NERSC) during October 2017 and November 2017. Over-
all, there were 1.7 million Darshan logs, which capture 74
million core-hours and write/read traffic of 11.5 PB data.



Correlating the Darshan logs with the Slurm job scheduler
logs reveals that these Darshan logs cover 39% of the total
core-hours. In the remainder of the analysis, we exclude the
jobs that write/read <1 GB of data or those that use a single
process, because their I/O bandwidth is limited by the small
data size or process count. We also exclude jobs with a run
time of smaller than 5 minutes, because I/O time is important
for jobs running across a reasonable timespan. These two
constraints leave ≈88,000 jobs for further analysis.

Figure 2. Heatmap showing the impact of different contributing factors
to jobs’ I/O bandwidth (I/O bandwidth is abbreviated here as BW).

A. Platform-wide impact of all the contributing factors

At the platform-wide level, we analyzed contributing
factors 1–8 and 13–15 from Table I. The remaining factors
were calculated based on applications’ internal behavior and
are used in the fine-grained application-level analysis. In
Figure. 2, we show the correlation heatmap of all factors
with I/O bandwidth. Among the 8 application-level con-
tributing factors (1–8), 5 have a correlation coefficient either
>0.1 (positive impact) or < − 0.1 (negative impact). Data
size and nprocs show the highest impact, with a correlation
coefficient of 0.38 and 0.25, respectively. In contrast, the
three system weather factors mdsAvgCPU, ossAvgCPU, and
ostAvgIO have a correlation coefficient of only -0.02, -
0.03, and -0.02, respectively. These observations suggest that
contributing factors have different impacts on I/O bandwidth.
However, none of them alone have significant platform-wide
impact on all the jobs, because of the large number of jobs
and the distinct I/O behaviors. We have also observed that a
few contributing factors exhibit correlations with each other.
For instance, the correlation between nprocs and nnodes is
0.39, and the correlation between Small and MTime is 0.34.
Understanding the correlation between different factors is
helpful when the applications’ I/O bandwidth is limited by
multiple correlated factors. For instance, when both Small
and MTime are high, long MTime may be caused by the
seek overhead from too many small I/O operations.

B. Overview of top applications consuming CPU-hours

To investigate the impact of key factors contributing to
the I/O performance of individual applications, we grouped
the ≈88,000 jobs based on their binary executable names

Figure 3. Top 15 CPU core-hour-consuming applications. The % value
on top of each bar refers to the ratio of total core-hours of all the jobs in
an application to the total core hours of all the 88k jobs.

Figure 4. Distribution of the bandwidth of top core-hour-consuming
applications among the selected jobs.

and sorted them based on the total number of CPU-hours
used by each executable group. Figure 3 shows the top
15 applications with the percentage of total CPU-hours
consumed by each application. We have anonymized these
applications to conceal the identity of the users by showing
the science area of an application and adding an integer
suffix when there are multiple applications in the same area,
for example, Cosmology1 and Cosmology2. Overall, these
15 applications account for 70% of the total Darshan log
count among the ≈88,000 logs and consume 74% of the
total CPU-hours.

In Figure 4 we plot the I/O bandwidth distribution of
the 15 applications. The I/O performance varies by multiple
orders of magnitude for the same application. We studied the
root causes of this variation and identified factors contribut-
ing to the poor I/O performance. Because of the page limit,
we select to show Cosmology1, Combustion1, Cosmology2,
Climate1, and Quantum1 applications for further analysis
because they either consume a large fraction of CPU-hours
or are highlighted by the supercomputing facility.

We choose a subset of I/O impacting factors in Table I
and include them in a parallel coordinates plot, as shown
in Figure 5 for the Cosmology1 application. Parallel coor-
dinates are a typical visualization tool for showing multiple
variable quantities in the same plot [21]. The plot lines are
color coded based on users; in Figure 5, the red and blue
lines represent two distinct users. We use MaxRankIO to



reflect the impact of the skewed data distribution of factor
9 in Table I, defined as Equation 1, where Smax is bytes
written/read by the MPI rank2 with maximum I/O, because
we observed that one rank often writes/reads exceptionally
more data than do the others; Si is the I/O size of each rank;
and nprocs is the number of MPI ranks in a job.

