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Abstract—

Scientists are increasingly turning to datacenter-scale com-
puters to analyze massive arrays. Despite decades of database
research that extols the virtues of declarative query processing,
scientists still write, debug and parallelize imperative HPC
programs even for the most mundane queries. This impedance
mismatch is due to the cumbersome and costly data conversions
that are needed to use scientific data management tools in an HPC
setting. Our goal is to make declarative array manipulations from
SciDB interoperable with imperative, file-centric analyses from
HDF5-based programs.

This paper describes ArrayBridge, a bi-directional array view
mechanism for the HDF5 file format, that allows scientists to use
SciDB, TensorFlow and HDF5-based analysis code in the same
file-centric pipeline without converting between file formats. In
addition to fast querying over HDF5 array objects, ArrayBridge
produces arrays in the HDF5 file format as easily as it can
read from it. ArrayBridge also supports time travel queries from
imperative codes through the unmodified HDF5 API, and auto-
matically deduplicates between versions for space efficiency. Our
performance evaluation in a large scientific computing facility
shows that ArrayBridge exhibits statistically indistinguishable
performance and I/O scalability to the native SciDB storage
engine and is 3× faster than TileDB.

I. INTRODUCTION

Scientists are increasingly turning to datacenter-scale com-

puters to understand phenomena that would otherwise be

impossible or intractable to approach experimentally. Scientific

advances in domains as diverse as plasma simulation [1],

cosmology [2], and climate modeling [3] require processing

many terabytes of array data. Many of these arrays are stored

in scientific file formats like HDF5 [4] and netCDF [5]. Usage

data from petaflop-scale computing facilities corroborates that

HDF5 and netCDF remain among the most popular building

blocks for scientific computing today [6].

Scientific data management systems like SciDB [7] have

not been widely adopted in large scientific computing fa-

cilities. One challenge is that ingesting data into SciDB is

slow: parallel loading of modestly-sized (∼100 GiB) arrays

in SciDB takes hours and uses at least 4× more space than

the size of the input for data staging. Furthermore, once the

data is loaded in the system it can no longer be accessed

by HPC tools, such as ParaView for visualization [8] and in

situ processing [9] or FastQuery for indexing [10], nor by

custom C or Fortran code that is essential for many domain-

specific transformations. These HPC tools frequently co-exist

in a single pipeline with modern analytics frameworks such as

TensorFlow [11] and Theano [12]. Prior research corroborates

that it is non-trivial to port an entire scientific data processing

pipeline to one system [13].

We argue for stronger interoperability between the scientific

database system and the tools outside the database. This would

allow scientists to mix and match storage, processing and

analytics software as they see fit for the problem at hand.

ArrayBridge is the first step towards realizing this vision.

ArrayBridge implements a bi-directional view mechanism for

multi-dimensional array objects in the HDF5 file format. Ar-

rayBridge exposes an operator-centric interface, which makes

SciDB, TensorFlow, and legacy C or Fortran code seamlessly

interoperable by producing, accessing and updating versioned

array objects directly in the HDF5 file format. By directly

interfacing to SciDB and TensorFlow, ArrayBridge does not

require scientists to wait for hours for a dataset to be converted

before issuing the first query.

Previous research has considered how database systems

can bypass data loading [14], [15], [16], [17], [18], but

has largely focused on achieving good read performance.

Scientists, however, also desire to serialize array objects in

the database to array formats like HDF5 efficiently. Yet, HDF5

has an inherent single-writer, multiple-readers (SWMR) design

constraint [19], [20]. This creates a scalability bottleneck

because a single writing process cannot utilize the massive I/O

concurrency of the parallel file system in a modern scientific

computing facility. ArrayBridge efficiently materializes array

objects in the HDF5 file format by writing in parallel through

a virtual view. The view controls the I/O concurrency by

partitioning the writes into many independent streams. This

bypasses the single-writer design constraint that limits the I/O

scalability of file format libraries. When reading, scientists

access a single array object through the view without any

modifications to their applications.

Finally, many scientific processes are iterative and naturally

produce versioned array objects. Although SciDB supports

time travel queries, scientists lack a principled way of ac-

cessing past object versions when the data are stored in

an HDF5 file instead. Saving versions as different objects

creates bloated files that duplicate unmodified chunks. Ar-

rayBridge implements multi-versioning and discards duplicate

array chunks, which in turn conserves I/O bandwidth and

storage space. ArrayBridge permits time travel queries from



existing applications (frequently version-oblivious C or Fortran

code) through the unmodified HDF5 file format API. Versions

are reconstructed in an opaque manner to applications by

carefully using the virtual dataset feature of HDF5. Under

the hood, ArrayBridge deduplicates common regions between

versions and reduces the storage footprint of the HDF5 file.

Our extensive experimental evaluation in NERSC, a large

scientific computing facility shows that ArrayBridge com-

pletely bypasses the cumbersome multi-hour data loading

process of SciDB for TiB-sized array datasets. Scientists using

ArrayBridge can query array objects in the HDF5 format in a

few minutes from both SciDB and TensorFlow. ArrayBridge

exhibits statistically indistinguishable I/O scalability and per-

formance to the native SciDB storage engine and is about 3×
faster than TileDB. In addition, ArrayBridge produces arrays

in the HDF5 format as efficiently as SciDB serializes the

database in its proprietary format for backup.

II. BACKGROUND

A. The SciDB database system

SciDB organizes data into multi-dimensional arrays. Every

cell in a SciDB array contains one or more attributes (values),

similar to a tuple in relational databases. An array is stored and

processed in chunks using the regular chunking strategy [21].

SciDB compresses chunks using Run Length Encoding (RLE).

SciDB adopts a shared-nothing model, and partitions the

chunks across all instances in a cluster. Metadata is stored

in the SciDB catalog, which is a centralized PostgreSQL

database. Each instance processes its own data, and only

redistributes data across instances if the query plan explicitly

asks so. One instance acts as the coordinator.

During query processing, the SciDB coordinator parses an

AQL or AFL query to generate a query plan for optimization.

The coordinator also orchestrates the evaluation of partial

query fragments among instances, and returns the final result

to the user. The query plan is a graph of array operators.

