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ABSTRACT

A prime question for plasma physicists is how a fraction of charged

particles is accelerated to very high energy.To answer this question,

physicists simulate trillions of particles with detailed dynamics and

analyze their trajectories. This process requires a range of data

analysis tasks with high diversity. In this paper, we present a use

case of formulating various analysis tasks on terabyte-scale particle

data with a novel data analysis framework called ArrayUDF. The

flexibility of ArrayUDF allows it to compose a wide range of particle

data operations. We also present optimization strategies to avoid

frequent global reduction and to take full advantage of the data

locality. Tests show that our optimization methods could accelerate

these particle data analysis operations by up to 1,600 times.

CCS CONCEPTS

· Information systems →Parallel and distributed DBMSs.

1 INTRODUCTION

Modern science discoveries are data driven. VPIC, a first-principle

3D electromagnetic kinetic particle-in-cell plasma code [1, 3, 8], is a

representative scientific application that produces a large amount of

data and the data needs to be extensively analyzed to gain insights.

The challenges in analyzing the VPIC data are threefold: complex-

ity, diversity, and scalability. The VPIC datasets have complex data

structures from one-dimensional arrays to three-dimensional ar-

rays. Different domain scientists, or even a single domain scientist,

may apply different analysis operations on the data for different

purposes. A VPIC simulation may run hundred thousands of time

steps and the data size for a single time step could accumulate to

tens to hundreds of terabytes [3].

Domain scientists now usually spend a lot of time and effort

in developing code for analyzing VPIC data from scratch. This

is especially true for particle acceleration studies, where domain

scientists have to add extra analysis for particle trajectories and

statistics [7, 8]. One major obstacle to use popular database man-

agement systems (DBMS) to perform these VPIC data analysis tasks

is the significant overhead of loading the data into a DBMS. In ad-

dition, database systems targeting scientific data, such as SciDB [2],

are not designed for high performance computing (HPC) systems

and therefore suffer from scalability issues [5]. Modern data analy-

sis systems, e.g., MapReduce, Spark [4], obtain high scalability, but

do not intrinsically support array data model. We have developed
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ArrayUDF [5], which is a novel data analysis system targeting ar-

rays. In terms of scalability and flexibility in supporting various

analysis operations, the superiority of ArrayUDF over SciDB and

Spark has been demonstrated [5]. However, ArrayUDF has not been

battle-tested using massive and complex science datasets, such as

those of VPIC. We target the following questions in this paper:

How does ArrayUDF perform to analyze terabyte-scale data? What

performance optimizations are needed in ArrayUDF at this scale?

This paper presents a case study for using ArrayUDF [5] to

compose VPIC data analysis operations. We directly define and

execute these analysis operations on the multi-dimensional arrays

that are stored in HDF5 [9] files produced by VPIC simulation.

We also explored different optimization techniques available in

ArrayUDF to improve the performance of these analysis operations.

In summary, contributions in this paper include:

• Describe a number of representative particle data analysis

operations using the ArrayUDF. These operations involve

complex computations requiring multiple arrays represent-

ing VPIC field data, particle data, and mesh metadata.

• An implementation of the analysis operations in ArrayUDF

through its UDF interface (i.e., Apply) and Stencil data ab-

straction.

• We describe how to use advanced features of ArrayUDF

to accelerate the performance of user analysis operations.

This optimizations include a two-level Reduce method and a

strategy to fully utilize particle locality.

We demonstrate performance and productivity benefits of using

ArrayUDF to perform VPIC data analysis on Cori, a Cray XC40 sys-

tem at the National Energy Research Scientific Computing Center

(NERSC). We observed that the advanced features of ArrayUDF can

accelerate the analysis operations up to 1600X in the tests.

2 ArrayUDF

ArrayUDF [5] is a novel data analysis framework that supports

analyzing arrays natively. In specific, ArrayUDF provides generic

user-defined functions (UDF) for users to customize analysis opera-

tions on arrays. The execution engine of ArrayUDF runs the UDF

automatically on HPC systems with tens thousands of computing

nodes. In Figure 1, we present an overview of ArrayUDF, showing

an example of a UDF with a 2-D input array A and a 2-D output

array B. The array A has two chunks, which are processed concur-

rently using two CPU cores. To avoid possible communication at

chunk boundary cells, a ghost zone layer is added to the chunks

when they are read from persistent storage (i.e., disk or SSD) to

memory for processing.

