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ABSTRACT
I/O efficiency is essential to productivity in scientific com-
puting, especially as many scientific domains become more
data-intensive. Many characterization tools have been used
to elucidate specific aspects of parallel I/O performance, but
analyzing components of complex I/O subsystems in isola-
tion fails to provide insight into critical questions: how do the
I/O components interact, what are reasonable expectations
for application performance, and what are the underlying
causes of I/O performance problems? To address these ques-
tions while capitalizing on existing component-level char-
acterization tools, we propose an approach that combines
on-demand, modular synthesis of I/O characterization data
into a unified monitoring and metrics interface (UMAMI) to
provide a normalized, holistic view of I/O behavior.

We evaluate the feasibility of this approach by applying it
to a month-long benchmarking study on two distinct large-
scale computing platforms. We present three case studies
that highlight the importance of analyzing application I/O
performance in context with both contemporaneous and
historical component metrics, and we provide new insights
into the factors affecting I/O performance. By demonstrating
the generality of our approach, we lay the groundwork for a
production-grade framework for holistic I/O analysis.
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1 INTRODUCTION
The stratification of performance and capacity in storage
technology is resulting in increasingly complex parallel stor-
age system architectures. Leadership-class systems are now
being deployed with flash-based burst buffers [9] that pro-
vide even higher performance than disk-based file systems
do [2]. This performance comes at the cost of increasing
complexity, however, making I/O performance analysis in-
creasingly difficult.

The current practice is to monitor each I/O component sep-
arately, often resulting in telemetric data that are not directly
compatible. For example, server-side monitoring tools such
as LMT [7] continuously measure a few metrics over time,
while application-level profiling tools such as Darshan [5]
record extended metrics for a single job. At present, the gaps
of information resulting from these incompatibilities are
filled by expert institutional knowledge and intuition.
Absent this expert knowledge, it is challenging to deter-

mine whether a job’s I/O performance is normal on any spe-
cific HPC system given the application’s I/O pattern. Relying
on intuition to tie together different I/O data sources and
decide whether a job performed as expected becomes unsus-
tainable as storage subsystems become more complex. Thus,
it is becoming critical to integrate component-level data and
present a coherent, holistic view of the I/O subsystem and
its interdependent behavior.
To demonstrate the benefits of a holistic approach, we

have conducted a month-long benchmarking study of sev-
eral I/O-intensive applications on two architecturally dis-
tinct production HPC systems. Using component-level data
already being collected on those systems, we analyze data in-
tegrated from application-level profiling, file system servers,
and other system-level components. By showing how these
metrics vary over the one-month experiment in a unified
monitoring and metrics interface (UMAMI), this holistic ap-
proach is able to differentiate general performance expecta-
tions for different I/O motifs (analogous to the climate of the
I/O system) from transient effects (analogous to the weather
of the I/O system). We use this notion of the I/O climate to en-
compass the characteristics of storage components, their age
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and capacity, and the way they respond to a specific work-
load. Complementary to the I/O climate, the I/O weather is
determined by the transitory state of the job scheduler load,
I/O contention, and short-term failure events.

The primary contributions of this work are as follows.
• We demonstrate that the degree of variability in I/O perfor-
mance is a function of the storage system architecture, the
application’s I/O motif, and the overall file system climate.
Different I/O patterns expose different degrees of perfor-
mance variation on different parallel file system architec-
tures, and the nature of a file system’s typical workload
also shapes performance variability.
• We show that I/O performance is affected by both intrinsic
application characteristics and extrinsic storage system
factors. Contention with other I/O workloads for storage
system bandwidth is not the only factor that affects perfor-
mance, and we highlight cases where metadata contention
and file system fullness dramatically impact performance.
• We show that no single monitoring metric predicts I/O per-
formance universally across HPC platforms. The system
architecture, configuration parameters, workload charac-
teristics, and system health all play varying roles.

2 EXPERIMENTAL METHODS
To examine the utility and generality of integrating data from
multiple component-level monitoring tools into a single view
(UMAMI), we conducted an I/O benchmark study on two
distinct HPC platforms described in Table 1.