MaxRankIO = Smax/

nprocs−1∑

i=0

Si (1)

While other factors outside those in a parallel coordinates
plot could also become the performance bottleneck, they
could be further identified by using the sweep-line analysis.

C. Analysis of Cosmology1 I/O

Figure 5. Impact of contributing factors to Cosmology1 I/O.

In Figure 5, we plot the representative contributing factor
values of all the jobs of Cosmology1. Each job has a unique
JobNo; its line spans across the axis of all the contributing
factors, and its point on each axis represents its value on
the corresponding contributing factor. UserNo represents the
user that runs the job. Jobs run by different users are in
different colors. In Figure 5, ten jobs (JobNo) belong to
two users (UserNo). The bandwidth (BW) of all the jobs is
above 1 GB/s. We can see that all the jobs use at least 14
OSTs (OST #), sequential I/O (Seq) dominates at least 75%
of the total I/O requests, the small I/O percentage (Small)
is constantly below 5%, and the percentage of CPU cycles
on metadata operations (MTime) is within 1%. These factor
values suggest that Cosmology1’s I/O pattern is well formed.
On the other hand, the average CPU utilization of the storage
server 5 seconds before the job starts (ossAvgCPU) is below
4%, and the average CPU utilization of the metadata server
5 seconds before job starts (mdsAvgCPU) is below 33%.
The average storage server I/O traffic 5 seconds before the
job starts is below 122 MB (ostAvgIO), a tiny fraction
of each storage server’s maximum I/O traffic (15 GB).
These weather factor values (mdsAvgCPU, ossAvgCPU,
ostAvgIO) suggest that file system weather trivially impacts
Cosmology1 I/O when the jobs start.

Despite the well-formed I/O behavior and friendly file
system weather, the bandwidth of jobs run by both User

2A rank in our context refers to an MPI rank, which is a process.

(a) jobs with [1,10)GB/s (b) jobs with [10,100)GB/s

Figure 6. I/O activity of jobs for User 0 of analysis

0 (red) and User 1 (light blue) falls into the range [1,10)
GB/s and [10, 100) GB/s, respectively. The root causes are
not distinguishable from the existing contributing factors in
Figure 5.

To identify the root causes for this behavior, we ‘zoomed
in’ on one job from each bandwidth category for each
user. We plot the I/O sweep-line analysis of each job in
Figures 6(a) and 6(b) for User 0 and in Figures 7(a) and
7(b) for User 1. The light blue lines in these figures are I/O
activities of each rank writing/reading a file. The dark blue
lines are the I/O activities on files of the IO covering set for
the job. The x-axes in these plots show the execution time.
In Figure 6(a), every rank is involved in many bursty I/O
phases. These frequent I/O phases are the key performance-
limiting factors for the job referred to in Figure 6(a), since
the I/O time of each I/O phase is bound by the slowest
rank. In contrast, the bandwidth for the job referred to in
Figure 6(b) is higher because each rank takes part in only
two I/O phases.

In Figures 7(a) and 7(b), we show the I/O accesses of
[1, 10) GB/s jobs and [10, 100) GB/s jobs for User 1,
respectively. In Figure 7(a), the IO covering set includes
four lines. Our investigation of these file accesses in the
Darshan log reveals that these lines are generated by the
I/O activities of writing eight files. The top six files with
the longest I/O time range from 15 GB to 22 GB and are
concurrently written by 64 processes, on average. However,
all these files are stored on one Lustre OST using the default
stripe count (1) set by the system. The time for writing these
files is constrained by the single OST’s bandwidth, which
we attribute as the reason for poor I/O performance. In
Figure 7(b), the IO covering set is dominated by the activity
of reading two “RESTART” files of size 21 GB and 16 GB
with 64 and 48 processes, respectively. Each file is stored on
only one OST, similar to Figure 7(a). However, the aggregate
bandwidth in reading these files far exceeds the single OST
bandwidth, indicating that all or a fraction of these files are
cached on the file system.