Another key concept of ArrayUDF is the Stencil data abstraction

(denoted with S) for UDF declaration. The Stencil represents a geo-

metric neighborhood of an array. The Stencil has a center cell that

is denoted with S0,0, ... . Other neighborhood cells are represented
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Array A Array B = A->Apply(A, f)

Stencil

f: UDF

chunk boundary ghost zone

f: UDF

Figure 1: Demonstration of the generic idea of ArrayUDF by

applying a user-defined function (UDF) f from array A to B.

# i n c l u d e " a r r ay_ud f . h "
// Define a new avg function with the Stencil

float my_avg_udf ( Stencil <float > S ) {
return ( S ( 0 , 0 ) + S ( −1 , 0 )+ S ( 0 , 1 ) + S ( 1 , 0 ) + S ( − 1 , 0 ) ) / 5 ;

}
//Apply my_avg on array A, output is ignored

void main ( int argc , char ∗ argv [ ] ) {
s t d : : v e c to r <int> cs { 1 0 , 1 0 } ; //chunk size

s t d : : v e c to r <int> gs { 1 , 1 } ; //ghost zone size

Array <float > A( "file.h5:/data" , cs , gs ) ;
A−>Apply ( my_avg_udf ) ;
}

Figure 2: ArrayUDF C++ example code for user-defined av-

erage on a two dimensional array. The array is stored in a

HDF5 dataset "/data" within a file "file.h5". In the following

texts, we ignore the łmainž function and focus on the UDF.

with Si, j, ... , where i and j are relative offsets from the center cell.

Apply function is the core of the ArrayUDF execution engine. In

Figure 1, the execution engine creates Stencil instances for each cell

of array A, executes UDF (f ) on the Stencil instances, and stores

the resulting Stencil in array B.

ArrayUDF is implemented in C++1. In Figure 2, we show an ex-

ample of using it to define an averaging function. The łarray_udf.hž

header file provides declarations for Array and Stencil . The imple-

mentation usesMPI [6] for parallel programming and uses HDF5 [9]

as the I/O library. The defined function is łAppliedž onto an array in

the main function. After compiling the code, it can run on multiple

CPU cores of a single node or of multiple nodes.

3 VPIC DATA

One major task of plasma physics nowadays is to simulate and

understand the plasma behavior, magnetic field evolution, and par-

ticle dynamics. A recent simulation using VPIC [3] is a 3D fully

kinetic plasma simulation, which simulated a billion field cells and

a trillion particles with hundred thousands of time steps.
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Figure 3: Overview of VPIC simulation and its data.

In Figure 3, we show an overview of VPIC simulation datasets.

Overall, VPIC breaks the simulation space into mesh cells. The

1https://bitbucket.org/arrayudf/

particles are freely moved among these cells. VPIC generates three

types of data: particle data, field data, and metadata. The particle

data contains the properties of each particle, which include the

relative location (dX ,dY and dZ ) of a particle within a cell. In this

case study, we use a 2TB particle data with billions of particles.

There are two types of fields: electromagnetic and hydro. Each of

them is a multidimensional array that follows the structure of the

simulation mesh. The electromagnetic field has six attributes that

are required for the self-consistent evolution of the system: ex , ey,

ez, bx , by and bz. VPIC in principle can simulate more than two

species (electrons and ions), so the output could contain a large

number of hydro fields. Each particle species has its own hydro

fields, e.g., jx , jy , and jz . The metadata describes the mesh structure,

e.g., the number of cells and the size for each cell in all directions.

4 VPIC DATA ANALYSIS AND ArrayUDF

In this section, we describe some common analysis tasks which

plasma physicists perform on the VPIC datasets.