During the optimization phase, each operator reports the

schema of its output array. Every operator exposes a chunked-

based iterator interface that returns one chunk in the output

upon request.

Loading data into SciDB: A user can load data into SciDB

using the load() operator, which supports loading in parallel

from all instances. Parallel loading requires a separate file for

each instance. Because popular formats like CSV may serialize

multi-dimensional arrays in a different order than SciDB,

loading from these formats is a two-step process: First, the user

issues a load() statement to create a one-dimensional array

where the coordinates and the variables are saved as separate

attributes, akin to a relational table. Therefore, loading an r-

dimensional array with a attributes requires storage space for

a table with r+a attributes. The second step is a redimension

operation that converts this table to an r-dimensional array.

Supported file formats: Plain text formats like comma-

separated value (CSV) files are very versatile, but they are

also verbose and impose tokenization and parsing overheads.

These disadvantages are exacerbated as the data volume grows.

Binary formats are thus more common in large-scale scientific

computing, as they trade versatility for compactness and

performance. SciDB supports two binary formats for data input

and output: the opaque and binary formats [22].

The opaque format simply copies each RLE-encoded chunk

along with its metadata information directly onto disk. This

format is mainly used for database backups. An application

that reads or produces data in this format needs to understand

how SciDB organizes the chunk data internally. Hence, the

opaque format is not suitable for scientific applications that

desire interoperability.

The binary format concatenates the binary representation

of every attribute for each cell, and serializes cells in row-

major order. This process is time-consuming as it requires

extracting, converting and copying cells from their native RLE

representation into the binary format.

Saving SciDB objects to disk: A user saves SciDB objects

on disk using the save() operator. SciDB provides two

separate writing modes. In the Serial mode, the data is shuffled

to the SciDB coordinator which writes all the data to a

single file. This way, processing and managing the data is

straightforward, but the writing throughput is limited to the

I/O capacity of one instance. In the Partitioned mode, each

instance writes the data it stores to a separate file. This way,

the writing is parallelized, but the user needs to deal with the

complexity of maintaining partition information and adapting

existing tools to read partitioned files.

B. The HDF5 file format

The HDF5 format [4] is a prominent scientific data format.

Data in HDF5 files is organized using two key objects: datasets

and groups. A dataset is a multi-dimensional array containing

the same type of elements. The data in an HDF5 dataset

can be split into multiple chunks, each of which stored in

a separate contiguous block in the file. HDF5 uses the same

chunking method as SciDB. Similar to directories in a file

system, groups organize data objects such as datasets and other

groups into a hierarchical structure.

An HDF5 array is always logically dense. However, appli-

cations can register a well-defined value as the fill value of a

dataset. If no chunk has been created, HDF5 will return the fill

value on access. This saves space for arrays with contiguous

empty regions, such as a triangular matrix.

The virtual dataset feature: A recent feature of HDF5 is

virtual dataset support [23], [24] that combines data from

multiple source datasets. A virtual dataset can be accessed

as an ordinary dataset, but does not store actual data. A

virtual dataset defines a list of mappings m1,m2,m3, ...,mn,

that describe where the actual data is stored. A mapping is

represented as a tuple < d, src, dst >; a source dataset d,

where the actual data is stored; a source selection src marks

the elements in d that are parts of the virtual dataset; and a

target selection dst marks the logical positions of the source

elements in the virtual dataset.

When a program reads or writes a region in a virtual dataset,

the HDF5 library traverses the mapping list to find all the



Fig. 1: Through ArrayBridge, scientists intermingle declarative and
imperative analyses on the same dataset. ArrayBridge uses the HDF5
library for storage and is integrated with the SciDB query engine.

mappings that intersect with the queried region, and then prop-

agates the reading or writing operation to the corresponding

source datasets sequentially. As of version 1.10, the HDF5

library does not support removing items from the mapping

list, therefore, the only way to modify a virtual dataset is to

recreate the list from scratch.

III. SYSTEM OVERVIEW

ArrayBridge allows imperative manipulations and declarative

queries to be issued against the same array object. An overview

of the system is shown in Figure 1. ArrayBridge exposes

two interfaces: a read interface which scans an array and

a write interface that saves into an array. Our prototype

implementation of ArrayBridge uses the HDF5 library for

storage and it integrates with the SciDB query engine.

Users can query HDF5 data using AQL/AFL queries. We

refer to an HDF5-resident array as an external SciDB array,

to distinguish it from the native SciDB arrays. Whenever an

external array is queried, control is routed to ArrayBridge

which returns the underlying HDF5 data. The new operator

create_array_hdf5() declares an external array. The user

specifies the name and the schema of the array, as well as the

HDF5 file and the dataset name, as such:

create_array_hdf5(array1, <val1:double>

[i=0:999,100,0], "data1.hdf5:val1");

This statement creates a 1000-element array with one

double attribute, stored in HDF5 dataset val1 in the file

data1.hdf5. This populates metadata about the array schema

in the SciDB catalog (a PostgreSQL database).

One SciDB array can contain multiple attributes (columns),

whereas data in HDF5 is organized into single-attribute data-

sets. Hence, an external array can contain more than one HDF5

datasets with the same shape, each represented as one attribute

of the array. Users create multiple attributes in an external

array by listing all the attributes and the corresponding datasets

in the create_array_hdf5() statement.
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Fig. 2: An operator-centric runtime process data directly from exter-
nal HDF5 arrays using the scan_hdf5 operator in ArrayBridge.

IV. READING ARRAY OBJECTS IN THE HDF5 FORMAT

This section presents how ArrayBridge reads HDF5 data and

exposes them to SciDB. After an external array is created,

a user retrieves the contents of the external array using the

scan_hdf5 operator. Depending on the query, the scan_hdf5

operator either reads the entire array or selectively retrieves

specific chunks of the array.

A. Design of the Scan operator

The internal interface to the scan_hdf5() operator consists

of two functions: Start(obj, attr) and Next(). The operator is

initialized by calling Start() with two parameters that indicate

the requested array object obj and the requested attribute attr

in that object. After the operator is initialized, calling Next()
repeatedly iterates through the array and returns the next chunk

assigned to this instance.