D. Analysis of Combustion1 I/O

In Figure 8, we show the parallel coordinates plot of
Combustion1. There are 59 jobs belonging to three users.
They exhibit diverse bandwidth spectra. For example, User



(a) jobs with [1,10)GB/s (b) jobs with [10,100)GB/s

Figure 7. I/O activity of jobs for User 1 of Cosmology1.

Figure 8. Impact of contributing factors to Combustion1 I/O.

0’s jobs (red) fall in (0, 1) GB/s. User 1’s (green) job fall
in [0, 1) GB/s and [1, 10) GB/s. User 2’s (blue) jobs fall in
[0, 1) GB/s, [1, 10) GB/s, and [10, 100) GB/s. The system
weather (e.g., ossAvgCPU, ostAvgIO, mdsAvgCPU) trivially
impacts I/O bandwidth, since the values mostly stay at low
value similar to those of Cosmology1. Although the highest
value of mdsAvgCPU is around 54%, it does not correlate
with the high CPU cycles spent on metadata operations (e.g.,
MTime (%)).

In Figure 8, we can see that User 0’s jobs (red) are
bottlenecked by a large percentage of small I/O jobs, since
all its jobs’ small I/O percent (Small %) is around 100%.
To identify the performance bottleneck for User 1’s (green)
jobs, we select two representative jobs from each of its
bandwidth category and show their activities in Figures 9(a)
and 9(b). In Figure 9(a), the IO covering set (dark blue)
is dominated by seven of rank 0’s I/O activities, as rank
0 writes/reads much more data than other processes and

(a) jobs with [0,1) GB/s (b) jobs with [1,10) GB/s

Figure 9. I/O activity of jobs for User 1 of Combustion1.

(a) jobs with [0,1)
GB/s

(b) jobs with [1,10)
GB/s

(c) jobs with [10,100)
GB/s

Figure 10. I/O activity of jobs for User 2 of Combustion1.

straggles the entire job. In Figure 9(b), the IO covering set
is dominated by a long dark blue line. In its I/O activity, a
shared file of size 65 GB is accessed by all the processes
(as indicated by the large blue rectangular area). However,
after investigating this file’s Darshan records, we observe
that only one process performs the actual read operation,
which straggles the entire job.

Figure 10 shows the I/O activities of User 2’s (blue in
Figure 8) jobs that obtain bandwidths in the ranges of [0, 1)
GB/s, [1, 10) GB/s, and [10, 100) GB/s. In Figure 10(a), the
IO covering set is dominated by four I/O activities resulting
from four ranks writing the same file with an aggregate of
7.2 million small write requests. The large number of small
writes are the bottleneck for this job’s low I/O bandwidth. In
Figure 10(b), one large dark blue line dominates the covering
set. During this activity, 72 ranks concurrently read a 73 GB
shared file striped across 72 OSTs, and some of these OSTs
are contended by other ranks. For instance, in Figure 11,
we show another level of zooming in on this job’s I/O
workload on Lustre OSTs. The star-marked points represent
this job’s I/O traffic on the 72 OSTs. Reading this shared
file is bottlenecked by two spikes produced by the concurrent
I/O activities from other ranks. In Figure 10(c), the covering
set is dominated by three dark blue lines resulting from
I/O accesses to two files. Writing one file accounts 85%
of the I/O time, during which 72 processes concurrently
write a 73 GB shared file striped across 72 OSTs. However,
these OSTs’ I/O workloads are more balanced than those
in Figure 11, as suggested by Figure 12. This explains
the higher I/O bandwidth of this run than that shown in
Figure 11.