2.1 NERSC Edison
Edison is a Cray XC-30 system at the National Energy Re-
search Scientific Computing Center (NERSC). Its scratch1
and scratch2 Lustre file systems are identically configured,
and users are evenly distributed across them. However, ac-
cess to Edison’s scratch3 file system is granted only to users
who require high parallel bandwidth, and therefore the scratch3
file system should reflect larger, more coherent I/O traffic.

Edison’s architecture routes I/O traffic from its Aries high-
speed network to the InfiniBand SAN fabric via LNET I/O
nodes. Routing is configured such that each LNET I/O node
handles traffic for only one of the three Edison file systems to
ensure that each file system’s traffic is isolated as it transits
I/O nodes. This also allows jobs of any size to use the maxi-
mum number of I/O nodes for each file system. In this work,

Table 1: Description of test platforms

Platform
FS Name
(Type)

# ION,
SVR,LUN Size Peak

Rate

Edison
NERSC

Cray XC
5,586 CN

scratch1 (Lustre) 9,24,24 2.2 PB 48 GB/s
scratch2 (Lustre) 9,24,24 2.2 PB 48 GB/s
scratch3 (Lustre) 13,36,36 3.3 PB 72 GB/s

Mira
ALCF

IBM BG
49,152 CN mira-fs1 (GPFS) 384,48,336 7.0 PB 90 GB/s

Table 2: Benchmark configuration parameters

Application I/O Motif Mira Size Edison Size
HACC POSIX file per proc 1.5 TiB 2.0 TiB

VPIC / BD-CATS HDF5 shared file 1.0 TiB 2.0 TiB
IOR POSIX file per proc 1.0 TiB 2.0 TiB
IOR MPI-IO shared file 1.0 TiB 0.5 TiB

all output data was striped over all OSTs in each file system,
and the input parameters listed in Table 2 were chosen to
saturate each file system’s bandwidth. Our IOR benchmarks
demonstrated 90% of the theoretical maximum performance.

2.2 ALCF Mira
Mira is an IBM Blue Gene/Q system at the Argonne Leader-
ship Computing Facility (ALCF). In addition to the Spectrum
Scale (GPFS) servers and LUNs listed, six of the network
shared disk (NSD) servers also serve metadata from SSD-
based LUNs. Jobs on Mira are allocated I/O nodes and com-
pute nodes in a fixed ratio (1 I/O node for every 128 compute
node), causing storage bandwidth to scale linearly with the
size of the job. To keep compute resource consumption low,
we opted to run every benchmark using 1,024 compute nodes,
giving them eight I/O nodes and an aggregate peak band-
width of ∼25 GB/sec. Our IOR configuration achieved 80%
of peak performance for this job size.

2.3 I/O performance regression tests
For this study, we ran the following benchmark applications
using three file systems across 39 days on Edison (1,014
benchmark runs) and on one file system across 29 days on
Mira (118 benchmark runs).
• Hardware Accelerated Cosmology Code (HACC), a
cosmology application [8], configured to generate 96 MiB
per process using POSIX file-per-process checkpoint I/O.
• Vector Particle-In-Cell (VPIC), a plasma physics appli-
cation [3], configured to write 1.0 GiB per process to a
single HDF5 file using the H5Part API [1], and BD-CATS,
a clustering analysis system used to analyze VPIC output
data [14], configured to read 75% of our VPIC output to
emulate a 3D clustering analysis.
• IOR, a widely used tool to characterize parallel file sys-
tem performance [12, 16–18], used to determine each file
system’s performance under optimal I/O workloads.
All benchmarks were run using 1,024 and 128 nodes (16

processes per node) on Mira and Edison, respectively. These
scales were chosen to sufficiently utilize the capability of the
storage system while limiting the core-hour consumption,
and the resulting data volumes are summarized in Table 2.

3 DATA SOURCES
We drew a total of 58 different metrics from a variety of
monitoring tools already in production use on Mira and
Edison over the course of our study.
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3.1 Application behavior
To capture the I/O patterns and user-observable application
performance in this study, we used the Darshan I/O char-
acterization tool [5] which transparently records statistics
about an application’s I/O behavior at runtime. It imposes
minimal overhead because it defers the reduction of these
statistics until the application exits, allowing it to be de-
ployed for all production applications on large-scale systems
without perturbing performance. Both Mira and Edison link
Darshan into all compiled applications by default.