Given that ArrayBridge processes data concurrently on

multiple nodes, one aspect of the design is how to assign the

chunks of an array to different instances. Database systems

(including SciDB) store assignment information in a catalog.

This design choice is limiting, however, because imperative

applications can change the shape of external array objects

through direct calls to the HDF5 API and leave behind stale

metadata. ArrayBridge has significant more leeway on when

to map chunks to instances because external files on a parallel

file system are visible to all instances. ArrayBridge thus

assigns chunks to instances at query time. Assigning chunks

to instances at query time mitigates load skew and presents an

opportunity to update stale metadata to their correct values.

B. Implementation of the Scan Operator

The pseudocode of the scan_hdf5() implementation is

shown in Algorithm 1.

The Start() method: Before the scan operation commences,

all instances first determine how to partition the chunks to

parallelize the scan operation. We identify each chunk by

its coordinates, and use a mapping function µ() to abstract

different chunk assignment algorithms [25]. We use the round-

robin assignment in our implementation.

Each instance creates an ordered array CP in memory that

stores all the chunks that the mapping function has assigned

to this instance. When Start(obj, attr) is called, the catalog



Algorithm 1: The scan_hdf5 implementation for SciDB.

1 Function Start(Array obj, Attribute attr)
2 (f, d)← lookup (obj, attr) in the SciDB catalog
3 open the HDF5 file f and the HDF5 dataset d
4 empty CP
5 foreach chunk pi in dataset d do
6 if µ(pi) = this instance then add pi into CP
7 end
8 chunkP tr ← first element in CP
9 c← a new RLE chunk with unique elements

10 end
11 Function Next()
12 r ← region at chunkP tr to read from
13 call H5Dread(d, r, c) to read data into chunk c
14 advance chunkP tr
15 return c
16 end

is consulted to translate an (obj, attr) reference into the

appropriate HDF5 file name f and the dataset d. Start() then

opens file f , reads the array shape information for dataset d,

and iterates over all chunk positions. Instance i adds chunk

j to its local CP if and only if µ(j) = i. Finally, the chunk

read pointer chunkPtr is initialized to the first chunk.

The Next() method: Next() reads the chunk at the co-

ordinates pointed by chunkPtr from the HDF5 dataset, and

advances chunkPtr. Reading data from an HDF5 file into

memory is done by calling H5DRead() and passing the source

dataset d, the source region r, and the destination buffer c to

store the in-memory data. The HDF5 library uses the C array

representation for in-memory data.

SciDB operators exchange data in compressed run-length

encoded (RLE) format. We found that compressing HDF5 data

into the RLE representation after every read was a perfor-

mance bottleneck. This predominantly impacts dense arrays

that HDF5 is designed for, which do not compress well with

RLE. Hence, we decided against compressing data using RLE

in ArrayBridge. Each scan operator in ArrayBridge creates a

single RLE-compressed chunk c where each element is unique,

and then reuses this chunk in every call to H5DRead().

V. SAVING ARRAY OBJECTS IN THE HDF5 FORMAT

Many post-processing and visualization workflows are con-

ducted over file-centric APIs. It is thus important to efficiently

serialize arrays into popular scientific data formats such as

HDF5. This section presents how ArrayBridge materializes

array objects into external HDF5 files. The two key features

that ArrayBridge supports are (1) parallel writing that bypasses

the single-writer limitation of HDF5, and (2) time travel so that

imperative kernels can access previous versions of a dataset

over the HDF5 API without modifying the code. We describe

each in turn.

A. Balancing efficiency and interoperability

Serializing array data into the HDF5 format exposes a

dilemma between writing efficiency and interoperability. To

write data in parallel, one can produce multiple HDF5 files.

Fig. 3: The virtual view mechanism bypasses the single-writer
limitation of the HDF5 file format by directing write streams from
different instances into separate objects. Existing imperative analyses
access a single object through the view.

Splitting a single dataset into multiple files, however, makes

analysis more cumbersome. Conversely, storing the entire

dataset in a single file makes it straightforward to manage

and analyze the HDF5 dataset from existing applications, but

it limits the write throughput to the I/O capacity of one

instance. This fundamental Single-Writer, Multiple-Readers

(SWMR) design constraint of HDF5 is a roadblock to parallel

writing and it prevents any analytical query engine from taking

advantage of the highly concurrent I/O subsystems found in

modern scientific computing facilities.

ArrayBridge supports a novel writing mode, the Virtual

View mode, to allow for explicit control of the I/O concur-

rency regardless of the number of files being accessed. This

avoids the artificial dilemma between writing efficiency or

interoperability with the Serial and Partitioned writing modes

of SciDB. The Virtual View mode utilizes the virtual dataset

feature of the HDF5 format, which presents the data in several

HDF5 files as a single dataset to the application accessing it.

As shown in Figure 3, in the Virtual View mode each instance

writes data to separate HDF5 files, and then a virtual HDF5

dataset maps these files into one logical object. The benefit

of the Virtual View mode is that it combines the efficiency of

parallel writing into separate files with the interoperability of

producing a single file for the small upfront cost of creating

the virtual dataset.

B. Serializing arrays into HDF5

ArrayBridge exposes a save() operator to support the HDF5

format. This allows a user to write data back to external

HDF5 files. ArrayBridge supports Serial and the Partitioned

writing modes with SciDB semantics: In the Serial mode, data

is shuffled to the coordinator, and the coordinator writes the

data into an HDF5 file. In the Partitioned mode, each instance

creates a different file and saves the data assigned to it to a

dataset with the same shape as the original array. The chunks

that have not been assigned to the local instance are empty:

HDF5 logically fills them with a fill value but does not store

any additional data.

The Virtual View mode starts by having every instance write

its chunks to a separate file, just like in the Partitioned mode.



In addition to writing the chunks, each instance also maintains

two regions: one is the source region in the local file (src),

the other is the target region in the virtual dataset (dst). After

the chunks are written, the Virtual View mode needs to create

the virtual dataset.

