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Parallel Input output is an essential component of modern high-performance computing (HPC). Obtaining

good I/O performance for a broad range of applications on diverse HPC platforms is a major challenge, in part,

because of complex inter dependencies between I/O middleware and hardware. The parallel file system and

I/O middleware layers all offer optimization parameters that can, in theory, result in better I/O performance.

Unfortunately, the right combination of parameters is highly dependent on the application, HPC platform,

problem size, and concurrency. Scientific application developers do not have the time or expertise to take

on the substantial burden of identifying good parameters for each problem configuration. They resort to

using system defaults, a choice that frequently results in poor I/O performance. We expect this problem to be

compounded on exascale-class machines, which will likely have a deeper software stack with hierarchically

arranged hardware resources.

We present as a solution to this problem an autotuning system for optimizing I/O performance, I/O per-

formance modeling, I/O tuning, and I/O patterns. We demonstrate the value of this framework across several

HPC platforms and applications at scale.
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1 INTRODUCTION

High-performance computing (HPC) applications are constantly moving toward simulating sci-
entific phenomena at finer granularities and massive scales by leveraging advances in parallel
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processing hardware. Finer granularities mean a larger amount of data, and this has caused the
growth of data to be at an unprecedented rate. Such rapid growth of data in size and in complexity
requires efficient techniques to manage the data on file systems. However, scalability of applica-
tions is often limited by poorly performing parallel I/O. Ensuring fast and efficient parallel I/O is
critical for many HPC applications.

I/O can be a significant bottleneck on HPC application performance. The need to increase check-
point frequency and the increasing emphasis on big data analytics increases the importance of I/O.
On the other hand, parallel I/O systems are complex: I/O is often done at the application level by
using a high-level library, such as Hierarchical Data Format, version 5 (HDF5) (Folk et al. 1999);
HDF5 is implemented atop Message Passing Interface (MPI)-IO (Corbett et al. 1996), which, in turn,
performs Portable Operating System Interface (POSIX) I/O calls against a parallel file system, such
as Lustre (Schwan 2003). Each of these subsystems has multiple configuration parameters, and
performance can be sensitive to their settings.

Configuring these parameters to obtain the best possible I/O performance depends on diverse
factors, such as the I/O application, storage hardware, problem size, and number of processors.
HPC application developers, typically experts in their scientific domains, do not have the time or
expertise to explore the intricacies of I/O systems. They often resort to using default I/O parameter
settings that can result in poor performance and inefficient use of available I/O bandwidth. As the
complexity and concurrency of future HPC systems grow, we expect this to be a major obstacle to
achieving high-performance I/O.

Application developers should be able to achieve good I/O performance without becoming ex-
perts on the tunable parameters for every file system and I/O middleware layer they encounter.
Scientists want to write their application once and obtain reasonable performance across multi-
ple systems—they want I/O performance portability across platforms. From an I/O research-centric
viewpoint, a considerable amount of effort is spent optimizing individual applications for specific
platforms. While the benefits are definitely worthwhile for specific application codes, and some
optimizations carry over to other applications and middleware layers, ideally if a single optimiza-
tion framework would be capable of generalizing across multiple applications.

To use HPC machines and human resources effectively, we must design systems that can hide the

complexity of the I/O stack from scientific application developers without penalizing performance.
Our vision is to develop a system that will allow application developers to issue I/O calls without
modification and rely on an intelligent runtime system to transparently determine and execute an
I/O strategy that takes all the levels of the I/O stack into account.

The main contributions of this article are as follows.

—Design and implemention of an autotuning system that hides the complexity of tuning the
parallel I/O stack

—Demonstration of performance portability of the autotuning system across diverse HPC
platforms

—Development of an approach to construct automatically an I/O performance model
—Use of the model thus constructed to reduce the search space for good I/O configurations
—Demonstration of how scientific I/O kernels with different write patterns and various prob-

lem sizes can benefit from the autotuning framework
—Usage of the I/O patterns as a key to an intelligent runtime system for tuning I/O

The rest of this article is organized as follows. Section 2 presents the background. In Sections
3 and 4, respectively, we introduce the HPC platforms and application I/O kernels we experi-
mented with. Section 5 describes H5Tuner library as background needed for the following sections.
Section 6 then describes the general autotuning framework we propose for solving HPC I/O
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Fig. 1. Typical parallel I/O stack and various tunable parameters.

problems. Section 7 presents our genetic algorithm (GA) autotuning framework, which consis-
tently demonstrates I/O write speeds between 2x and 100x. In Section 8 we then reduce the over-
head of the GA approach significantly by using empirical models of the I/O performance. Section
9 focuses on I/O patterns as a key to reusing the I/O performance models of HPC applications.
We describe an intelligent runtime system, capable of extracting I/O patterns from arbitrary ap-
plications and consulting the performance database to propose an improved I/O strategy. All the
experimental results are shown in detail in Section 10. Section 11 discusses some issues and limi-
tations of this work along with a comparison of the proposed solutions. Section 12 describes the
research projects related to each of the components of this work. We conclude in Section 13 with
some possible future research directions.

2 BACKGROUND

A parallel I/O subsystem typically consists of various layers of middleware libraries and hardware.
The most common parallel I/O stack in current HPC machines has high-level I/O libraries and
file formats (e.g., HDF5, NetCDF, and ADIOS), I/O middleware (e.g., MPI-IO and POSIX), parallel
file systems (e.g., Lustre, GPFS, and PVFS), and storage and I/O hardware. When parallel applica-
tions perform I/O operations, the data moves from individual processors to the storage hardware
through the multiple layers of the stack.

Figure 1 shows a contemporary parallel I/O software stack with HDF5 (HDF5 2010) as the high-
level I/O library, MPI-IO as the middleware layer, and a parallel file system. We chose HDF5 as the
high-level library in this study because it is the most used parallel I/O library at supercomputing
facilities (Pearah and Soumagne 2016). While each layer of the stack exposes tunable parameters
for improving performance, little guidance is provided to application developers on how these
parameters interact with one another and affect overall I/O performance.

Additionally, to achieve good I/O performance, each of the layers offers optimization strategies.
For instance, MPI-IO provides two modes of writing data to disks: independent I/O and collective
I/O (Thakur et al. 1999). With independent I/O, each MPI process writes the data to storage inde-
pendently of other processes of the application. In collective I/O mode, the data is collected at a
few aggregator processes, and the aggregators write the data to storage. The collective I/O mode
is preferable when the number of MPI processes is large, because too many requests to the file
system degrade I/O performance.

A typical implementation of a collective I/O write operation includes two phases: the data col-
lection phase at aggregators and the I/O phase (del Rosario et al. 1993). Each MPI process first
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Fig. 2. File domain assignment in a configuration with “a” I/O aggregators (processes shaded in gray).

analyzes its request to the file and calculates the start offset and end offset. These two variables
identify the segment of the file accessed by the processor. After calculating these variables, each
process sends its values to all the other processes. The aggregators then compute the partitions,
called file domains, of the file they are responsible for reading/writing. In ROMIO (Thakur et al.
1999), which is the basis for many MPI-IO implementations, the aggregators split the range of the
file being updated equally in a block-cyclic distribution. Figure 2 shows an example file domain
assignment in a configuration with “a” I/O aggregators, each of them in charge of one file domain.