3.2 Storage system traffic
Storage system traffic monitoring provides aggregate sys-
temwide I/O workload metrics such as bytes read/written
and operation counts for reads, writes, and metadata. These
time-series data are collected with minimal impact on appli-
cation performance because they are gathered on the storage
servers, not compute nodes. On both Mira and Edison, these
metrics were collected at five-second intervals using file-
system-specific tools.
Lustre Monitoring Tools (LMT) aggregates Lustre-specific

counters on each object storage server (OSS) and metadata
server (MDS) and presents them via a MySQL database. LMT
provides data including bytes read/written, CPU load aver-
ages, and metadata operation rates. ggiostat is a tool devel-
oped at the ALCF to collect similar data from IBM Spectrum
Scale file systems. It retrieves and stores metrics from server
and client clusters and provides bytes read/written and op-
eration counts for reads, writes, and metadata operations.

3.3 Health monitoring
Health-monitoring data describe what components are of-
fline, failed-over, or in another degraded state and how much
free capacity remains on the available devices. On Edison, the
fullness of each Lustre object storage target (OST) is recorded
every fifteen minutes. On Mira, the fullness of each LUN and
the failure status of each server is recorded upon job sub-
mission. The mapping between OSTs/LUNs and OSS/NSD
servers are also logged to identify degraded devices.

3.4 Job scheduling and topology
Job-scheduling data provides details on the jobs that are
concurrently running on a system and can help identify
cases where I/O contention results from competing jobs. In
this study, we tracked the number of other jobs that were
running and the number of core-hours consumed system-
wide during the time our benchmark jobs ran.

To identify any effects of job placement on Edison and
Mira’s high-speed networks, we calculate a job’s maximum
radius as an approximation of that job’s degree of delocaliza-
tion. Using the topological coordinates of each job’s compute
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Figure 1: I/Operformance grouped by test applications
and read(R)/write(W) mode. Whiskers represent the
5th and 95th percentiles.

node allocation to derive a center of mass of a job, we define
this metric as the maximum distance between that center of
mass and a compute node.

4 BASELINE I/O PERFORMANCE
Because variation in peak I/O performance is caused by dif-
ferent I/O access patterns [12, 16, 17], we first establish the
baseline variation of each benchmark on each system. We
define the fraction of peak performance as the observed I/O
bandwidth (performance) of a job divided by the maximum
performance observed for all jobs of the same I/O motif as
listed in Table 2 and whether the job read or wrote.
The distribution of fraction peak performance (Figure 1)

reveals that the degree of variation within each application
varies with each file system. For example, the HACC write
workload is susceptible to a long tail of performance loss
on mira-fs1 despite mira-fs1’s overall lower variation as ev-
idenced by the distance between all I/O motifs’ whiskers
relative to the Edison file systems. Edison’s scratch3 also
shows broad performance variation for VPIC, contrasting
with the narrower variation of VPIC on other systems. We
conclude that such variability results from factors intrinsic to
both the application and the file system; different I/O motifs
result in different levels of performance and variability.
Furthermore, Figure 1 shows that variation is not only a

function of the file system architecture; all Edison file sys-
tems are Lustre-based, yet Figure 1 shows a marked differ-
ence in variability between scratch1/scratch2 and scratch3.
Thus, these differences in performance variation must be
a function of differences in three factors of the I/O subsys-
tem: (1) hardware architecture, evident when comparing the

57



PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA G. Lockwood et al.

distributions of mira-fs1 performance to Edison; (2) appli-
cation I/O patterns, evident from the variation within any
single file system; and (3) overall file system climate, ev-
ident by comparing the architecturally equivalent Edison
scratch1/scratch2 with scratch3 file systems.
This finding underscores the importance of examining

multiple sources of I/O characterization data in concert and
with historical context to develop a full understanding of I/O
performance.