ArrayBridge implements two methods to create the virtual

dataset. The first method is parallel mapping. Each instance

appends its mappings into the virtual dataset, using the src

and dst objects it created during the writing process. The

virtual dataset needs to be recreated, as it cannot be updated

directly. Thus, each instance needs to read the mappings

in the virtual dataset, append its own mapping to it, and

recreate the dataset using the new mapping list. Because only

one instance can update the virtual dataset at a time, the

parallel mapping technique uses file locking to ensure mutual

exclusion. This crude synchronization method allows each

instance to update its own mapping without waiting for other

instances to exchange mapping data. However, because each

update recreates the dataset, O(n2) mappings will be written

for a cluster with n instances.

The second method of creating the virtual dataset is co-

ordinator mapping. Each instance transmits the src and dst

regions to the coordinator, which concatenates the per-instance

mapping lists and creates the virtual dataset. This requires

all instances to synchronize on a barrier and wait for the

coordinator to create the virtual dataset. The coordinator

mapping technique writes O(n) mappings for a cluster with

n instances. We evaluate the performance trade-offs of these

two techniques in Section VI-C.

C. Backward-compatible time travel in HDF5

An oft-requested feature is the ability to query past versions of

a dataset to understand how a dataset evolved or to explain the

processing steps to the final result. This subsection introduces

the time travel capability in ArrayBridge that transparently

deduplicates regions that are identical between dataset versions

that are stored in the HDF5 file. This reduces the storage foot-

print of versioned datasets and is interoperable with imperative

applications that access former versions through the existing

HDF5 API.

Because analyses predominantly access the latest version

of a dataset, ArrayBridge always fully materializes the latest

version to minimize reconstruction costs. Past versions are

stored under a separate group in the HDF5 object hierarchy.

All versions can be accessed as ordinary HDF5 datasets by

applications via the HDF5 API. A user produces a versioned

dataset by passing a parameter in the save() operator; Array-

Bridge accesses old versions as ordinary HDF5 datasets via

an explicit call to the scan_hdf5() operator. ArrayBridge

supports three techniques for saving a versioned dataset: Full

Copy, Chunk Mosaic and Delta.

Full Copy: The Full Copy technique incurs the cost of

materializing every past version. For example, if a query calls

save() to update the dataset speed to version V2, Array-

Bridge renames dataset speed as PreviousVersions/V1.

PreviousVersions

V0

VersionData

V1 V0 V1

Mapping

Data

Empty

Group

Dataset

speed

/

Fig. 4: An example of the Chunk Mosaic technique. The latest version
is the fully-materialized dataset speed. Old versions are virtual
datasets in the PreviousVersions/ group.

After this metadata operation is completed, the save() oper-

ator creates a new dataset named speed that stores the latest

version V2.

Chunk Mosaic: The Chunk Mosaic technique only stores

the chunks that are updated and creates a virtual dataset to

“stitch together” the past version. An example of the Chunk

Mosaic technique is illustrated in Figure 4.

The Chunk Mosaic technique proceeds in two steps. The

first step is creating an HDF5 dataset that stores the previous

versions of the array chunks that are updated. The unmodified

chunks are empty. (Recall that the HDF5 library does not

store empty chunks). This dataset has the same shape as the

original dataset, and is hidden away in an HDF5 group labeled

VersionData/. For example, in Figure 4, the HDF5 dataset

VersionData/V0 only stores the chunks of version V0 of the

speed dataset that were updated in version V1. Because many

analytical engines do not readily convey which chunks were

updated to the save() operator, our current implementation

discovers which chunks changed by comparing the chunk

that is being saved with the chunk that already exists in the

latest version of the dataset. We acknowledge that tighter

integration with a particular query engine can avoid reading

the entire chunk to discover the differences. (For example,

SciDB can convey precisely which cells were updated through

the insert() operator.) We plan to explore opportunities for

tighter integration as part of our future work.

The second step of the ChunkMosaic technique creates a

virtual dataset under the PreviousVersions/ group in the

HDF5 file. This dataset combines the unmodified chunks of the

latest version and the updated chunks in the VersionData/

group into a single view. This virtual view will be accessed

by applications to retrieve this old version. In the example

shown in Figure 4, suppose that the update creates version V2

which is stored in dataset speed. The Chunk Mosaic technique

first creates the virtual dataset PreviousVersions/V1. If a

chunk was modified, the virtual dataset chunk is mapped to

the VersionData/V1 dataset that contains the original chunk

in the previous version; otherwise the chunk is unmodified

and is mapped to its latest version at speed. Finally, the

mappings in the dataset PreviousVersions/V0 that point

to speed are modified to point to PreviousVersions/V1.

Chunk Mosaic produces a series of chained virtual datasets

that can reconstruct any previous version by either referencing

the latest fully-materialized version or a former version of a

chunk in the VersionData/ group.



Delta: A disadvantage of the Chunk Mosaic technique is

that it will materialize the entire chunk even when an update

has only changed a single cell in this chunk. The Delta

technique is a refinement of the Chunk Mosaic technique that

only stores the cells that changed (the delta) back on disk.

The Delta technique only stores the modified cells by

carefully using an HDF5 chunk filter to discard cells that were

not updated when materializing the previous version. (Recall

that the ArrayBridge always materializes the latest version for

efficiency reasons.) The HDF5 library supports chunk filters

as a mechanism to allow user-defined data manipulations on

the I/O path of the HDF5 library. Chunk filters are loaded

dynamically and sit between the internal storage manager in

HDF5 and the I/O layer. A popular use of the chunk filter

functionality has been applying domain-specific storage opti-

mizations and compression. ArrayBridge uses a chunk filter

to sequentially store the updated cells and then truncates the

buffer that will be forwarded to the I/O layer for storage. This

allows ArrayBridge to issue I/O requests that are proportional

in size to the number of updated cells in each chunk.

This I/O-oriented optimization comes at the expense of CPU

cycles when it comes to creating the mappings that will allow

version-oblivious code to reconstruct the historic version of an

object. Whereas the Chunk Mosaic technique would create as

many mappings as chunks (as shown in Figure 4, under the

group PreviousVersions), the Delta technique may need

one mapping per cell if the updated region cannot be expressed

as a contiguous or strided hyper-rectangle. We evaluate this

performance trade-off in Section VI-C.