E. Analysis of Cosmology2 I/O

In Figure 13, we show the parallel coordinates of Cosmol-
ogy2 that contains three jobs of one user. All of them use
248 OSTs and 64K processes. Their bandwidth is within
[1,10) GB/s. In Figure 14, we show the I/O activity of
one Cosmology2 job. The I/O time is dominated by a
blue rectangular region involving all the ranks concurrently
reading a shared file placed on only one OST because of the
use of default stripe count (1), limiting its I/O bandwidth to
2.1 GB/s, below a single OST bandwidth (3 GB/s).



Figure 11. I/O workload on OSTs for a Combustion1 job corresponding
to Figure 10(b).

Figure 12. I/O workload on OSTs for a Combustion1 job corresponding
to Figure 10(c).

F. Analysis of Climate1 I/O

In Figure 15, we plot the parallel coordinates plot of
the Climate1 application with 693 jobs of four users. We
focus on analyzing the performance of Users 2 and 3 since
the contributing factor values of the other two users are
entirely covered by these. Figure 16 and Figure 17 show the
parallel coordinates plots for Users 3 and 2, respectively. In
Figure 16, the I/O bandwidth of all the jobs is within (0,1)
GB/s. This unanimously low bandwidth correlates with the
contributing factor MaxRankIO, which is around 77% and
78% for all the jobs, meaning data written/read by one rank
dominates the total bytes written by all the ranks.

In Figure 17, we plot the contributing factor values for
User 2’s jobs. Their I/O bandwidth fall in [0, 1) GB/s and

Figure 13. Impact of contributing factors to Cosmology2 I/O.

Figure 14. I/O activity of Combustion2 I/O.

Figure 15. Impact of contributing factors to Climate1 I/O.

[1,10) GB/s. A detailed inspection reveals that all of these
jobs’ I/O bandwidths are within (0–1.5] GB/s. We select
one of these jobs and plot its I/O sweep-line in Figure 18.
We see multiple bursty I/O accesses involving all the ranks,
followed by a number of I/O accesses that include a subset
of processes (32 out of 1,024). The IO covering set is
dominated by rank 0 writing 3 log files of 60.8 MB, 1.6
MB, and 0.2 MB. In writing these files, rank 0 issues 0.82M
sequential writes. We have also observed that a long time
was spent in writing these files from this user’s other jobs,
even though they were run on different days. This long write
time is probably due to some special treatment for writing
logs (e.g., use of O DIRECT). Further investigation into the
application’s I/O code is needed to confirm the root cause.

G. Analysis of Quantum1 I/O

In Figure 4, the range of bandwidth obtained by the
Quantum1 application spans between a few megabytes per

Figure 16. Impact of contributing factors to User 3’s jobs of Climate1.



Figure 17. Impact of contributing factors to User 2’s jobs of Climate1.

Figure 18. I/O activity of User 2’s jobs of Climate1.

second to hundreds of gigabytes per second. This application
has the second largest job count and spends the most CPU-
hours in the analyzed logs (see Figure 3). Because of
its large job count, we choose not to include its parallel
coordinates plot and instead plot the bandwidth range for
jobs of different users in Figure 19.

Figure 19. Bandwidth distribution of different users of the Quantum1
application.

We can see that the I/O bancwidth of User 19’s jobs covers
all the bandwidth ranges: (0, 1) GB/s, (1,10] GB/s, (10,100]
GB/s, and >100 GB/s. Because of this wide range, we focus
on analyzing User 19’s jobs.

In Figure 20, we show the parallel coordinates plot for
User 19’s jobs. One job falls in (0,1) GB/s. This job
writes/reads 1.2 GB of data. While the small data size is
a bandwidth-limiting factor, we also plot its I/O accesses in
Figure 21(a). Its IO covering set is dominated by a long I/O
activity (dark blue), in which rank 39 writes a 4.8 MB file,
accounting for 73% of this job’s total I/O time. In writing
this file, rank 39 issues eight sequential seeks and writes.
This well-formed I/O pattern suggested that its long write

Figure 20. Impact of contributing factors on User 19’s jobs of Quantum1.