4.1 Field Data Analysis

Analysis Formulation. A critical analysis operation on the field

data is to calculate the total current and root-mean-square (RMS)

of the absolute value of the current. The total current for a single

mesh point is the sum of the current from the electrons
#»

Je and the

ions
#»

Ji . Both
#»

Je and
#»

Ji are vectors with three components in x , y,

and z directions. One statistical property is the root-mean-square

of the total current. In summary, for each mesh point, the total

current and RMS of the total current can be formulated as,
#»

Jt =
#»

Je +
#»

Ji , (1)

Jrms =
1

N

√

∑

i, j,k

#»

Jt 2 (2)

whereN is the amount of points. The
#»

Jt
2 is defined as J2tx + J

2
ty+ J

2
tz ,

where Jtx , Jty and Jtz are its components in x, y, z directions.

ArrayUDF Implementation. In Figure 4, we show the imple-

mentation of above equations inArrayUDF. In the łtotal_current_udfž

function, its input is Stencil J with two attributes, łež and łiž, where

łež is the electron current and łiž is the ion current. We use the vir-

tual array of ArrayUDF to merge these two attributes into a single

Stencil . The łrms_current_udfž function adds the root-square value

of each point into łcurrent_sq_sumž, which is a global reduction

function. As discussed in Section 2, both UDF functions can be

applied to run over the whole field data arrays in parallel.

// Define a new avg on the Stencil

float t o t a l _ c u r r e n t _ u d f ( Stencil <float >
#»

J ) {

return
#»

J .e +
#»

J .i ;
}
Global cur ren t_sq_sum = 0

void rms_cu r r en t_ud f ( Stencil<float >
#»

J ) {

cur ren t_sq_sum +=
#»

J 2

}
rms_cur r en t = s q r t ( cur ren t_sq_sum ) / N

Figure 4: Pseudocode of UDF functions in ArrayUDF for

VPIC field data analysis.

Optimizations. One significant performance overhead of the

UDF in Figure 4 is to update łcurrent_sq_sumž. When the UDF runs

in parallel (e.g., 1000 CPU cores), it needs a global communication
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to update łcurrent_sq_sumž during each call of łrms_current_udfž.

The number of times for calling łrms_current_udfž is equal to the

number of mesh points. Our implementation (in Figure 5) intro-

duces a two-level reduction, where łcurrent_sq_local_sumž is a

variable for each CPU core and łrms_current_udf_v2ž only adds its

values to its local variable first. Once the łrms_current_udf_v2ž is

finished locally, a global reduction method łReducež adds all the

local variables. Therefore, the global communication happens only

once and the performance of the analysis code is improved.

Local cu r r en t _ s q _ l o c a l _ s um

void rms_cu r r en t_ud f_v2 ( Stencil <float >
#»

J ) {

c u r r en t _ s q _ l o c a l _ s um +=
#»

J 2

}
Reduce ( cu r r en t _ sq_ l o c a l _ sum , SUM, cu r r en t _ s q_g l ob a l _ sum )
rms_cur r en t = s q r t ( c u r r en t _ s q_g l ob a l _ sum ) / N

Figure 5: Pseudocode of optimized UDF functions in Ar-

rayUDF for VPIC field data analysis.

float g l o b a l _ x _ud f ( Stencil <float > p ) {
int i = p ( 0 ) . i ;
return ( i % (nx [ i ] + 2 ) + ( p t ( 0 ) . dX − 1 ) / 2 . 0 ) ∗dx [ i ]+x0 [ i ]

}

Figure 6: Pseudocode of UDFs to find global X for a particle.

The input Stencil has two attributes: the cell index i and local

position dX . The UDFs for finding global Y and Z have the

same shape and therefore we ignore them in the figure.

4.2 Particle Data Analysis

Analysis Formulation. An important analysis operation on par-

ticle data is to find the global position for each particle in the

simulation space. During the VPIC simulation, particles are man-

aged by a local domain, which is a group of cells on a single CPU

core. Therefore, the location of the particles is recorded as dX , dY ,

and dZ , which are the relative location inside the cell containing

the particle. The metadata of the VPIC records the locations (lower-

left corner ) of each domain as x0, y0, and z0. The number of cells

(nx ,ny , and nz ) of the whole simulation space are also recorded in

the metadata. The challenges of this data analysis is to transfer this

local position of a particle to its global positions, denoted as xд , yд ,

and zд . In all, the method to obtain the global location for a particle

is presented as below:

xд =
(

i mod (nx + 2) +
dX − 1

2.0

)

× dx + x0, (3)

yд =
( i

nx + 2
mod (ny + 2) +

dY − 1

2.0

)

× dy + y0, (4)

zд =
( i

(nx + 2) × (ny + 2)
+

dZ − 1

2.0

)

× dz + z0, (5)

In these equations, i is the domain index and dx , dy and dz are the

size of each cell from metadata.