Parallel file systems, such as Lustre, typically use multiple storage servers to parallelize I/O
operations. Lustre uses object storage targets (OSTs) for storing chunks of data. Lustre allows users
or applications to control the number of OSTs, called the stripe count, and the size of contiguous
chunks of data, called the stripe size, for storing the data. The MPI-IO aggregators write blocks of
size equal to the stripe size in a round-robin fashion (Knaak and Oswald 2009). Several algorithms
have been proposed for selecting the aggregators and writing data to stripes (Liao and Choudhary
2008). Among these, the CB alignment algorithm 2 has been developed by the Cray MPT library
(Cray 2016). Figure 2 illustrates the CB algorithm 2, where the block size used to partition the file
into domains is equal to the stripe size, consequently written to OSTs in a round-robin fashion.
In this algorithm, Cray’s MPT sets the collective buffering buffer size equal to the Lustre stripe
size. Therefore, the main I/O parameters to tune are the Lustre stripe count, Lustre stripe size, and
MPI-IO number of collective buffering nodes (aggregators).

Note that from now on, we define write time to be the time elapsed from calling a write operation
in a higher-level library until the function is done, consisting of all the communication and I/O
time needed for this operation.

3 HPC PLATFORMS

The experiments in this article are conducted on the following HPC platforms.

—Edison: Edison is a supercomputer at the National Energy Research Scientific Computing
Center (NERSC). It is a Cray XC30 system consisting of 5,576 24-core nodes with 64GB of
memory per node. It has the Cray Aries with Dragonfly topology and three Lustre file sys-
tems with aggregate bandwidth of 168GB/s. We only used a scratch2 file system in these
experiments with a maximum of 96 OSTs and 48GB/s peak I/O bandwidth. Cray’s MPI li-
brary v7.0.4, HDF5 v1.8.11, and H5Part v1.6.6 were used on Edison.
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Table 1. Details of Various HPC Systems Used in This Article

HPC System Architecture Node Hardware File-system
Storage

Hardware Peak I/O BW

NERSC/Edison Cray XC30
Intel Ivy Bridge processors,
24 cores per node,
64GB memory

Lustre
96 OSTs,
24 OSSs

48GB/s (Byna
et al. 2012)

NERSC/Hopper Cray XE6
AMD Opteron processors,
24 cores per node,
32GB memory

Lustre
156 OSTs,
26 OSSs

35GB/s (Byna
et al. 2012)

TACC/Stampede
Dell

PowerEdge

Xeon E5-2680 processors,
16 cores per node,
32GB memory

Lustre
160 OSTs,
58 OSSs

159GB/s
(Schulz 2013)

ALCF/Intrepid IBM BG/P
PowerPC 450 processors,
4 cores per node,
2GB memory

GPFS
640 IO nodes,
128 file servers

47GB/s
(write) (Lang
et al. 2009)

—Hopper: Hopper is another supercomputing system located at NERSC. It is a Cray XE6 sys-
tem containing 6,384 24-core nodes with 32GB of memory per node. It employs the Gemini
interconnect with a 3D torus topology. We used a Lustre file system with 156 OSTs and a
peak bandwidth of about 35GB/s for storing data. We used Cray’s MPI library v6.0.1, HDF5
v1.8.11, and H5Part v1.6.6 for compiling the I/O kernels.

—Stampede: Stampede is a Dell PowerEdge C8220 cluster at the Texas Advanced Computing
Center. It has 6,400 16-core nodes with 32GB of memory per node. It uses Mellanox Four-
teen Data Rate (FDR) InfiniBand technology with a two-level fat-tree topology. Stampede’s
Lustre file system with 160 OSTs (in our experiments, for consistent comparisons, we use
156 OSTs as the maximum stripe count for Stampede as well) has shown a peak of 159GB/s
I/O bandwidth.

—Intrepid: Intrepid, an IBM BlueGene/P (BG/P) system at the Argonne Leadership Comput-
ing Facility (ALCF), is a 40-rack 0.5 petaflop system. Each rack contains 1,024 nodes with
850MHz quad-core processors and 2GB RAM per node. It is also equipped with 640 I/O
nodes and 128 file servers with more than 7.6PB of storage. Note that the I/O stack is dif-
ferent on Intrepid from that on Edison, Hopper, and Stampede. On Intrepid, the parallel file
system is GPFS, whereas Edison, Hopper, and Stampede use the Lustre file system. GPFS
uses dedicated I/O nodes (IONs) to act as proxies between the compute nodes and storage
nodes. Each ION serves 64 4-core nodes, and the collection of the ION and compute nodes
is called a pset.

Table 1 lists details of these HPC systems. We note that the number and type of I/O resources
vary across these platforms.

4 APPLICATION I/O KERNELS

We chose one I/O benchmark and four parallel I/O kernels to evaluate our autotuning framework:
Interleaved or Random (IOR), vector particle-in-cell (VPIC)-IO, VORPAL-IO, global cloud resolving
model (GCRM)-IO, and FLASH-IO. The kernels are derived from the I/O calls of four applications:
VPIC (Bowers et al. 2008), VORPAL (Nieter and Cary 2004), GCRM (Randall et al. 2003), and FLASH,
respectively. These I/O kernels represent four distinct I/O write motifs with different data sizes.

—IOR—I/O benchmark: IOR (LLNL 2015) is an I/O benchmark developed at Lawrence Liv-
ermore National Laboratory (LLNL) for the procurement of the Accelerated Strategic Com-
puting Initiative (ASCI) Purple. Since it is highly configurable and contains different I/O
interfaces, it serves as one of the main HPC I/O benchmarks.
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Fig. 3. Partitioning of file domains and processors among aggregators in VPIC-IO.

—VPIC-IO—plasma physics: VPIC is a highly optimized and scalable particle physics sim-
ulation developed by Los Alamos National Laboratory (Bowers et al. 2008). VPIC-IO uses
H5Part (Bethel et al. 2007) API to create a file, write eight variables, and close the file. H5Part
provides a simple veneer API for issuing HDF5 calls corresponding to a time-varying, mul-
tivariate particle data model. VPIC-IO extracts all the H5Part function calls of the VPIC
code to form the VPIC-IO kernel. The particle data written in the kernel is random data
of floating-point data type. The I/O motif of VPIC-IO is a 1D particle of a given number
of particles, and each particle has eight variables. The kernel writes 8M particles per MPI
process for all experiments reported in this article.
Figure 3 shows the partitioning of VPIC-IO file domains for two Lustre stripe size settings.
In VPIC-IO with a 1D-array pattern, each processor writes 4 bytes per particle for each
variable (since all the variables are of 32-bit floating-point type) of this 1D dataset into the
file in the order of its rank. All our experiments are conducted with 8 million particles,
leading to write sizes of 32MB by each processor. Therefore, for each of the collective write
calls, process 0 writes to file offset 0MB to 32MB, process 1 writes to file offset 32MB to
64MB, and so forth. The left figure shows the partitioning for a stripe size of 16MB and the
right figure shows it for a stripe size of 128MB. The notation Pi refers to the MPI processes,
while ai refers to aggregators.