(a) jobs with [0,1) GB/s (b) jobs with [1,10) GB/s

(c) jobs with [10,100) GB/s (d) jobs with ≥ 100 GB/s

Figure 21. I/O activity of jobs for User 19 of Quantum1.

time was likely due to the transient “weather” changes on
the file system. Further analysis revealed that the metadata
server load during this job (“mdsAvgCPU” in Fig. 20) is
59%, which is significantly above that of the other jobs.

Figure 22. Distribution of the file count written by each rank of a
Quantum1 job corresponding to Figure 21(b).

We have also plotted the I/O activities of User 19’s jobs
whose bandwidth is within [1, 10) GB/s, [10, 100) GB/s, and
>100 GB/s in Figure 21(b), Figure 21(c) and Figure 21(d),
respectively. In both Figure 21(b) and Figure 21(c) the
covering set is dominated by rank 0’s I/O. After further
investigation into this job’s Darshan log, we observe that



rank 0’s I/O in Figure 21(b) is dominated by writing/reading
numerous small configuration files (see Figure 22), which is
the root cause of rank 0’s long I/O time. In Figure 21(c), I/O
activities are dominated by rank 0 writing/reading two files
of size 6 GB each, and rank 0’s data size is significantly
above that of the other processes. However, the job’s ag-
gregate I/O bandwidth is still above that of Figure 21(b),
since the processes write/read much more data (1.1 TB)
than in Figure 21(b) (10 GB). Figure 21(d) exhibits the I/O
behavior of the job with the highest I/O bandwidth. The I/O
activity on the covering set is dominated by writing/reading
four files. Further investigation of these files’ records in the
Darshan log reveals that they are first written and then read
back by all the processes. This read-after-write I/O pattern
takes advantage of file system caching, which explains this
job’s high I/O bandwidth.

H. Discussion

I/O performance evaluation of the five selected appli-
cations uncovers several performance-limiting factors, as
shown in Table II. The gray/blue-colored cells signify nega-
tive/positive factors to I/O bandwidth, respectively. Some of
them are seldom discussed in the literature, but our analysis
indicates that they have significant impact on performance.
In Table III, we summarize the applications/jobs and the
factors impacting their I/O performance. For instance, we
have observed unbalanced I/O workloads (#4 in Table II)
among all the ranks in Combustion1, Climate1, and Quan-
tum1, primarily because rank 0 undertakes exceptional I/O
workloads. In addition, applications often adopt the default
stripe count, which is 1 OST on Cori.

For applications that involve all or a subset of processes
concurrently writing/reading a shared file, their aggregate
I/O bandwidth can be limited by the default number of
storage servers’ I/O bandwidth (#2 in Table II). For ex-
ample, in our analysis, the bandwidth of Cosmology1 and
Cosmology2 is limited by the single OST bandwidth (see
Table III). We have also observed that application bandwidth
can be limited by the frequent synchronizations across many
I/O phases (#1 in Table II on Cosmology1). On the other
hand, high-performance jobs often exhibit some common
characteristics, such as the use of the file-per-process I/O
pattern (e.g., Cosmology1), read caching (e.g., Cosmology1
and Quantum1), and wide striping with balanced OST I/O
(e.g., Combustion1).

Our analysis and the observations provide feedback to
application developers, enabling them to carefully balance
the I/O workload among different ranks and stay aware
of different tuning options on the parallel file system.
High-level I/O libraries (e.g., HDF5) and I/O middleware
(e.g., MPI-IO) can use this feedback to automatically set
the tuning parameters for achieving superior performance.
Furthermore, our analysis shows that jobs of the same
applications can have various I/O behaviors, resulting in