5 INTEGRATED ANALYSIS
With an understanding of the baseline performance variation
on each system and application, we then use the metrics
described in Section 3 to analyze how extrinsic factors affect
performance. Bandwidth contention from other jobs is an
intuitive source of performance variation, so we define the
bandwidth coverage factor (CFbw) of a job j to quantify the
effects of competing I/O traffic:

CFbw (j ) =
NDarshan
bytes (j )∑time,servers

t,s

[
N

LMT,ggiostat
bytes (t , s )

]
,

(1)

where NDarshan
bytes are the bytes read and written by job j ac-

cording to its Darshan log and N
LMT,ggiostat
bytes are the bytes

read and written to a file system server s during a 5-second
time interval t . The time interval over which the job ran
(time) and the servers to which the job wrote (servers) are
also stored in the job’s Darshan log [15]. CFbw is a direct
reflection of how much I/O traffic a job competed against in
the underlying file systems. Relatedly, we also define CF IOPS
of IOPS (derived from Darshan and ggiostat) and CFnodehrs
of node-hours (derived from job-scheduling data).

CF , system health data, and job topology data let us con-
textualize performance anomalies and quantify where a job’s
I/O performance falls on the spectrum of normalcy relative
to jobs with similar motifs. To concisely display this infor-
mation and identify metrics that most likely contribute to
abnormal performance, we propose a unified monitoring
and metrics interface (UMAMI) diagram as demonstrated in
Figure 2. UMAMI presents historic measurements (the I/O
climate) alongside a box plot that summarizes each metric.
These time series plots highlight a job of interest and define
the I/O weather at the time that job ran.

Overlaying this weather on the climate (dashed lines in the
box plots) shows how each metric compares with the distri-
bution of weather conditions before, after, or surrounding the
job of interest to enable rapid differentiation of rare events
from long-term performance problems. In the remainder of
this section we use UMAMI diagrams to identify different
factors that do and do not contribute to I/O performance loss.
Although we collected 58 metrics for each job, we chose only
the most relevant metrics to include in each UMAMI diagram
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Figure 2: UMAMI of HACCwrite workloads on Edison
scratch2. Left panes show measurements from other
runs of the same motif; right panes show summaries.
Stars highlight the job of interest and are colored red,
orange, or blue if they are above, within, or below the
overall quartiles. Whiskers indicate 5th and 95th per-
centiles; circles are outliers.

based on (1) which metrics most strongly correlated with
performance, and (2) which metrics we expected to affect
performance but did not.
These case studies were performed on Mira and Edison,

but UMAMI’s modularity allow it to analyze a variety of data
sources and enables portable deployment for production use.

5.1 Case study: I/O contention
The UMAMI example in Figure 2 represents a HACC write
test whose job performance measurement relative to pre-
vious HACC write jobs indicate statistically abnormal per-
formance. This poor performance was accompanied by an
unusually low CFbw and high metadata load, highlighted as
red dashed lines in the box plots that denote their place in
the least-favorable quartile of past measurements.
Conversely, the maximum job radius fell into the most

favorable quartile (indicated by the blue dashed line), and
the number of concurrently running jobs (CFnodehrs) was not
abnormally large. Because normal performance was often
observed even in cases when both of these metrics were ab-
normally poor, we conclude that the maximum job radius
and CFnodehrs metrics are too coarse-grained to indicate poor
performance, and more insight into what resources the com-
peting jobs were actually consuming when each HACC job
ran are required. Given this body of information, we attribute

58



UMAMI: A Recipe for Generating Meaningful I/O Metrics PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

15

20

Job performance
(GiB/sec)

0.75

1.00Coverage Factor
(Bandwidth)

0.25

0.50
Coverage Factor

(IOPs)

0.25

0.50Server Open/
Close/Creat Ops

(MOps)

Mar 0
2

Mar 0
3

Mar 0
4

Mar 0
5

Mar 0
6

Mar 0
7

Mar 0
8

Mar 0
9

Mar 1
0

Mar 1
1

Mar 1
2

0.0

0.5Server Readdir
Ops (KOps)

Figure 3: UMAMI demonstrating the climate sur-
rounding VPIC write workloads on Mira compared
with a most recent run, which showed highly unusual
weather in the form of an excess of readdir(3) calls.

this HACC job’s poor performance to I/O loads from other
jobs that competed for both bandwidth and metadata rates.