—VORPAL-IO—accelerator modeling: This I/O kernel is extracted from VORPAL, a com-
putational plasma framework application simulating the dynamics of electromagnetic sys-
tems, plasmas, and rarefied as well as dense gases, developed by TechX (Nieter and Cary
2004). This benchmark uses H5Block to write nonuniform chunks of 3D data per proces-
sor. The kernel takes 3D block dimensions (x, y, and z) and the number of components as
input. In our experiments, we used 3D blocks of 100 × 100 × 60 with different numbers of
processors. The data is written for 20 time steps.
VORPAL-IO leverages the H5Block library (Bethel et al. 2007), which uses the HDF5 library
to handle block-structured data. VORPAL-IO partitions a 3D grid of points into a 3D grid of
processes. Each process writes the sub block of points in its partition. For example, in a 128-
process run with a block of size 300 × 100 × 60 and a decomposition of (8, 4, 4), the size of the
total block is 2400 × 400 × 240. This kernel is also configured to run in a weak-scaling mode.
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Fig. 4. 3D block structure of VORPAL-IO datasets in HDF5.

In terms of I/O pattern, VORPAL-IO is more complex than VPIC-IO. It writes 3D block-
structured grids using 3D HDF5 datasets. We have configured this I/O kernel so that each
block is of size (300 × 100 × 60). In contrast to VPIC-IO, VORPAL-IO variables are of type
double and of size 8 bytes. Therefore, the size of each block is 13MB. The method to
scale VORPAL-IO is also different from that of VPIC-IO. VORPAL-IO has a configurable
nonuniform grid decomposition scheme, in which the user can specify out of the num-
ber of processors how each of these three dimensions gets scaled. For example, for a 128-
core run of VORPAL-IO, if the user chooses the block decomposition as (8, 4, 4), the total
x-dimension of the grid will be 2, 400 (= 300 × 8), and the y-dimension and z-dimensions
will be 400 (= 100 × 4) and 240 (= 60 × 4), respectively. This grid and the way the blocks
are assigned to each process rank are shown in Figure 4.

—GCRM-IO—global atmospheric model: This I/O kernel simulates I/O for a global atmo-
spheric circulation model (GCRM), simulating the circulations associated with large con-
vective clouds. This I/O benchmark also uses H5Part to perform I/O operations. The kernel
performs all the GCRM I/O operations with random data. The I/O pattern of GCRM-IO
corresponds to a semi-structured geodesic mesh, where the grid resolution and subdomain
resolution are specified as input. In our tests, we used varying grid resolutions at different
concurrencies. By default, this benchmark uses 25 vertical levels and 1 iteration.

—FLASH-IO—high-energy density model: The FLASH I/O benchmark routine mimics the
I/O of the FLASH parallel HDF5 write operations. It has the data structures in a FLASH
application and writes a checkpoint file, a plotfile with centered data, and a plotfile with
corner data. At 512 cores, FLASH-IO creates a 122GB checkpoint file, 11GB centered data
plotfile, and 12GB corner plotfile. At 4,096 cores, it creates a 973GB checkpoint file, 82GB
centered data plotfile, and 92GB corner plotfile.

5 H5TUNER: SETTING I/O PARAMETERS AT RUNTIME

The H5Tuner component is an autonomous parallel I/O parameter injector for scientific applica-
tions with minimal user involvement, allowing parameters to be altered without requiring source
code modifications and recompilation of the application. The H5Tuner dynamic library is able to
set the parameters of different levels of the I/O stack—namely, the HDF5, MPI-IO, and parallel file
system levels in our implementation. Assuming all the I/O optimization parameters for different
levels of the stack are in a configuration file, H5Tuner first reads the values of the I/O configuration.
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Fig. 5. Design of H5Tuner component as a dynamic library that intercepts HDF5 functions to tune I/O
parameters.

When the HDF5 calls appear in the code during the execution of a benchmark or application, the
H5Tuner library intercepts the HDF5 initialization function calls via dynamic linking. The library
reroutes the intercepted HDF5 calls to a new library, where the parameters from the configuration
are set and then the original HDF5 function is called by using the dynamic library package func-
tions. This approach has the added benefit of being completely transparent to the user; the function
calls remain exactly the same, and all alterations are made without change to the source code. We
show an example in Figure 5, where H5Tuner intercepts an H5FCreate() function call that creates
an HDF5 file, applies various I/O parameters, and calls the original H5FCreate() function call.

6 GENERAL AUTOTUNING FRAMEWORK

Figure 6 shows a general autotuning system that uses H5Tuner for applying a configuration pro-
posed by the autotuning framework. The autotuning framework extracts the I/O kernel of an
application using tracing tools such as I/O Tracer (Behzad et al. 2014b) or Skel (Logan et al. 2011)
and runs the kernel with a preselected training set of tunable parameters. It also takes the I/O
parameter space with its all-possible configurations as input and for each I/O kernel generates a
set of k configurations that perform best. Each of these configurations is presented to H5Tuner in
Extensible Markup Language (XML) format. The parameter space contains possible values for I/O
tuning parameters at each layer of the I/O stack, and the configuration file contains the parameter
settings that will be used for a given run. H5Tuner reads the configuration file and dynamically
links to HDF5 calls of an application or I/O benchmark. After running the executable, the param-
eter settings and I/O performance results can be fed back to the autotuning framework in order to
influence the contents of the next configuration file.
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Fig. 6. Overall architecture of I/O autotuning.

Because of the large size of the parameter space and possibly long execution time of a trial run,
finding optimal parameter sets for writing data of a given size is a nontrivial task. Depending on
the granularity with which the parameter values are set, the size of the parameter space can grow
exponentially and become unmanageably large for a brute-force and enumerative optimization
approach.

For selecting tunable parameters, a naïve strategy is to execute an application or a representative
I/O kernel of the application using all possible combinations of tunable parameters for all layers
of the I/O stack. This is an extremely time- and resource-consuming approach, since a typical
parameter space has many thousands of combinations. For instance, if we enable chunking on
HDF5 with a Lustre platform, a simple set of parameters can lead to 336,000 possible configurations.

Instead of relying on the simplest approach, manual tweaking, this article discusses two different
approaches for traversing the search space in a reasonable amount of time:

(1) Genetic Algorithms—H5Evolve: Adaptive heuristic search approaches such as genetic
evolution algorithms and simulated annealing can traverse the search space in a reason-
able amount of time. In H5Evolve, we explore genetic algorithms for sampling the search
space.

(2) I/O Performance Modeling: Using a set of real measurements from running an I/O ker-
nel as a training set, one can generate a regression model. We use such a model to predict
the top-20 tunable parameter values that give efficient I/O performance and rerun the I/O
kernel to select the best set of parameters under the current conditions.
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Fig. 7. Overall architecture of the H5Evolve framework.