ArrayUDF Implementation. The implementation of the UDF

for ArrayUDF to find the global location of a particle is shown in

Fig. 6. This UDF also uses the metadata arrays, nx , dx and x0. These

global metadata arrays are preloaded into memory before applying

UDF. Its operator ł[]ž can return the value at an offset of łiž.

float g l o b a l _ x _ud f _v 2 ( Stencil <float > p ) {
static int i = −1;
static float nx_v , dx_v , x0_v ;
if ( i != p ( 0 ) . i ) {

nx_v = nx [ i ] ; dx_v = dx [ i ] ; x0_v = x0 [ i ] ;
i = p ( 0 ) . i ;

}
return ( i %( nx_v +2 )+ ( p t . dX − 1 ) / 2 . 0 ) ∗ dx_v+x0_v

}

Figure 7: Pseudocode of optimizedArrayUDFUDF functions

to find global X for a particle.

Optimizations. Recall that the particle data may be 2TB with

billions of particles. Hence, applying łglobal_x_udfž to each particle

can be tedious process. To reduce the time, we study the data locality

of particle data. We found out that the particles belonging to the

same domain are stored contiguously on the disk. Hence, when a

single particle calls łglobal_x_udfž, the following particles have

a very high chance of belonging to the same cell. Based on this

assumption, we present an optimized version of the UDF function

in Fig 7. We declare the łiž, łnx_vž, łdx_vž, and łx0_vž as static

variables. Hence, if the next particle has the same cell, metadata

can be reused without accessing metadata arrays. By avoiding slow

memory access, we can reduce the overall data analysis time.

float i n t e r _ e x _ u d f ( Stencil <float > p ) {
i = ⌊(p .xд + sx )/dx ⌋ ; j = ⌊(p .yд + sy )/dy ⌋ ; k = ⌊(p .zд + sz )/dz ⌋ ;
rx =mod(p .xд, dx )/dx ; ry =mod(p .yд, dy )/dy ; rz =mod(p .zд, dz )/dz ;
ex00 = EX[ i , j , k ] ; ex10 = EX[ i , j + 1 , k ] ;
ex01 = EX[ i , j , k + 1 ] ; ex11 = EX[ i , j + 1 , k + 1 ] ;
return ( (1 −ry ) ∗ ( 1 −rz ) ∗ ex00 +(1+ry ) ∗ ( 1 −rz ) ∗ ex10 +(1−ry ) \

∗ ( 1 + rz ) ∗ ex01 +(1+ry ) ∗ ( 1 + rz ) ∗ ex11 ) / 4 . 0 ;
}

Figure 8: Pseudocode of UDF in ArrayUDF to interpolate EX

to a particle. Other fields have the same shape.The sx , sy amd

sz are the shift of the particle from the original.

4.3 Fusing Fields and Particles Data

Analysis Formulation. The field data is recorded on the edge or

face of the mesh. Particles are scattered over the whole space. One

interesting analysis for domain scientists is to interpolate the field

from the mesh to all particles. This interpolation is like a łjoinž

operation among the particle data, field data and the metadata.