Reconstructing old versions: Old versions are reconstructed

automatically by the HDF5 library when one accesses a

dataset in the PreviousVersions group. When using the

Chunk Mosaic technique, the HDF5 library follows the virtual

mappings to read the actual chunk. When using the Delta

technique, the chunk filter reads the latest materialized chunk

and the modified cells from the disk and combines them to

the actual chunk using the information in the virtual mapping.

We refer interested readers to the virtual dataset design doc-

ument for more information how the reconstruction process

is implemented in HDF5 [23]. The strength of versioning in

ArrayBridge is that this reconstruction procedure is opaque to

programs that access the HDF5 file: old versions appear as

different datasets to programs and can be read without any

modification to the program or the HDF5 library.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of ArrayBridge. We

consider the following questions:

• (§VI-B) How does ArrayBridge perform when reading data

from a parallel file system in a typical HPC environment?

How much time and space does loading take in SciDB?

• (§VI-C) How efficient is the save mechanism of Array-

Bridge, and how does it scale? How effective is the time

travel mechanism in deduplicating versioned array objects?
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Fig. 5: Response time when aggregating a 1.5 TiB dataset.

• (§VI-D) Does ArrayBridge scale to a real multi-TiB simu-

lation dataset that would be infeasible to load in SciDB?

A. Configuration and methodology

We evaluate our implementation on the Edison computer of

the National Energy Research Scientific Computing (NERSC)

facility. Edison is a Cray XC30 supercomputer with 5,586

compute nodes. Each node has two 12-core 2.4Ghz Intel “Ivy

Bridge” CPUs and 64 GiB of memory. File storage is provided

via the Lustre [26] parallel file system. Lustre distributes the

content of a file across multiple I/O servers, called Object

Storage Targets (OST), to provide I/O concurrency for highly-

parallel applications. Each file is divided into a user-defined

stripe size and then stripes are distributed to the requested

OSTs in a round-robin fashion. The stripe count is the number

of OSTs a file is distributed to. The file system we use has a

total of 248 Lustre Object Storage Targets (OSTs) and more

than 30 PiB of total storage. The reported peak I/O throughput

exceeds 700 GiB/sec.

We evaluate ArrayBridge with the SciDB 15.12 Community

release. We configure 8 instances per node and a 16 MiB

chunk size according to the SciDB guidelines. The HDF5

datasets are chunked using the same chunk size (16 MiB).

Unless specified otherwise, we follow the facility-wide I/O

tuning recommendations that suggest striping each file to 72

Lustre OSTs with a 1 MiB Lustre stripe size.

One challenge in reporting performance results from large

HPC facilities is that the computers are always busy with

multiple concurrent jobs. This brings high variability in I/O

performance. When the variability is significant, we report

performance in a box plot to convey the effect of variance.

B. Scan performance

This subsection evaluates the efficiency of analyzing HDF5

data using ArrayBridge through queries on synthetic datasets.

Declarative analysis with ArrayBridge: The first question

is what is the scan performance of ArrayBridge to scan

a one-dimensional dataset of 192 billion double numbers
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(approximately 1.5 TiB data). For comparison purposes with

prior work, we use SciDB [7], the SDS/Q system [16] and

TileDB [27]. Figure 5 shows the query response time as the

number of nodes varies from 1 to 128.

All implementations scale near perfectly from 1 to 32 nodes.

In this region, TileDB takes at least 3× more time than the

other systems. TileDB organizes arrays into fragments that

are stored in separate directories in the underlying file system.

Profiling shows that this slowdown is because of the overhead

of creating and closing fragments, which triggers excessive I/O

to different Lustre OSTs for metadata operations. SDS/Q out-

performs SciDB and ArrayBridge with 1 and 2 nodes because

the workload is CPU bound, but the performance equalizes as

the workload becomes I/O bound. The ArrayBridge peak I/O

performance is about 28 GiB/s with 32 nodes.

ArrayBridge and SciDB stop scaling beyond 32 nodes,

while SDS/Q and TileDB continue to do so. Profiling SciDB

confirms that this slowdown is not caused by ArrayBridge.

Figure 6 shows the time breakdown when using 16, 32, and

64 nodes. The culprit for the increased query response time is

the redistribution cost: it takes far more time to merge partial

aggregates in SciDB than an MPI_Reduce operation in SDS/Q.

Overall, the performance of ArrayBridge is statistically

indistinguishable from the native SciDB engine.

Performance with selective queries: Some queries selec-

tively access data. To evaluate the effect of implicit indexing

in SciDB, we also run a block selection query that randomly

aggregates one contiguous region of the 1.5 TiB dataset

using 8 nodes. We vary the size of the selected region from

1% to 10% of the dataset. The result is shown in Figure

7. The response time of ArrayBridge and native SciDB is

statistically indistinguishable regardless of the selected region

size. This shows that the SciDB chunk index does not bring

a performance advantage over scanning a chunked HDF5 file

directly even when only retrieving a subset of a dense array.

Imperative analysis with ArrayBridge: An important ques-

tion is whether the scan performance can be realized for

imperative programs that read data in the HDF5 format. We

turn to TensorFlow [11] to demonstrate this. Users describe

computations in TensorFlow as a dataflow graph where they
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Fig. 9: Cumulative time to load and complete multiple queries.

specify both the nodes (operators) of the graph and the edges

(data dependencies) between nodes. The unit of data move-

ment between nodes in TensorFlow is a multi-dimensional

array (a tensor) which is returned directly by the Scan API

of ArrayBridge.

An evaluation of the scan performance of ArrayBridge in

TensorFlow reveals that the I/O performance of the native

TensorFlow scan kernels can be slower by two orders of

magnitude. Figure 8 shows the query response time when

aggregating an array with eight billion numbers in 16 MiB

chunks from a single thread. Variance in this experiment is

less than ±10%. Scanning through ArrayBridge completes

this query in about 7 minutes. The same query takes 8×
longer when reading from a binary file and 42× longer when

reading from a CSV file using the TensorFlow operators. This

comparison does not include data conversion times from HDF5

into binary or CSV, which would have increased the time to

the answer even further. We thus conclude that ArrayBridge

provides compelling I/O performance over the native Tensor-

Flow scan which is not optimized for data-intensive analyses.