Once we show the effectiveness of I/O tuning at multiple layers of tunable parameters us-
ing genetic algorithms and improve the configuration search process by developing an empirical
performance prediction model for a selection of I/O kernels derived from real scientific simula-
tions, one last challenge remains: tuning an arbitrary I/O phase in a simulation. For instance, when
a simulation needs to perform a large write operation, an intelligent runtime system is required
to identify the characteristics of the write operation, find optimal tunable parameters, and apply
them at runtime without the need to stop the simulation for recompiling the simulation code with
the optimal configurations. We present a solution to this problem in Section 9.

7 GENETIC ALGORITHMS—H5EVOLVE

The main challenge in designing and implementing an I/O autotuning system is selecting an ef-
fective set of tunable parameters at all layers of the stack. A reasonable approach for traversing
the huge possible space for configurations is to search the parameter space with a small number of
tests. Toward this goal, we developed H5Evolve to search the I/O parameter space using a genetic
algorithm. H5Evolve samples the parameter space by testing a set of parameter combinations and
then, based on the I/O performance, adjusts the combination of tunable parameters for further
testing. As H5Evolve passes through multiple generations, better parameter combinations (i.e.,
sets of tuned parameters with high I/O performance) emerge.

A genetic algorithm (GA) is a metaheuristic for approaching an optimization problem, particu-
larly one that is ill-suited for traditional exact or approximation methods. A GA is meant to emulate
the natural process of evolution, working with a “population” of potential solutions through suc-
cessive “generations” (iterations) as they “reproduce” (intermingle portions between two members
of the population) and are subject to “mutations” (random changes to portions of the solution). A
GA is expected, although it cannot necessarily be shown, to converge to an optimal or near-optimal
solution, as strong solutions beget stronger children, while the random mutations offer a sampling
of the remainder of the space.

As Figure 7 depicts, the workflow of H5Evolve is as follows. For a given benchmark at a specific
concurrency and problem size, H5Evolve runs the genetic algorithm. H5Evolve takes a predefined
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parameter space that contains possible values for the I/O tuning parameters at each layer of the I/O
stack. The evolution process starts with randomly selected initial population. H5Evolve generates
an XML file containing the selected I/O parameters (an I/O configuration) that H5Tuner injects
into the benchmark. In all our experiments, the H5Evolve GA uses a population size of 15; this size
is a configurable option. Starting with an initial group of configuration sets, the genetic algorithm
passes through successive generations. H5Evolve uses the runtime as the fitness evaluation for a
given I/O configuration. After each generation has completed, H5Evolve evaluates the fitness of
the population and considers the fastest I/O configurations (i.e., the “elite members”) for inclusion
in the next generation. Additionally, the entire current population undergoes a series of mutations
and crossovers to populate the other member sets in the population of the next generation. This
process repeats for each generation. In our experiments, we set the number of generations to 40,
meaning that H5Evolve runs a maximum of 600 executions of a given benchmark. We used a
mutation rate of 15%, meaning that 15% of the population undergoes mutation at each generation.
After H5Evolve finishes sampling the search space, the best-performing I/O configuration is stored
as the tuned parameter set.

8 I/O PERFORMANCE MODELING

Recent studies, in addition to our work described in the previous section, have explored autotuning
using genetic algorithms to traverse the search space systematically (Behzad et al. 2013). The GA
approach initializes this traversal with random sets of parameters and produces new generations
of parameter sets by applying mutation and crossover operations. The GA eventually determines
parameter values that give near-optimal I/O performance. This approach is time-consuming, as
the number of experiments required to converge might be prohibitively large. Another limitation
is that parameter values are specific to each application and input size.

In this section, we present a statistical approach for automatic generation of an empirical perfor-
mance prediction model that is used for pruning the search space significantly. We use a statistical
approach to train an empirical base model that can be used to prune the search space. The base
model then can be tuned further by running on the reduced sample space in order to capture the
dynamic runtime conditions of a system. The advantages of our proposed method include fast re-
duction of the search space compared to using a GA approach and consideration of the dynamic
conditions of a parallel I/O subsystem.

Figure 8 shows a high-level workflow of our proposed dynamic model-driven I/O tuning process.
We define the training set based on the parameters for different levels of the I/O stack and for
multiple problem sizes. Using the measured I/O performance of the kernel, we develop an empirical
performance model.

Using this constructed performance model, we predict I/O performance for an exhaustive set
of all combinations of tuning parameters. We then select the best-performing tuning parameter
sets by sorting the predicted performance for further exploration. The number of best parameter
sets for exploring the current conditions of an HPC system is a configurable option. Based on
the measured I/O performance of the top-k parameter sets, we select the set that has the best I/O
performance as the tuned I/O configuration for the I/O kernel for a given scale. Optionally, one can
fine-tune the I/O model further by evaluating the performance results of the top k configurations
iteratively. In this article, we select the best-performing I/O parameter set from running the top
k = 20 configurations.

We examined nonlinear regression models in the context of modeling I/O write times for a given
application. The main I/O parameters on a Lustre file system are Lustre stripe settings (e.g., stripe
count and stripe size) and MPI-IO collective buffering settings (e.g., number of collective buffering
nodes and collective buffering size) at the middleware layer.
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Fig. 8. Overview of our proposed dynamic model-driven I/O tuning process.

Table 2. Training Set for the Performance
Model

# of Cores Training Set Size
512 336

1,024 180
2,048 96

We conducted experiments for all three applications and different file sizes on all the platforms.
The training set for each of the applications and their file sizes are shown in Table 2. The size of
the training set is decreased as the core counts and file sizes increase due to the increase in the
required resources.

The selection of the training set is automatic, with simple heuristics of limits on the allowable
value ranges in order to cover the parameter space well. For example, the maximum number of
aggregators is limited by the number of MPI processes of the application. Additionally, commands
such as “lfs osts” obtain the number of OSTs available on a Lustre file system, which can be stored
in a configuration file. Once the limits are known, to establish the training set, one can use all
discrete integer values as possible tunable parameter values. Another strategy is to use powers-
of-two or halves-of-max allowable values. An expert can set these values more judiciously. Since
the training is done infrequently, the values can be decided based on the training set exploration
time budget. We can easily dictate one strategy over the others.

Following the forward-selection approach on the entire training data set, we obtain one model
for each application on each platform. To be concise, here we explicitly give the model only for
VPIC-IO on Edison. s is the size of stripes, c is the strip count, a is the number of aggregations, and
f is the file size:

m(x) = β1 + β2
1

s
+ β3

1

a
+ β4

c

s
+ β5

f

c
+ β6

f

s
+ β7

c f

a
, (1)
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Fig. 9. Overview of our I/O autotuning framework.

with a fit to the data yielding

β̂ = [10.59, 68.99, 59.83, −1.23, 2.26, 0.18, 0.01].

The terms in Equation (1) are interpretable from the parallel I/O point of view. For instance,
the write time would have an inverse relationship with the number of aggregators and stripe
count because, as we increase those, the I/O performance tends to increase. It should have a linear
relationship with the file size because increasing the file size causes an increase in the write time.