Assume that the field data is represented by łEXž, which is a 3D

array. The dx , dy and dz are the size of each cell. The i, j and k are

the index of the domain in łEXž. The interpolation from łEXž to a

particle at dZ ,dY ,dZ within a domain is :

Epx =(1 − dY )(1 − dZ )Ex (i × dx , (j − 0.5) × dy , (k − 0.5) × dz )/4+

(1 + dY )(1 − dZ )Ex (i × dx , (j + 0.5) × dy , (k − 0.5) × dz )/4+

(1 − dY )(1 + dZ )Ex (i × dx , (j − 0.5) × dy , (k + 0.5) × dz )/4+

(1 + dY )(1 + dZ )Ex (i × dx , (j + 0.5) × dy , (k + 0.5) × dz )/4

(6)

ArrayUDF Implementation. In Figure 8, we show the Ar-

rayUDF implementation for the interpolation. The Stencil has three

attributes xд , yд , and zд for particle global locations. The metadata

used here are the łshiftž that record the offset from original in all

dimensions. Adding the shi f tx /shi f ty /shi f tz to the xд/yд/zд of a

particle turns them into positive.
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Figure 9: Optimizations introduced to ArrayUDF accelerate VPIC data analyses up to 1600X.

Optimizations. The idea for optimizing interpolation UDF is

the same as the one for the particle data analysis in the previous

section.We utilize the locality of particle by allowing łinter_ex_udfž

to save current status for its following running. We declare the i , j ,

k , łex00ž, łex10ž, łex01ž, and łex11ž as the static variables. When

the following particle belongs to the same cell as the current one,

the łex00ž, łex10ž, łex01ž, and łex11ž can be reused. As a result, the

time to run the interpolation can be reduced. Because of the page

limits, we do not show the optimized pseudocode.

5 RESULTS

We run our performance tests on the Cori supercomputer at NERSC2,

which has 2, 388 Intel Xeon "Haswell" processor nodes and a Lustre

file system. Detailed test configurations are presented while we

report the experimental results.

Field Data Analysis. We evaluate the ArrayUDF based field

data analysis (ğ 4.1) using a 3D array of the size as [1024, 1024, 256].

The element type is float. We specifically focus on comparing the

performance of ArrayUDF implementation with and without the

two-level reduce optimization. Since the field data in this case is

only 1GB, we used 32, 64 and 128 CPU cores to run the field analysis,

respectively. Our test results are reported in the Figure 9a. Clearly,

the two-level reduce optimizations can significantly improve the

performance of the entire field data analysis operation on the data

by 1600X . Meanwhile, from the results, we also notice that the

ArrayUDF scales linearly from 32 to 128 CPU cores.

Particle Data Analysis. This section reports the test results of

using ArrayUDF to execute the particle data analysis of VPIC (ğ 4.2).

We use 1.1TB particle data(≈ 3 billions particles). The metadata

used in the test is 167KB containing the mesh information for

the 4096 mesh cells. The tests are evaluated with 256, 512 and

1024 CPU cores, respectively. Our tests compare the performance

particle data analysis with or without our optimization method, as

reported in previous Section 4.2. Test results are shown in Figure 9b.

Considering the locality of the particle data can reduce over 12X

times of the time to execute the analysis code. Also, the ArrayUDF

can scale well from 256 CPU cores to 1024 CPU cores.

Fusing Particle and Field Data Analysis. By using both the

field data (≈ 1GB) and the particle data (≈ 1.1TB) in previous

sections, we evaluate the performance of interpreting the field data

to each particle. Our tests use 256, 512 and 1024 CPU cores. Test

results are shown in the Figure 9c. We observe that considering the

particle locality is 1.4X faster than the case without considering the

locality. We also notice that the speedup of this test is smaller than

the one for particle data analysis. The reason is that the memory

2https://www.nersc.gov/systems/cori/

access for metadata and field data plays a less significant role in

the entire UDF execution.

6 CONCLUSIONS

The VPIC data analysis operations are similar to most scientific data

analyses in that they involve a large variety of complex operations

on data stored in multidimensional arrays. ArrayUDF allows these

operations to be expressed as user-defined functions, while provid-

ing a transparent parallelization and automatic data managements

for these customized operations. In addition to demonstrating the

flexibility of ArrayUDF, we have also explored optimizations, in-

cluding a more effective way to take advantage of data locality and a

new multi-level reduction algorithm, to accelerate the execution of

analysis functions. Our optimization strategies can speedup the Ar-

rayUDF implementation up to 1600X in our tests. In future, we plan

to formalize these optimization methods and to provide a thorough

comparison with other similar systems, such as Spark [10].
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