Time to insight experiment: The evaluation now considers

the data loading time in SciDB and how this impacts work-

loads with multiple queries. We repeatedly aggregate the same

dataset using both ArrayBridge and native SciDB in an 8-node

cluster. For ArrayBridge, we query the HDF5 dataset directly;

for native SciDB, we load the binary dataset in parallel. We use

two synthetic datasets: the first is only 16 GiB and comfortably

fits in the local buffer pool (chunk cache) of each SciDB

instance; the other is 1 TiB which is nearly twice as big as

the local memory in each node. Figures 9a and 9b report the

cumulative query response time of loading and evaluating the

first n queries. (n = 0 reflects the dataset loading time.)

For the 1 TiB dataset (Figure 9a), it takes more than 7.5

hours for the native SciDB to load the data, redimension it,

and return the first query result. The redimension operation

alone takes a little more than 7 hours. In comparison, it only

takes ArrayBridge about 1.5 minutes to answer the first query!
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ArrayBridge provides the answer 300× faster by skipping the

time-consuming loading process. Loading the data into SciDB

does not significantly accelerate subsequent queries either.

This holds even for the 16 GiB dataset (Figure 9b) which

fits entirely in the buffer pool. (Recall that the scan_hdf5()

operator issues I/O requests to the HDF5 file on every call,

whereas native SciDB performs all I/O through the buffer

pool.) We conclude that caching and prefetching by the parallel

filesystem can be as effective as a buffer pool in curtailing

redundant I/O to cold storage for a full scan access pattern.

Another advantage of querying HDF5 data directly in its

native format is reducing the space overhead of loading. As

described in Section II, importing an array into SciDB requires

importing the original data into a flat array with coordinate

information, and then converting it to the redimensioned

SciDB format. For a one-dimensional array, this occupies 3×
more space than the original data.

C. Save performance

SciDB supports multiple formats for exporting data, including

the widely used comma-separated value (CSV) format, the

SciDB ‘binary’ format, and the proprietary ‘opaque’ format.

(See Section II for details.) We evaluate the performance of

saving in these formats by storing a synthetic two-dimensional

64 GiB dataset of double numbers with 8 nodes, using both

the serial and partitioned writing modes.

Figure 10 reports the median query response time of each

format/mode combination. (Note that the vertical axis is log-

arithmic.) As the figure indicates, the CSV and the SciDB

‘binary’ formats are very slow to write into. Even with 8

nodes writing CSV data in parallel, the writing throughput per

node is only ∼ 20 MiB/s due to the overhead of converting

doubles into a text representation. The SciDB binary format

is almost 5× faster as it avoids text conversions and merely

reconstructs the binary on-disk representation from the RLE

encoding. The ‘opaque’ format is 10× faster than the SciDB

‘opaque’ format, as it merely dumps the RLE-encoded chunks
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on disk. Although the ‘opaque’ format is intended for backups

and is not designed to be interoperable across applications,

we report save times for the SciDB ‘opaque’ format in the

experiments that follow as it better approximates the peak

aggregate writing capability of a SciDB cluster.

Problem of serial writing: We evaluate the performance of

the serial writing mode by saving a synthetic two-dimensional

dataset with 8 GiB data per node to disk. (Recall that the serial

writing mode produces a single output file by redirecting all

data to a single SciDB instance.) We vary the number of nodes

from 1 to 8, and report the save time for both the HDF5

format and the SciDB ‘opaque’ formats. Figure 11 shows

the median query response time. Although the computational

power and I/O capacity increase with the number of nodes, the

aggregate writing throughput does not increase accordingly

as the single writing instance is the bottleneck; hence, the

response time increases as the data volume increases. Profiling

the result further shows that both shuffling time and writing

time double when the number of nodes doubles. Although

materializing arrays using the serial mode produces a single

file, its performance does not scale.

Writing in parallel: We now consider the performance of

writing HDF5 files in parallel using the partitioned and virtual

view modes. We generate a synthetic two-dimensional dataset

with 96 GiB data per node. Figure 12 compares the query

response times of saving this dataset using each format/mode

combination.

In terms of scaling, partitioned writing performs well.

Writing HDF5 in partitioned mode scales perfectly from 1

to 16 nodes, maintaining a writing throughput of about 450

MiB/s per node. Writing into the SciDB ‘opaque’ format using

partitioned mode also scales perfectly from 1 to 8 nodes, which

records a per-node writing throughput of about 1 GiB/s. The

writing throughput of the ‘opaque’ format decreases at larger

scale and matches the writing throughput of the HDF5 format

for 32 nodes. However, the disadvantage of the partitioned

writing mode is that it produces one file per SciDB instance.
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Fig. 13: Space and time needed to update a 3.1 GiB dataset.

At 32 nodes, the output is contained in 256 files, which can

be cumbersome to manage.

The query response time of the virtual view mode with local

mapping technique is indistinguishable from the partitioned

writing for clusters up to 4 nodes. However, the response time

goes up while scaling beyond 8 nodes: at 16 nodes, it takes

almost 1.5× longer to write data in the local mapping mode

compared with the partitioned mode; it’s almost 10× as much

when using 32 nodes. This is because of the substantial cost

of updating virtual datasets, where each instance reads and

re-writes all prior mappings. Profiling shows that updating the

virtual dataset takes about 90% of the time for 32 nodes.

The coordinator mapping technique significantly amelio-

rates this overhead, as the coordinator collects all the mappings

and creates the virtual dataset once. For 32 nodes, the coordi-

nator mapping technique reduces the virtual dataset creation

time to about 30 seconds, or less than 10% of the query time.

This allows the user to save a 3 TiB array using virtual view

within 7 minutes, and preserves the advantage of allowing

imperative analysis kernels to access it as a single dataset.

