- BERKELEY LAB &) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Data Elevator — Low-contention Data Movement in
Hierarchical Storage Systems

Bin Dong, Suren Byna, John Wu, Prabhat, Hans Johansen,
Jeffrey Johnson, Noel Keen

Lawrence Berkeley National Laboratory
Contact: SByna@lbl.gov

HiPC 2016, Dec 20t", 2016

Data-driven science

= Simulations
- Multi-physics (FLASH) — 10 PB
- Cosmology (NyX) - 10 PB
- Plasma physics (VPIC) — 1 PB

EHASH

= Experimental and Observational
data
- High energy physics (LHC) — 100 PB
- Cosmology (LSST) — 60 PB
- Genomics — 100 TBto 1 PB

NSXT

= Scientific applications rely on
efficient access to data
- Storage and I/O are critical requirements

Data Elevator 2

Storage system transformation in HPC

Current Upcoming
Eg. Cori @ NERSC Eg. Aurora @ ALCF

=

Conventional

Node-local storage

=

- 10 performance gap in HPC storage is a significant bottleneck
because of slow disk-based storage

- SSD and new memory technologies are trying to fill the gap, but
increase the depth of storage hierarchy

Data Elevator 3

Challenges of deep storage hierarchy

- Modes of moving data between the layers
- Offline: Stage out after writing the data
. E.g., Cray DataWarp provides stage_in and stage_out commands

- In applications: API for moving data

. Cray DataWarp provides an API for moving data in and out of burst
buffers

- Transparent caching
. Burst buffer servers move data transparently

- Challenges

- Inefficiency : Existing methods for staging in/out data to/from burst
buffers (BB) compete for resources on BB servers

- Burden on users : Users or applications have to explicitly make the
data movement decisions, which could lead to inefficiency

- Limited to one level. Transparent caching is aware of a single level
storage

Data Elevator 4 BERKELEY LAB

Our solution: Data Elevator for moving data

Contributions

- Low-contention data movement library for hierarchical

- Offload of data movement task to a few compute nodes
or cores

- Data Elevator on NERSC's Cori system

- With a couple of science applications, demonstrated that
Data Elevator is 4X faster than Cray DataWarp stage_out
and 4X faster than writing data to parallel file system

Node-local storage

Benefits of using Data Elevator

- Transparent data movement: Applications using HDF5
specify destination of data file and the Data Elevator
transparently moves data from a source to the destination

- Efficiency: Data Elevator reduces contention on BB

- In transit analysis: While data is in a faster storage
layer, analysis can be done in the data path

~
A
rrrrrrr |"'|

Data Elevator 5 BERKELEY LAB

Background - HDF5

= HDF5 — Hierarchical Data Format, v5 developed and
maintained by The HDF Group
First version of HDF5 released in 1998

= Open file format
- Designed for high volume or complex data
- Parallel I/O library

= Open source software
- Works with data in the format

= A data model
- Structures for data organization and specification

Data Elevator 6

HDFS5 is like ...

random access;
subsetting

hierarchical;

collections of
related

information

standard
exchange format;
heterogeneous
information

self-describing;
extensible types;
rich metadata

high-performance;
compact;
scalable

= A
Data Elevator 7 /\|

BERKELEY LAB

Background - HDF5 Virtual Object Layer (VOL)

- Data Elevator uses VOL for
intercepting HDFS calls Application

- VOL :L
- Abstract HDF5 object storage to

enable developers to easily use HDFS5 API
HDF5 on novel storage systems v
- Binary instrumentation approach Virtual Object Layer

allows intercepting HDF5 calls i
without code changes Disk | Flash | Network

- Allows all HDF5 applications to HDFS5 Library
migrate to future storage systems
and mechanisms with no source
code modifications

Data Elevator 8

Background - Burst buffer on Cori system

+ Fact sheet

Compute Nodes Blade =2 x Burst Buffer Node (2x SSD) - Coriis a Cray XC40 System
\ 4 / /0 Node (2x InfiniBand HCA) - 144 burst buffer nodes
— Lustre 0SSs/0STs - Each server has two Intel
s ’ A ‘ P3608 3.2 TB NAND Flash
£ SSDs
% - Cray DataWarp® manages
L the burst buffer
oo
g Storage Servers - tage in and stage out
commands
] - BB API for programmatically
| move data
Aries High-Speed Network InfiniBand Fabric

- Allows async data
transfers

~
A
rrrrrrr |"'|

Data Elevator 9 BERKELEY LAB

Data Elevator design

Simulatioin processes & TEDM processes
606 @6 |
HDF5/Others API MIIZ}—IO C()mputlng Node
Redirected I/0 I Async Data Movement
Append
I —
E— L
Burst —
Buffer | _Y fh5 || PES
DEMT
fh5, f.h5.temp, ... \/
- Implementation challenges - Solutions
- Transparently intercepting I/O calls - 10CI - 10 Call Interceptor library - VOL
- Moving data between storage layers - Transparent & Efficient Data Mover
efficiently w/ low contention processes — Concurrent MPI job

frreeeer l/lq
Data Elevator 1 O BERKELEY u|\5

Metadata for managing the state of data

- Metadata Table to manage the data movement status
- Data written to BB
- Data is written to BB
- Request to analyze data and start analysis
- All data reads are done
- Data is being written to PFS
- Data is moved to PFS

Description repeated

analysis

Start writing to BB W) @Q

Status

W

B Finish writing to BB <
A Start analysis oo &%‘% 4@
M

D

F

Finish analysis . /
Start moving to PES

Finish moving to PFS

restart moving file
if error happens

~
nfnhl ﬂ

Data Elevator 1 1 BERKELEY LAB

Optimizations

- Scalable and low-contention parallel data movement

- Data Elevator processes run on compute nodes
. Allows scaling up or down the number of data movement processes
. BB server resources are entirely used for 1/O

- Overlapping data reads from BB and writes to PFS
- Data is written to file system in chunks
- Allows reading data from BB and writing to PFS can be overlapped

- Stripe size alignment

- Parallel file systems, such as Lustre, provide striping optimizations
. Stripe size, stripe count, alignment, etc.