Table II
INDEX OF ROOT CAUSES FOR JOBS’ POOR I/O PERFORMANCE

1 Too many I/O phases
2 Bandwidth is limited by a single OST I/O bandwidth
3 Limited by the small data size
4 Unbalanced I/O workload among ranks
5 Too many small I/O requests
6 Unbalanced I/O workload on OSTs
7 Bad file system weather
8 Use of file-per-process pattern
9 Benefit from read caching
10 Balanced OST I/O workload with wide striping

Table III
SUMMARY OF KEY CONTRIBUTING FACTORS FOR DIFFERENT USERS

AND APPLICATIONS

App/BW (GB/s) (0, 1] (1, 10] (10, 100] >100
Cosmology1 (User 0) 1 8
Cosmology1 (User 1) 2 9
Combustion1 (User 0) 5
Combustion1 (User 1) 4 4
Combustion1 (User 2) 5 6 10
Cosmology2 (User 0) 2
Climate1 (User 2) 4
Climate1 (User 3) 4 4
Quantum1 (User 19) 3&7 4 9

distinct I/O bandwidth. I/O benchmark designers may benefit
from considering the diversity of their applications’ I/O
behavior in mimicking their workloads.

V. RELATED WORK

Existing efforts on I/O analysis can be classified into
system-level and application-level analysis.

At the system level, much effort has been devoted to
analyzing how the file system-side I/O activities impact
applications’ I/O performance. Yildiz [9] et al. used mi-
crobenchmarks to systematically analyze the root causes
of the I/O interference on storage systems. Lofstead et
al. [11] measured I/O performance variability based on the
IOR benchmark. Lockwood et al. [10], [8] studied how the
system “weather” (e.g., metadata load, file system fullness,
and I/O contention) impact applications’ I/O performance
based on a set of benchmarks and applications. These works
generally select a specific set of benchmarks or applications
with well-formed I/O patterns (i.e., large sequential I/O)
and run these applications in a controlled environment and
fixed configuration (e.g., same process count) to observe how
file system load impacts the performance in different runs.
In contrast to these efforts, our analysis is performed on
applications running “in the wild,” with a focus on both the
system-level impact and the impact from the I/O behavior
of the application themselves.

An exhaustive number of application-level I/O studies
have been carried out. Among them, Luu et al. [16] studied
the I/O behavior of all the jobs running on the system, with
a focus on I/O statistics such as distribution of jobs’ process
count and data size. This high-level analysis did not rely on
a full picture of jobs’ internal I/O behavior, however. Among



the manual profiling efforts, Devendran et al. [12] profiled
the Chombo I/O benchmark and identified its performance
bottleneck by ingesting the timer inside the applications.
Similarly, Li et al. [13] and Liu et al. [22] analyzed the AMR
and GEOS-5 applications. This type of profiling, however,
requires significant manual intervention. Devarajan et aal.
anlayzed the Montage application using PAT [23], a flexible
I/O analysis framework. While PAT greatly simplifies the
user’s profiling effort, it does not reveal the applications’ I/O
behavior. Users still have to understand the applications’ I/O
in order to identify the pathological I/O behavior. In contrast,
our sweep-line-based analysis visualizes a job’s I/O behavior
and performance bottlenecks based on their I/O traces. Our
work also leverages parallel coordinates plots to cluster jobs
with similar performance bottlenecks. This approach allows
users to quickly find out the common I/O bottlenecks from
a group of jobs.

VI. CONCLUSIONS

In this paper, we present an analysis approach to zoom
in systematically to study the impact of I/O performance
contributing factors at various scopes. At the platform wide,
we have investigated the relative impact on all the jobs
running across the platform. At the application level, our
approach groups together jobs belonging to the same appli-
cations and clusters together jobs that are bottlenecked by
the same contributing factors. At the job level, our approach
identifies the I/O performance bottleneck for the individual
jobs by an in-depth analysis on their I/O behavior. We use
this zoom-in approach to analyze the I/O instrumentation
data of ≈88,000 jobs, collected during a two-month period.
Our analysis reveals several insightful conclusions that are
useful for application developers, system administrators, and
I/O library developers.
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