

Data Elevator – Low-contention Data Movement in Hierarchical Storage Systems

Bin Dong, <u>Suren Byna</u>, John Wu, Prabhat, Hans Johansen, Jeffrey Johnson, Noel Keen

Lawrence Berkeley National Laboratory

Contact: SByna@lbl.gov

HiPC 2016, Dec 20th, 2016

Data-driven science

- Simulations
 - Multi-physics (FLASH) 10 PB
 - Cosmology (NyX) 10 PB
 - Plasma physics (VPIC) 1 PB
- Experimental and Observational data
 - High energy physics (LHC) 100 PB
 - Cosmology (LSST) 60 PB
 - Genomics 100 TB to 1 PB
- Scientific applications rely on efficient access to data
 - Storage and I/O are critical requirements of High Performance Computing (HPC)

788T

Welfomics

Storage system transformation in HPC

- IO performance gap in HPC storage is a significant bottleneck because of slow disk-based storage
- SSD and new memory technologies are trying to fill the gap, but increase the depth of storage hierarchy

Challenges of deep storage hierarchy

Modes of moving data between the layers

- Offline: Stage out after writing the data
 - E.g., Cray DataWarp provides <u>stage in</u> and <u>stage out</u> commands
- In applications: API for moving data
 - Cray DataWarp provides an API for moving data in and out of burst buffers
- Transparent caching
 - Burst buffer servers move data transparently

Challenges

- Inefficiency: Existing methods for staging in/out data to/from burst buffers (BB) compete for resources on BB servers
- Burden on users: Users or applications have to explicitly make the data movement decisions, which could lead to inefficiency
- Limited to one level: Transparent caching is aware of a single level storage

Our solution: Data Elevator for moving data

Memory

Node-local storage

Shared burst buffer

Campaign storage

Archival storage (HPSS tape)

Contributions

- Low-contention data movement library for hierarchical storage systems
- Offload of data movement task to a few compute nodes or cores
- Data Elevator on NERSC's Cori system
 - With a couple of science applications, demonstrated that Data Elevator is 4X faster than Cray DataWarp stage_out and 4X faster than writing data to parallel file system

Benefits of using Data Elevator

- Transparent data movement: Applications using <u>HDF5</u> specify destination of data file and the Data Elevator transparently moves data from a source to the destination
- **Efficiency**: Data Elevator reduces contention on BB
- **In transit analysis**: While data is in a faster storage layer, analysis can be done in the data path

Background – HDF5

- HDF5 Hierarchical Data Format, v5 developed and maintained by The HDF Group
 - First version of HDF5 released in 1998
- Open file format
 - Designed for high volume or complex data
 - Parallel I/O library
- Open source software
 - Works with data in the format
- A data model
 - Structures for data organization and specification

HDF5 is like ...

Background – HDF5 Virtual Object Layer (VOL)

Data Elevator uses VOL for intercepting HDF5 calls

VOL

- Abstract HDF5 object storage to enable developers to easily use HDF5 on novel storage systems
- Binary instrumentation approach allows intercepting HDF5 calls without code changes
- Allows all HDF5 applications to migrate to future storage systems and mechanisms with no source code modifications

Background – Burst buffer on Cori system

Fact sheet

- Cori is a Cray XC40 system
- 144 burst buffer nodes
- Each server has two Intel
 P3608 3.2 TB NAND Flash
 SSDs
- Cray DataWarp® manages
 the burst buffer
 - stage in and stage out commands
 - BB API for programmatically move data
 - Allows async data transfers

Data Elevator design

Implementation challenges

- Transparently intercepting I/O calls
- Moving data between storage layers efficiently w/ low contention

Solutions

- IOCI IO Call Interceptor library VOL
- Transparent & Efficient Data Mover processes – Concurrent MPI job

Metadata for managing the state of data

- Metadata Table to manage the data movement status
 - Data written to BB
 - Data is written to BB
 - Request to analyze data and start analysis
 - All data reads are done
 - Data is being written to PFS
 - Data is moved to PFS

Status	Description
W	Start writing to BB
В	Finish writing to BB
A	Start analysis
M	Finish analysis
D	Start moving to PFS
F	Finish moving to PFS

Optimizations

- Scalable and low-contention parallel data movement
 - Data Elevator processes run on compute nodes
 - · Allows scaling up or down the number of data movement processes
 - BB server resources are entirely used for I/O
- Overlapping data reads from BB and writes to PFS
 - Data is written to file system in chunks
 - Allows reading data from BB and writing to PFS can be overlapped
- Stripe size alignment
 - Parallel file systems, such as Lustre, provide striping optimizations
 - Stripe size, stripe count, alignment, etc.
- In transit analysis, while data is in a burst buffer level
 - Analysis jobs can poll the metadata table for availability of data

Experimental set up

- Platform NERSC Cray XC40 system, Cori
- Benchmarks and applications
 - VPIC Plasma Physics code simulating magnetic reconnection (solar weather)
 - CAMR Climate Adaptive Mesh Refinement code simulating climate at high resolutions (1km resolution)
- Metrics
 - End-to-end execution time Total execution time of the application, including I/O and data movement
 - End-to-end data movement time Time to move data from memory to Lustre file system (final destination of the data)

Data Elevator – Tuning space exploration

- MPI-IO Collective (two-phase) vs. Independent modes
- Overlapping BB reads w/ PFS writes
- Striping alignment on PFS

Data Elevator – Tuning space exploration

Sharing compute cores vs. dedicated Data Elevator nodes

Data Elevator size

Metadata overhead

Performance comparison with benchmarks

- Staging out performance Cray DataWarp vs. Data Elevator
 - 1K procs
 - DataWarp 144 nodes
 - Data Elevator 64 processes
 - Data Elevator is faster than DataWarp by 14% to 22%

Performance with Plasma physics simulation

- Total execution time of running VPIC code for 20 time steps, writing a file at the end of each time step – data write intensive workload
- Data Elevator
 - 1.7X faster than PFS
 - 1.8X faster than DataWarp stage_out command
 - 4.2X faster than DataWarp API

Performance with climate simulation

- Total execution time of running CAMR code for 20 time steps, writing a file at the end of each time step – compute intensive workload
- Data Elevator
 - 4X faster than PFS
 - 1.2X faster than DataWarp stage_out command

Performance of in transit data analysis - Querying

- Querying data while it is in BB
 - Indexing is 2X faster
 - Querying is 6.5X faster

Conclusions

- Moving data in hierarchical storage needs to be:
 - Efficient and cause low contention on BB servers
 - Transparent transfers without burden on users and/or app developers
- Data Elevator achieves these goals
 - ... for writing data to PFS
- Future work
 - Caching and prefetching for data reads
 - More than two levels (node-local, campaign, and archival storage layers)
 - Tuning of energy consumption and compute node efficiency

Contact: Suren Byna, LBNL, (SByna@lbl.gov)