After training the model for the search space pruning step, the process of choosing the top-k
configurations involves only evaluating the model, a task whose computational expense is negli-
gible (relative to evaluation of a configuration) for our simple choice of models. Therefore, using
such an approach will require evaluation of only a few configurations on the platform, decreasing
the optimization time significantly.

In our experiments, shown in Section 10, the top 20 configurations always resulted in high I/O
bandwidth. As opposed to our GA-based approaches, our approach does not spend excessive time
in evaluating configurations that have low performance.

If our approach is not able to achieve competitive I/O rates, one can simply refit the model using
the new results gathered at the exploration step. Also note that in our results, exploring the top 20
configurations proposed by the model was sufficient. The choice for the number of top-performing
configurations is a variable that can be chosen based on one’s tuning time budget.

9 PATTERN-DRIVEN I/O TUNING

In this section, we address the requirements of the autotuning framework discussed in this article.
We first define high-level I/O patterns to characterize write operations. We use a tracing library to
collect high-level I/O calls, such as the HDF5 data model definition and write calls. This library
uses binary instrumentation to redirect a set of HDF5 calls to collect the required information. We
analyze these traces to obtain the I/O pattern information of a simulation’s I/O phase. We then
match the patterns with previously tuned I/O kernels to obtain their optimal configurations. If a
matching previously tuned pattern is not available, we use our empirical prediction model to find
tuning parameters offline and store them in the database for future use.

Figure 9 illustrates an overview of our proposed overall I/O autotuning framework that can
address the parallel I/O tuning problem. It starts by extracting the I/O pattern from the application.
Once the pattern is extracted, a look-up phase follows in which the pattern is queried in a database
of patterns. If the pattern is found in this database, then the model associated with it is used to
suggest tuned parameters for it as XML files to be run with the application.
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To be able to automatically extract the I/O activities of an application, we need to first extract
the characteristics of the I/O operations it is conducting. The I/O trace of an application is used
for this end. In previous work, we developed a multi-level I/O tracer tool, called Recorder (Luu
et al. 2013); it uses dynamic library preloading and intercepting I/O functions at different levels
of the I/O stack. We observed that the best level of the I/O stack to define I/O patterns is at the
higher-level I/O libraries such as HDF5. Therefore, we used the Recorder to capture all the HDF5
I/O operations of an application. At the end of one run of the application on P processes, P trace
files are generated by the Recorder library. Once these files are generated, in addition to extracting
the I/O patterns from them, one can use them to create an I/O kernel from them by running the
sequence of I/O calls in them on each processor either with or without a pause for the computation
and communication of the application between them.

An I/O pattern of an application can be defined in many ways. Following the approach of the
database community, we separate the I/O pattern of an application into two categories:

—Physical Pattern: The physical pattern of read/write operations is related to the hardware
configuration and is specific to the file system, platform, and so forth. These patterns were
discussed in preceding sections, and statistical models have been proposed for them. They
are the models that have either a linear or inverse relationship with file system parameters,
such as Lustre stripe settings, and the I/O middleware layer, such as MPI-IO settings. We
showed that different I/O benchmarks have different relationships with these parameters
and that one can generalize the models to take the number of processes and file sizes into
account as well.

—Logical Pattern: The logical pattern is defined at the application level and is the focus of
this section. This is the pattern that takes into account the number of processes that run the
application as well as the distribution of the data between them. Higher-level I/O libraries
divide the I/O operations into two categories.
(1) Metadata: Metadata of a high-level library includes information about the data itself,

such as datatypes, and dimensions. This also includes information about the data that
the user may want to save such as attributes. The size of metadata is small and is typi-
cally stored in the first part of the file.

(2) Raw Data: Raw data is the main data and the bigger portion of the file, and the main
I/O time is spent in doing I/O operations for it. The main difference between the I/O
operations of different applications exists in the access to raw data. Applications can do
the I/O operations contiguously or noncontiguously. They can access the raw data in
horizontal stripes or vertical stripes. They can even have random selections of this raw
data. The main focus of this section is to abstract these kinds of patterns.

We believe that in order to have a more accurate definition of the logical I/O patterns, we can
utilize the same division. High-level I/O libraries give us much more information in order to define
and distinguish the way different applications conduct I/O operations. One example and probably
the main one is the concept of selection in HDF5. Selection is an important and powerful feature
of the HDF5 library, which lets the developers select different parts of a file and different parts of
memory in order to conduct I/O operations. It also is the main mechanism for the processes to
choose different parts of the file in a parallel I/O application. Therefore, we base our definition of
I/O patterns on the concept of selection. In summary, we define the I/O pattern of an application
as a coverage of the datasets based on the selections they make.

In HDF5 terminology, hyperslabs are portions of datasets, either a logically contiguous collection
of points in a dataspace or a regular pattern of points or blocks in a dataspace. In a parallel HDF5
program, once each process defines both the memory and file hyperslabs, the process executes
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Fig. 10. Output related to the I/O pattern of H5Analyze code for pH5example code.

a partial read/write (Group 2011). The hyperslabs are selected using the H5Sselect_hyperslab
function. The four parameters that can be passed to this function are start, stride, count, and
block. The start array is used by each process to specify the starting location for the hyperslab.
The stride array specifies the distance between two consecutive selected elements or blocks. The
count array specifies the number of the elements or blocks to select; and the block array specifies
the size of the block selected from the dataspace.

To abstract these patterns, we make use of the array distribution notation that was also used
in high performance fortran (HPF) (Richardson 1996). HPF uses data distribution directives to
help the programmer distribute data between processes. In particular, the DISTRIBUTE directive
is used to specify the partitioning of the array data onto an abstract processor array. The basic
distributions are BLOCK, CYCLIC, and DEGENERATE. A different distribution can be used for each
dimension. Below is a short description of each of these distributions.

(1) Block Distribution: Each process gets a single contiguous block of the array.
(2) Cyclic Distribution: Array elements are distributed in a round-robin manner: i.e., the

first element is on the first process, the second element on the second process, and so on.
(3) Degenerate Distribution: Degenerate distribution, represented by *, is basically no dis-

tribution or serial distribution. All the elements of this dimension are assigned to one
processor.

The advantage of this representation is that it is succinct enough to be stored in a key-value
store, called the I/O pattern repository. Once the distribution of each of the datasets is found and
stored, the patterns should be queried in the database. Therefore, the runtime system we envision
consists of three main components.