To evaluate the efficiency of the HDF5 virtual mapping

mechanism, we also compare the performance of saving in the

HDF5 format with TileDB [27], which also supports viewing

a partitioned array as a single object. In TileDB, different

processes can write to different fragments (files) in parallel

without conflicts. Akin to the virtual dataset functionality of

HDF5, the TileDB library scans all the fragments that intersect

with the accessed region, and combines the result at query

time. We implemented a version of the save() operator in

ArrayBridge that stores data in TileDB. The result shows that

saving to the TileDB format takes about 4 ∼ 5× more time

than saving in the HDF5 format with virtual view. About

60% of the time is spent on metadata operations. This is

corroborated by the observation that merely listing the contents

of the directory that stores a 1.5 TiB array in the TileDB format

using ‘ls -l’ takes more than 30 minutes as all Lustre OSTs

are contacted to retrieve the size of every fragment.

Time Travel: The evaluation now considers how effective is

deduplicating versioned datasets for time travel queries when

compared with the Full Copy technique.We use a synthetic
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Fig. 14: Time to read an old version.

3.1 GiB dataset of double numbers with a 16 MiB chunk size.

To create a new version, we update a fixed number of N

elements in a strided access pattern, where N = 1% of the

total elements in the array. We change the dispersion of the

updates by scattering them to 1% of the chunks, 10% of the

chunks, and to the entire dataset (100%).

Figure 13a compares the size of a new version. An update

using the Full Copy technique occupies as much space as

the original, since it always duplicates the entire dataset. In

contrast, the space usage of the Chunk Mosaic is proportional

to the number of chunks being updated. The Delta technique is

even more storage-efficient as it only materializes the updated

cells regardless of the dispersion of the updates.

Figure 13b compares the time to store a new version.

We note that the Chunk Mosaic technique has comparable

performance for a significant space advantage over Full Copy.

The Delta technique works well for very few updates, but

its performance deteriorates due to the time spent in creating

mappings. The Delta technique would take significantly longer

if cells were selected uniformly at random.

Figure 14 reports the time to read an old version after 10

updates that change 1% of the elements and scatter the updates

to 10% of the chunks. Reading the current version with any

technique requires no reconstruction, and neither does reading

any version with Full Copy. Delta has higher reconstruction

cost over Chunk Mosaic as it operates on individual cells

versus entire chunks. Overall, the time to read an old version

is proportional to the versions that need to be accessed to

perform the reconstruction. The time to reconstruct a version

would increase if the updates were more dispersed, as more

chunks would need to be accessed. These results suggest that

workloads that frequently perform time travel queries should

intersperse fully-materialized (“Full Copy”) versions in the

version chain. The distance to these fully-materialized versions

imposes an upper bound on the number of versions needed for

reconstruction and hence limits the worst-case access time.

D. ArrayBridge with particle-in-cell (PIC) simulation data

We evaluate the performance of ArrayBridge when analyzing

a scientific dataset that would be infeasible to load into SciDB

due to its massive size. In addition, we compare with the

SDS/Q system for querying HDF5 data from prior work [16].
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The workload comes from the plasma physics domain.

The scientific application uses VPIC [1], a general purpose

particle-in-cell simulation code, for modeling kinetic plasmas

with billions of particles. Studying micro-phenomena requires

simulating a 3D field with very high resolution. For this

problem, each simulation step is stored in a single 38 TiB

HDF5 file on the parallel file system that is striped to 244

Lustre OSTs.

This 3D dataset consists of four variables: one variable per

component of the 3D velocity vector ~v = (vx, vy, vz), and one

variable for the energy E. The analysis intent is to aggregate

the velocity ‖~v‖ =
√

v2
x
+ v2

y
+ v2

z
and energy E for high-

energy particles (E > 2.0) over a grid. This analysis can

be succinctly conveyed in a SciDB AFL query that directly

accesses the HDF5 data via ArrayBridge.

The scalability of this aggregation over a single simulation

step (a 38 TiB array dataset) is shown in Figure 15 as

a function of the single-node performance of ArrayBridge.

ArrayBridge on a single node takes more than a day to return

the final answer. ArrayBridge scales near-optimally up to 128

nodes, returning the final answer in about 17 minutes. Overall,

ArrayBridge aggregates 38 TiB of array data in minutes for

this AFL query, whereas loading and redimensioning this

dataset using a SciDB cluster of the same size would have

taken more than a week.

SDS/Q is on average about 5% faster than ArrayBridge for

this query up to 32 nodes. However, SDS/Q stops scaling lin-

early after 64 nodes and becomes slower than ArrayBridge at

128 nodes. We remark that SDS/Q is a relational query engine

that is limited to SQL-like queries. Array-centric operations

(like matrix multiplication) are not supported in SDS/Q but

can easily be expressed as AQL/AFL queries in ArrayBridge.

VII. DISCUSSION

Error handling and fault tolerance: In a nutshell, Array-

Bridge propagates errors and does not itself dictate any error

handling strategy. It is up to the caller of the interface to

determine what to do when a failure happens.

SciDB is designed to tolerate failures as long as a chunk

can be accessed by at least one node. If an entire node fails,

this is detected by the SciDB coordinator through a heartbeat

mechanism and the query will restart. Because scan_hdf5()

and save() retrieve running SciDB instances at query time,

they assign chunks only to healthy nodes. The save() opera-

tor requires manual removal of a partially-materialized version

in the HDF5 file on restart. ArrayBridge also exposes I/O

errors that may result from the HDF5 library or the parallel

file system itself. Currently, such errors are propagated to the

SciDB coordinator which in turn aborts the entire query.

In TensorFlow, the user specifies how the operators are

distributed among compute nodes. Both node failure and I/O

errors would result in a failure of the entire query. The user

can then restart the query and possibly alter the distribution

of operators to avoid failed compute nodes. Imperative HPC

programs are frequently ad-hoc codes with no fault tolerance

provisions. Errors are handled by calling MPI_Abort() to

stop the entire program.

Replacing the SciDB storage engine with ArrayBridge: The

experimental results demonstrate that ArrayBridge performs

competitively to be considered as a possible storage backend

for SciDB. A natural question to ask is what are the limitations

of HDF5 compared to the native SciDB storage engine.

The main weakness of using HDF5 as a replacement for

the SciDB storage engine is that it does not work in a shared-

nothing cluster where nodes do not share a parallel filesystem.