- In transit analysis, while data is in a burst buffer level
- Analysis jobs can poll the metadata table for availability of data

Data Elevator 1 2 BERKELEY LAB

Experimental set up

- Platform — NERSC Cray XC40 system, Cori

- Benchmarks and applications

- VPIC — Plasma Physics code simulating magnetic reconnection
(solar weather)

- CAMR - Climate Adaptive Mesh Refinement code simulating
climate at high resolutions (1km resolution)

- Metrics

- End-to-end execution time — Total execution time of the
application, including 1/0 and data movement

- End-to-end data movement time — Time to move data from
memory to Lustre file system (final destination of the data)

Data Elevator 13

Data Elevator — Tuning space exploration

- MPI-10 Collective (two-phase) vs. Independent modes

- Overlapping BB reads w/ PFS writes

- Striping alignment on PFS

B Collective IO M Independent 10 M QOverlapping ® Non-Overlapping B Striping Allignment
15 7 20 7 B Non-Striping Allignment

“10 -
Q
£
5 F 5
256 512 1024 0 - 0

Number of CPU Cores Chombo-lO VPIC-IO Chombo-10 VPIC-I0

frreeeer l/ﬂ
Data Elevator 1 4 BERKELEY u|\a

Data Elevator — Tuning space exploration

- Sharing compute cores vs. dedicated Data Elevator
nodes

- Data Elevator size

- Metadata overhead

B Shared-Mode M Disjoint Mode m]l:1 m2:1 m4:1 B Data Evalator
25 1 15 1 B HDF5 Open/Close
20 T 0.25 7
%15 - %10 I - 0.2
E 10 - £ 2 0:15 1
= = 5 1 E 0.1 1
5 7 i B
0.05
0 - 0 - 0 -
Chombo-IO VPIC-IO Chombo-IO VPIC-IO VPIC-IO Chombo-IO

Data Elevator 1 5 BERKELEY LAB

Performance comparison with benchmarks

- Staging out performance — Cray DataWarp vs. Data Elevator
- 1K procs
- DataWarp — 144 nodes
- Data Elevator — 64 processes
- Data Elevator is faster than DataWarp by 14% to 22%

B DataWarp M Data Elevator W Lustre
20 - B DataWarp /w Command
1000 A M DataWarp /w API

1?15 . M Data Elevator
@10 100
S 10)
= £

5 - = 10

0 - 1

Chombo-IO VPIC-10 Chombo-10 VPIC-10

frreeeer l/ﬂ
Data Elevator 1 6 BERKELEY u|\a

Performance with Plasma physics simulation

- Total execution time of running VPIC code for 20 time steps, writing
a file at the end of each time step — data write intensive workload

- Data Elevator
- 1.7X faster than PFS
- 1.8X faster than DataWarp stage _out command
- 4 .2X faster than DataWarp API

B Computing B Writing Data B Moving Data from BB to PFS

VPIC + Lustre

VPIC + Burst Buffer
DataWarp

VPIC + Burst Buffer
DataWarp API

VPIC + Burst
Data Elevator

Data Elevator

—

‘— ‘ ‘ ‘
0 100 200 300
Time (s)
1K cores

M Lustre B DataWarp Command
B DataWarp API M Data Elevator

300
250
=200
.°§’ 150
=100
50

0

17

1024 2048 4096 8192 16384
Number of CPU Cores

Performance with climate simulation

- Total execution time of running CAMR code for 20 time steps,
writing a file at the end of each time step — compute intensive
workload

- Data Elevator
- 4X faster than PFS
- 1.2X faster than DataWarp stage _out command
- 3.3X faster than DataWarp API W Lustre W DataWarp Command

B Computing M Writing Data @ Moving Data from BB to PFS

B DataWarp API M Data Elevator
CAMR + Lustre - e s O E O E O s s s
5
CAMR + Burst |
DataWarp — 4
(aa]
O
.
CAMR + Burst | H s ———— o3
DataWarp API [T T T T O I T | g
w2
CAMR + Burst F g
Data Elevator ‘ L I‘l [I | | |_1
0 100 200 300 400
Time (s) 0

... 1024 2048 4096 8192

Number of CPU Cores
. 1K cores
ata Elevator 18

Performance of in transit data analysis - Querying

- Querying data while it is in BB
- Indexing is 2X faster
. Querying is 6.5X faster

M Parallel File System B Parallel File System
M Data Elevator M Data Elevator
300 1000
£200 l % 100 -
£ E -
= 100 - i = 10
O — . h 1 -
512 1024 2048 4096 512 1024 2048 4096
Number of CPU Cores Number of CPU Cores

Data Elevator 1 9 BERKELEY LAB

Conclusions

- Moving data in hierarchical storage needs to be:
- Efficient and cause low contention on BB servers

- Transparent transfers without burden on users and/or app
developers

- Data Elevator achieves these goals
.. for writing data to PFS

- Future work

- Caching and prefetching for data reads

- More than two levels (node-local, campaign, and archival storage
layers)

- Tuning of energy consumption and compute node efficiency

Contact: Suren Byna, LBNL, (SByna@lbl.gov)

‘/ \‘{@; U.S. DEPARTMENT OF Oﬁ:|Ce Of
Thanks to:

i ENERGY science