(1) H5Analyze: H5Analyze is a code we have developed based on pattern analysis provided
by Zou et al. (2015) for analyzing HDF5 read and write traces. Our implementation con-
tains structures for storing information about HDF5 files, dataspaces, datasets, selections,
and operations. It accepts traces gathered by the Recorder (Luu et al. 2013) from all the
processes as input and populates this information by reading these traces. Once this infor-
mation is stored, the H5Analyze code starts to execute analysis on them in order to come
up with the patterns and output them in HPF terminology. Figure 10 shows the output
of H5Analyze for the pH5example, a simple test HDF5 application. As can be seen, once
the correct arguments are given to H5Analyze, it can find out the dimension, distribution,
and size of the access pattern of each dataset.
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Table 3. I/O Rate and Speedups of I/O Benchmarks with Tuned Parameters over Default Parameters

Application/ Bandwidth (MB/s)

# Cores Platform VPIC-IO VORPAL-IO GCRM-IO

Default Tuned Speedup Default Tuned Speedup Default Tuned Speedup

128

Hopper 400 3,034 7.57 378 2,614 6.90 757 2,348 3.10

Intrepid 659 1,126 1.70 846 1,102 1.30 255 1,801 7.05

Stampede 394 2,328 5.90 439 2,130 4.85 331 2,291 6.90

2,048

Hopper 365 8,464 23.18 370 9,233 24.89 240 17,816 74.12

Intrepid 2,282 5,964 2.61 2,033 4,842 2.38 414 870 2.10

Stampede 380 13,047 34.28 436 12,542 28.70 128 13,825 107.73

4,096

Hopper 348 17,620 50.60 320 12,192 38.00 – – –

Intrepid 2,841 7,014 2.46 3,131 7,766 2.47 – – –

Stampede – – – – – – – – –

(2) Key-Value Store: To store the patterns associated with their I/O performance model, ul-
timately, we should use a database as the number of patterns increases. For now, however,
we are using text files because it is easier to store the patterns in text files without requir-
ing a global database.

(3) Modeling Component: If the pattern of the input application is not found in the key-
value store, since no model is associated with it, the framework needs to come up with
a model for it. This is the focus of the preceding sections and includes a training phase
in which the model is trained for a set of different values for each of the parameters at
different core counts. Note that we have chosen to have a separate component for this in
our framework because it may be improved over time.

10 EXPERIMENTAL RESULTS

10.1 Genetic Algorithm Results

The plots in Figure 11 present the I/O rate improvement by using the tuned parameters that our
autotuning system detected for the three I/O benchmarks. H5Evolve ran for 10 hours, 12 hours, and
24 hours for the three concurrencies to search through the parameter space of each experiment.
In most cases, GA evolved through 15 to 40 generations. We selected the tuned configuration that
achieves the best I/O performance through the course of the GA evolution. Figure 11 compares the
tuned I/O rate with the default I/O rate for all applications on all HPC systems at 128, 2,048, and
4,096 core concurrencies. We calculated the I/O rate as the ratio of the amount of data a benchmark
writes into an HDF5 file at any given scale to the time taken for writing the data. The time taken
includes the overhead of opening, writing, and closing the HDF5 file. The I/O rate on the y-axis is
expressed in megabytes per second. Readers should note that the range of the I/O rate shown in the
three plots is different. The measured default I/O rate for a benchmark on an HPC platform is the
average I/O rate we obtained after running the benchmark multiple times. The default experiments
correspond to the system default settings that users of the HPC platform typically would encounter
should they not have access to an autotuning framework.

Table 3 shows the raw I/O rate numbers of the default and the tuned experiments for all 22
experiments. We also show the speedup that the autotuned settings achieved over the default
settings for each experiment. For all the benchmarks, platforms, and concurrencies, the speedup
numbers are generally between 1.3X and 38X, with 50X, 70X, and 100X speedups in three cases.
We note that the default I/O rates for the Intrepid platform are noticeably higher than those on
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Fig. 11. Summary of performance improvement for each I/O benchmark running on (a) 128 cores, (b) 2,048
cores, and (c) 4,096 cores. The scales of the I/O bandwidth axes are different in the plots. Note that only a
subset of the combinations were run due to limited access to the platforms.
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Table 4. Highest Bandwidth Achieved for the Three Applications by Selecting the Best-Performing
Configuration Suggested by Our Proposed Framework

# of Cores I/O Kernel File Size (GB) Edison (GB/s) Hopper (GB/s) Stampede (GB/s) Hopper Default (GB/s)

512

VPIC 128 8.19 3.00 9.30 0.39

VORPAL 140.625 3.24 2.67 7.76 0.44

GCRM 166.4 9.78 5.27 11.62 -

1K

VPIC 256 14.24 5.09 14.71 0.32

VORPAL 281.25 9.91 2.34 9.10 0.41

GCRM 166.4 14.63 6.70 13.28 -

2K

VPIC 512 19.72 8.18 14.75 0.40

VORPAL 562.5 17.81 4.63 12.67 0.36

GCRM 665.6 23.96 6.82 21.05 0.24

4K

VPIC 1,024 20.57 12.57 29.20 0.34

VORPAL 1,197 10.26 4.50 15.35 0.31

GCRM 2,600 16.64 10.59 26.99 0.41

8K

VPIC 2,048 24.32 18.93 - 0.20

VORPAL 2,250 12.77 7.26 - 0.33

GCRM 10,400 28.60 22.09 - -

16K

VPIC 512 23.21 21.96 - -

VORPAL 4,394 15.20 9.45 - -

GCRM 10,400 24.58 19.73 - -

Hopper and Stampede. Hence, the speedups on Hopper and Stampede with tuned parameters are
much higher than those on Intrepid.

10.2 Performance Modeling Results

The best I/O bandwidth results we have obtained for each of the applications on different platforms
are summarized in Figure 12. For each experiment, this is the best-performing configuration among
the top 20 configurations predicted by the model. The figure shows the I/O bandwidth grouped
by the number of cores from 4K to 16K. For all these experiments, we used the training phase
experiments without a refitting phase. As can be observed, the I/O bandwidths of the kernels are
in the range of 5–30GB/s, which is efficient performance for writing to one shared file on these
platforms at their respective scales. We also show the default I/O performance of the applications
for their respective concurrencies at 4K and 8K on the Hopper platform. Compared to the default
performance, our tuned configurations perform 6X–94X better. We expect the default performance
and our speedup to be at the same level for the other platforms. Note that for the Stampede plat-
form, we have scaled our runs only up to 4K cores because of limitations of Stampede in running
large-scale tests.

Table 4 summarizes the achieved I/O bandwidths for the three I/O kernels running at different
concurrencies on the three platforms. The table also shows the size of the data written to the file
system. The time to traverse the search space after training took less than 3 hours. In most cases,
exploring the top 20 configurations took less than 1 hour, resulting in significant improvements to
overall parallel I/O performance.

10.3 Pattern-Driven Tuning Results

This section shows the results of the pattern-driven I/O tuning framework. The first experiment
tests whether our framework is capable of identifying an I/O pattern exactly similar to what it has
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Fig. 12. I/O bandwidth for the three applications on a different number of cores. Note that subplots (a) and
(b) use a log scale for the y-axis in order to show the value for default I/O bandwidth, while subplot (c) does
not.
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tuned before and configures the I/O correctly. The second experiment tests whether a new pattern,
but similar to the ones in the database, is recognized and that the model used for the most similar
application to it in the database can lead to acceptable I/O performance. The third experiment
examines an arbitrary application that does not have any similar patterns in the database.

Note that for the results of this section, we use all the developed models in the preceding sec-
tions. Therefore, there was no tuning for any application for these experiments, and we have used
the models developed for them in our previous work.