5.2 Case study: metadata load
Figure 3 shows the UMAMI diagram for a poorly perform-
ing VPIC workload. CFbw is within normal parameters, in-
dicating normal (minimal) levels of bandwidth contention.
CF IOPS is abnormally low, although previous values have
been equally low despite a lack of dramatic performance loss
(e.g., on March 1 and March 9). The only metric that shows
a unique, undesirable value is the number of readdir oper-
ations handled by the file system, indicating a file system
traversal was running concurrently with this VPIC job. From
this we infer that metadata load, not bandwidth contention,
contributed to poor VPIC performance on March 11.

5.3 Case study: storage capacity
This holistic approach can also identify long-term perfor-
mance degradation. Figure 4 shows the UMAMI of HACC
on Edison scratch3 when CF s were not unusual despite an
ongoing 2× slowdown over the normal 50 GiB/sec between
February 24 and March 9. The magnitude of performance
loss closely followed the maximum CPU load on the Lustre
OSSes, and this period also coincided with scratch3 OSTs ap-
proaching 100% fullness. The relationship between CPU load,
OST fullness, and I/O performance points to an increasing
cost of scavenging empty blocks on writes, and this behavior
is consistent with known performance losses that result from
Lustre OSTs filling [13]. Furthermore, I/O performance was
restored on March 9 which is when NERSC staff initiated
a file system purge. Thus, we conclude that this long-term
performance degradation was the result of poor file system
health resulting from Edison scratch3 being critically full.
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Figure 4: UMAMI of HACC write performance on Edi-
son’s scratch3 file system showing a longer-term pe-
riod of performance degradation that was associated
with poor file system health.

6 RELATED WORK
Several studies have explored how to combine and analyze
multiple sources of I/O monitoring information. Kunkel et
al. developed SIOX [10] to aggregate information from mul-
tiple components of the I/O stack, but its reliance on instru-
mented versions of application libraries to collect metrics
makes production deployment challenging. Liu et al. devel-
oped AID [11] to perform detailed analysis to server-side I/O
logs in order to deduce application-level I/O patterns and
make scheduling recommendations. The clustering approach
implemented by AID may be able to automatically identify
I/O motifs suitable for generating UMAMI diagrams.
Other studies have explored how to quantify and com-

bat various types of I/O performance variation. Lofstead et
al. observed that variability is caused by both external and
internal interference within an application [12], and they
proposed an adaptive strategy that coordinates I/O activity
within an application. Similarly, Dorier et al. proposed mid-
dleware for coordinating I/O across applications to manage
external interference [6]. Yildiz et al.’s study of I/O interfer-
ence in a testbed environment found that poor flow control
in the I/O path [18] also contributes to variation, indicating
that network-related metrics would be a valuable addition
to UMAMI diagrams. Carns et al. reported I/O variability for
seven common production jobs during a two-month study [4]
and, similar to our findings, suggested that some access pat-
terns are more susceptible to variability.

7 CONCLUSIONS
By integrating data captured with existing tools from applica-
tions, storage systems, system health, and job scheduling, we
demonstrated that holistically examining all components of
the I/O subsystem is essential for understanding I/O perfor-
mance variation. We performed a month-long benchmarking
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study and characterized the I/O climate on each system, then
presented several case studies to demonstrate instances of
abnormal I/O weather and their effects on I/O performance.

Integrating metrics into the UMAMI diagram revealed that
contention with other workloads for bandwidth, metadata
op rates, and storage capacity can, but do not always, im-
pact performance. No single metric predicts I/O performance
universally; the most significant metrics depend on systems’
architecture, configuration, workload characteristics, and
health, while factors such as job radius and CFnodehrs do not
capture enough detail to indicate performance loss. These
findings provide a basis for improving monitoring tools to
capture more detailed metrics that can better predict I/O
performance.
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