Installing the popular Hadoop distributed filesystem is not a

solution, as its append-only nature does not permit writes and

updates to an HDF5 file. In addition, the HDF5 format does not

support features that are primarily geared towards enterprise

environments and the cloud. These include user authentication

and permission management, transactional storage to avoid

data corruption, and data replication for fault-tolerance in

commodity clusters. Finally, HDF5 is optimized for dense low-

dimensionality arrays but many problems naturally produce

sparse arrays of high dimensionality. It is unlikely that HDF5

would perform nearly as well for sparse workloads.

ArrayBridge preserves the flexibility of using either HDF5

or the native SciDB storage format if it is advantageous to

the workload. We consider the hybrid approach taken by Ar-

rayBridge more palatable to users compared with exclusively

using a single data storage format.

VIII. RELATED WORK

Array database systems

Database systems can store multi-dimensional datasets by

materializing array offsets as attributes of a relational ta-

ble [28]. Some solutions build new primitives to express array

operations within the DBMS [29], [30], while SciQL [31]

extends SQL to support the array data model. Also, new

query languages have been proposed for querying arrays

declaratively. AQL [32] is one of the earliest array query lan-

guages. AML [33] expresses array operations as a combination



of operators, each of which reads one or more arrays and

returns an array. In contrast, SciDB [7] has been designed for

arrays: all operators accept and return arrays without additional

extensions.

Another research topic for array database systems is storage.

Soroush et al. investigate different storage management and

chunking strategies for array storage and propose a two-layer

chunking strategy [21]. A related challenge is accessing cells

along different dimensions efficiently to avoid performing

very small I/Os or reading unnecessary data. Novel chunking

and storage optimizations have been proposed to address

this problem [34]. SciDB uses a similar chunk-based storage

as ArrayStore [21], and supports bitmap indices as well as

RLE compression within a chunk to accelerate sparse array

processing. It supports two query languages, an operator-

based language AFL (similar to AML), and a SQL-style query

language AQL.

Scientific data formats

HDF5 [4] and NetCDF [5] are two widely used portable

scientific data formats. The HDF5 library provides a set of

tools to organize different arrays and their metadata, such

as particles [35] or biological images [36] in a hierarchical,

semi-structured way. Optimizing HDF5 performance on HPC

platforms is a well-studied problem; prior solutions have

explored how to tune large array processing programs to

improve I/O performance [35], [37]. TileDB proposes using

flexible tiling to address the problem of accessing sparse data

for efficient writes [27].

Array versioning

The ability to query earlier versions of a database has been

extensively studied in the context of temporal databases that

operate on two notions of time, valid time and transaction time

[38]. SQL Server supports time-travel queries on the transac-

tion time dimension to access prior states of the database [39].

Prior research has also investigated versioned array storage.

Soroush et al. propose versioned array storage to support both

querying a specific array version and extracting the history of

an array object [40]. Seering et al. use a materialization matrix

to determine which version to materialize while storing the

remaining versions as deltas [41]. DataHub [42] extends the

idea of version control to entire relational datasets for data-

intensive collaborations. Bhattacherjee et al. investigate the

trade-offs between storage size and recreation time for version-

ing techniques [43]. These versioning techniques, however, are

not integrated with HDF5 and do not reconstruct old versions

in an opaque manner for version-oblivious applications.

In situ processing

Prior research has considered how data management systems

can bypass the onerous data loading process. A non-exhaustive

list includes in situ querying of CSV files PostgreSQL [14];

symbiotically querying TIFF data with MonetDB in Data

Vaults [15]; transparent loading with ScanRAW [17]; just-

in-time query processing in ViDa [18]; and processing data

in the Hadoop file system [44], [45]. This prior work has

predominantly focused on read performance, and does not

consider how to efficiently materialize data in an array format.

Recent work has investigated in situ query mechanisms for

data in the HDF5 format. SDS/Q [16], [46] introduces a light-

weight relational query engine to directly process data in the

HDF5 format, in addition to using bitmap-based indices [10],

[47] to accelerate highly-selective queries. In the context

of MapReduce, analysis frameworks have proposed querying

HDF5 and NetCDF data directly [48], [49]. ParaView Catalyst

is an imperative analysis framework for in situ processing

and visualization of simulation data [9]. ParaView Catalyst

operates on data volumes that may be infeasible to materialize

on disk. In contrast, a core assumption behind ArrayBridge

is that the data of interest are already materialized on disk.

ArrayBridge supports analyses that cannot be performed in situ

because of their complexity, such as array join processing [50]

and similarity-based joins [51].

Beyond file-centric interfaces

ArrayBridge uses the HDF5 file format for interoperability

between declarative and imperative analyses in a file-centric

HPC pipeline. Tighter integrations between imperative and

declarative analysis kernels are feasible. Weld proposes a com-

mon intermediate representation to optimize across disjoint

libraries without materializing data on disk [52].

IX. CONCLUSIONS AND FUTURE WORK

Querying massive binary arrays in HDF5 format from SciDB

or TensorFlow requires is a multi-hour format conversion

process, even if it is done in parallel. ArrayBridge lets sci-

entists run SciDB and TensorFlow queries over multi-TiB

array datasets in the HDF5 format without performing any

data conversion. In addition to fast scans, ArrayBridge can

materialize objects in the HDF5 format nearly as efficiently

as SciDB serializes its database in its proprietary binary format

for backup. For backwards compatibility, existing applications

access partitioned HDF5 objects as a single logical dataset

through the virtual view mechanism in ArrayBridge. Finally,

ArrayBridge efficiently stores versioned objects by dedupli-

cating unmodified chunks between versions. Past versions are

accessible via the standard HDF5 API, which enables time

travel queries from version-oblivious imperative code.

Our future work looks at workloads that use the time travel

feature of ArrayBridge extensively. Astronomical surveys such

as ASAS-SN [53] and PTF [54] are promising candidates,

as time travel queries naturally occur in the detection of

supernovae. Another promising direction is considering how to

bring the features of ArrayBridge to the cloud and the Hadoop

distributed file system. SciDB and TensorFlow can run in a

cloud environment, but many array-centric HPC applications

are not readily portable. We envision that ArrayBridge will

mediate I/O to seamlessly allow these applications to execute

in a shared-nothing environment. ArrayBridge is open source

and the code is available at: http://code.osu.edu/arraybridge

http://code.osu.edu/arraybridge
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