For the first experiment, we use the IOR benchmark. The second experiment uses a synthetic
benchmark called Resemble-VORPAL-IO, which is similar to the VORPAL-IO pattern but with
different block sizes. The third experiment involves a new I/O benchmark: FLASH-IO.

10.3.1 Application with the Same I/O Pattern. To have IOR issue write patterns similar to VPIC-
IO, we configured it to use its HDF5 interface. Since VPIC-IO writes eight datasets, we need to
configure IOR accordingly. To this end, we used segments (-s 8 command line option) of IOR.
VPIC-IO only writes operations, and we use writeFile (-w option) for IOR. Since each dataset of
VPIC-IO contains 32MB of data per processor, we use the block size (-b 32m option) of IOR along
with the transfer size of 32MB (-t 32m command line option).

Figure 13(a) shows the performance of the autotuned configuration that was proposed for IOR,
since it has the same pattern as VPIC-IO, on 512 and 4,096 cores of Hopper and Edison in Behzad
et al. (2014a). As mentioned before, no modeling effort was done for this application and yet we
can see that we get up to 4.21GB/s and 15.01GB/s on 512 and 4,096 cores of Hopper. On Edison,
these numbers are 9.34GB/s and 16.70GB/s.

10.3.2 Application with Similar I/O Pattern. Resemble-VORPAL-IO is a synthetic benchmark
generated by Record-and-Replay framework (Behzad et al. 2014b). It has an I/O pattern similar
to those of the VORPAL-IO benchmark but with different block sizes of 64 × 128 × 256 instead
of 60 × 100 × 300 for VORPAL-IO. The purpose of this experiment is twofold: (1) to show that
applications with similar I/O patterns with slight differences only in block sizes can use the same
I/O configuration to obtain good I/O performance, and (2) to show that requiring a threshold for
the similarity between I/O patterns can save dramatic I/O tuning time.

Figure 13(b) shows the performance of the autotuned configuration that was proposed for
Resemble-VORPAL-IO on 512 and 4,096 cores of Hopper and Edison in Behzad et al. (2014a). Sim-
ilar to the previous experiment, no modeling effort was done for this application, and yet we are
able to get up to 3.32GB/s and 7.89GB/s on 512 and 4,096 cores of Hopper, respectively. On Edi-
son the highest bandwidth achieved by this mechanism was 8.75GB/s and 13.07GB/s on the same
number of cores.

10.3.3 New Application. The last experiment is designed to test an arbitrary application that
has not been tuned before. For this experiment, we chose to test a well-known I/O kernel called
FLASH-IO because it is popular in the HPC I/O community and also hard to tune. As in the previous
experiment, we ran FLASH-IO at two scales, 512 and 4,096 cores of Hopper and Edison. The way
that we calculate the bandwidth for this application is a little different from the other ones because
it produces three files. The definition of bandwidth here is basically just the sum of all the output
sizes divided by the runtime of the whole I/O benchmark, which is a conservative way of defining
the I/O bandwidth of an application.

FLASH-IO is different from the other applications we have looked at mainly because it writes
many datasets with different I/O patterns. In order to overcome this problem the framework con-
siders the largest datasets and looks for those patterns in the database. Based on the output of
H5Analyze, FLASH-IO has 34 datasets, of which 24 have the same size as the largest size of the
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Fig. 13. I/O performance of the autotuned (a) IOR, (b) Resemble-VORPAL-IO, and (c) FLASH-IO application
on Hopper and Edison compared with the default configuration.
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Table 5. Comparison of GA, Modeling, and Default Configuration

Method Training Phase
Applying the

Model
Per App. &

Scale Tuning
App. Runtime (VPIC-8192

on Hopper)

GA N/A N/A >10 hours 118 seconds

Model Fitting >10 hours (can
reuse)

<1 minute
(automatic)

<1 hour 100 seconds

Default Config. none none none >3 hours

file. On 4,096 cores, this is about 40GB for each dataset. These datasets are 4D, and their patterns
are also the same: <BLOCK, DEGENERATE, DEGENERATE, DEGENERATE>. Although the exact same
pattern does not exist, GCRM-IO has the most similar pattern to this application, and, therefore,
the framework uses the proposed configurations for GCRM-IO.

Figure 13(c) shows the performance of the autotuned configuration that was proposed by our
framework for FLASH-IO based on the GCRM-IO model, on 512 and 4,096 cores of Hopper and
Edison. Similar to the previous experiment, no modeling effort was done for this application, and
yet we are able to get up to 2.09GB/s and 5.95GB/s on 512 and 4,096 cores of Hopper. On Edison, the
highest bandwidth achieved by this mechanism was 3.34GB/s and 8.23GB/s on the same number
of cores, respectively.

11 DISCUSSION AND LIMITATIONS

In this section, we first measure the overhead of the framework based on the order they appear
in the architecture discussed in Section 6. Regarding the extraction of I/O pattern from an appli-
cation, the framework needs at least one run of the application linked to the Recorder in order to
gather the traces. The overhead of the Recorder library is minimal (Luu et al. 2013). Once the traces
are gathered, H5Analyze analyzes the traces to determine the I/O pattern. H5Analyze is a sequen-
tial application, written in C programming language, that reads in the traces and comes up with
the pattern with a fast turn-around time even with large-scale trace files. The looking-up phase is
also fast because the number of patterns is small. If the pattern of an application is found, the I/O
configuration of the application is proposed with an XML file. If not, the main part of the overhead
of our framework is exerted: the modeling phase. For those patterns for which the framework is
not able to find a match, the autotuning framework is used to initialize the modeling process by
running the application with its training set. This may require more than several hours to come
up with a nonlinear regression model. Once the model is developed, the framework will associate
the pattern along with the new model for any future run of the application.

Table 5 shows a comparison of these approaches. With default configuration without any I/O
tuning, each application will take more than 3 hours. With genetic algorithms, for each application
and scale, a cost of more than 10 hours is paid for tuning. With the current approach, the cost of
training is paid once, and then for each application, applying the model takes less than 1 hour with
fast application run-time.

12 RELATED WORK

Autotuning in computer science is a prevalent strategy for improving the performance of compu-
tational kernels. Extensive research has been done in developing optimized linear algebra libraries
and matrix operation kernels using autotuning (Whaley et al. 2001; Frigo and Johnson 1998; Bilmes
et al. 1997; Vuduc et al. 2005; Williams et al. 2007; Datta et al. 2008; Williams et al. 2008). The search
space in these efforts involves optimization of CPU cache and DRAM parameters along with code
changes. All these autotuning techniques search various data structures and code transformations
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using performance models of processor architectures, computation kernels, and compilers. Our
study focuses on autotuning the I/O subsystem for writing data to a parallel file system in contrast
to tuning computational kernels. A few key challenges are unique to the I/O autotuning problem.
Each function evaluation for the I/O case takes on the order of minutes, as opposed to milliseconds
for computational kernels. Thus, an exhaustive search through the parameter space is infeasible,
and a heuristic-based search approach is needed. I/O runs also face dynamic variability and system
noise whereas linear algebra tuning assumes a clean and isolated single node system. Moreover, the
interaction between various I/O parameters and how they impact performance is not well-studied,
making interpreting tuned results a complex task.

We use genetic algorithms as a parameter-space-searching strategy. Heuristics and metaheuris-
tics have been studied extensively for combinatorial optimization problems as well as code opti-
mization (Seymour et al. 2008) and parameter optimization (Casanova et al. 2000) problems similar
to the one we addressed. Of the heuristic approaches, genetic algorithms seem to be particularly
well-suited for real parameter optimization problems, and a variety of literature exists detailing
the efficacy of the approach (Bäck and Schwefel 1993; Deb et al. 2002; Wright 1991). A few recent
studies have used genetic algorithms (Tiwari and Hollingsworth 2011) and a combination of ap-
proximation algorithms with search space reduction techniques (Jordan et al. 2012). Both of these
are again targeted to autotune compiler options for linear algebra kernels. We chose to implement
a genetic algorithm to attempt to intelligently traverse the sample space for each test case; we
found our approach produced well-performing configurations after a suitably small number of
test runs.

Various optimization strategies have been proposed to tune parallel I/O performance for a spe-
cific application or an I/O kernel. However, they are not designed for automatic tuning of any given
application and require manual selection of optimization strategies. Our autotuning framework is
designed for tuning an arbitrary parallel I/O application. Hence, we do not discuss the exhaustive
list of research efforts. We focus on comparing our research with automatic performance-tuning
efforts.

A few research efforts have been conducted to autotune and optimize resource provisioning and
system design for storage systems (Alvarez et al. 2001; Anderson et al. 2002; Strunk et al. 2008). In
contrast, our study focuses on tuning the parallel I/O stack on top of a working storage system.

The Panda project (Chen et al. 1996; 1998b) studied automatic performance optimization for col-
lective I/O operations where all the processes were used by an application to synchronize I/O op-
erations such as reading and writing an array. The Panda project searched for disk layout and disk
buffer size parameters using a combination of a rule-based strategy and randomized search-based
algorithms. The rule-based strategy is used when the optimal settings are understood; simulated
annealing is used otherwise. The simulated annealing problem is solved as a general minimization
problem, where the I/O cost is minimized. The Panda project also used genetic algorithms to search
for tuning parameters (Chen et al. 1998a). The optimization approach proposed in this project was
applicable to the Panda I/O library, which existed before MPI-IO and HDF5. The Panda I/O is not
in use now, however, and the Panda optimization strategy was not designed for current parallel
file systems because of the new tunable parameters in the current systems.

You et al. (2011) proposed an autotuning framework for the Lustre file system on the Cray XT5
systems at Oak Ridge National Laboratory (ORNL). They search for file system stripe count, stripe
size, I/O transfer size, and the number of I/O processes. This study uses mathematical models
based on queuing models. The autotuning framework first develops a model in a training phase
that is close to the real system. The framework then searches for optimal parameters using search
heuristics such as simulated annealing, and genetic algorithms. Developing a mathematical model
for different systems based on queuing theory can be further from the real system, however, and
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may produce inaccurate performance results. In contrast, our framework searches for parameters
on real systems using search heuristics.

Several efforts have been made to predict parallel I/O performance. Shan et al. (2008) use the
IOR benchmark to match the I/O patterns of an application and predict I/O performance. Meswani
et al. (2010) use a similar strategy by running the I/O operations of an application on a reference
system and calibrating the performance of the reference system with a target system. Smirini et al.
[1997] use a queuing network model to predict the performance of RAID-3 disks. Song et al. (2013)
propose an analytical model to predict the cost of read operations for accessing data organized in
different layouts on the file system. Kumar et al. (2013) use various machine-learning algorithms for
improving performance of I/O in a PIDX file format library; their prediction focuses on network
and I/O performance while keeping the stripe settings fixed. While many of these efforts seek
to predict I/O performance accurately, our work uses the models to identify fruitful parameter
values and then iterates in the executing and refitting stages by searching among this smaller set
of parameter values. Using this approach, we have shown that our technique is fast and effective
in achieving good I/O performance.

I/O Signature (Byna et al. 2008) is a notation consisting of five dimensions of I/O operations:
operation, spatial offset, request size, repetitive behavior, and temporal intervals. These are then
gathered by a framework for each application and stored persistently for later look-up in order to
help prefetching.

Statistical models such as Markov models have been proposed for a long time producing and
predicting I/O operations and file system performance, (Smirni and Reed 1998; Simitci and Reed
1998). These are then used more in the context of prefetching, caching, or scheduling.

Omnisc’IO (Dorier et al. 2014) is a grammar-based I/O model with the aim of capturing and
predicting I/O operations of an application. At its heart, it uses an algorithm based on the Sequitur
algorithm that, given a sequence of symbols, builds a grammar for text compression. It supports
both spatial and temporal patterns in this regard. To be more general, the authors use the program’s
stack trace as the symbols of the grammar. One strength of their approach is that it does real-time
prediction as the grammar is being updated in the algorithm. This is similar to what we called
“real-time tuning” in the article.

He et al. (2013) correctly argue that a lot of information gets lost in a typical I/O stack as the
data flows between its layers. Although high-level I/O libraries contain rich information about
the data structures, eventually, they get down into simple offset and length pairs in the storage
system. Their solution to this problem is to “rediscover these structures in unstructured I/O” using
a gray-box technique. Our approach, however, is to avoid losing the data by intercepting it at the
higher levels. In terms of framework design, there are some similarities such as the way the pattern
detection engine works. Since it is at POSIX level, however, it has a local pattern structure and a
global one. For the local one, a modified algorithm based on Lempel-Ziv 77 (LZ77) is presented
and for the global patterns, these local patterns are sorted in order to check for a pattern between
them. These are not necessary in our work.

13 CONCLUSIONS

In this article, we describe different parts of an I/O autotuning framework. We present two ways of
implementing an autotuning framework for optimizing I/O performance of scientific applications.
The first framework is capable of transparently optimizing all levels of the I/O stack, consisting of
HDF5, MPI-IO, and Lustre/GPFS parameters, without requiring any modification of user code. We
have successfully demonstrated the power of the framework by obtaining a wide range of speedups
across diverse HPC platforms, benchmarks, and concurrencies. Note that NetCDF-4 is based on
HDF5 and, therefore, all the HPC applications using NetCDF-4 can also benefit from this work.
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As the second framework, we present a model-driven tuning framework that exploits nonlinear
regression models to find the top-performing values for these parameters in order to decrease the
amount of I/O time in HPC applications. We show that our approach achieves a significant portion
of the available I/O performance of various HPC platforms for a range of applications. We propose
a pattern-driven autotuning framework to solve this problem. It consists of components to extract
I/O patterns, tune configurations for the detected patterns, store them in a database of patterns
associated with their I/O model, and map an arbitrary I/O pattern to a previously tuned model in
order to improve its I/O performance. We show that using these patterns, one can tune different
sets of applications ranging from the ones that have been tuned, to the ones that are similar, to
the previously tuned ones, and to totally new ones. We believe that the autotuning framework
can provide a route to hiding the complexity of the I/O stack from application developers, thereby
providing a truly performance-portable I/O solution for scientific applications.
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