
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures

Md. Mostofa Ali Patwary1,†, Nadathur Rajagopalan Satish1,
Narayanan Sundaram1, Jialin Liu2, Peter Sadowski3, Evan Racah2,

Suren Byna2, Craig Tull2, Wahid Bhimji2, Prabhat2, Pradeep Dubey1

1Intel Corporation, 2Lawrence Berkeley National Laboratory, 3UC Irvine
†Corresponding author: mostofa.ali.patwary@intel.com

Abstract—Computing k-Nearest Neighbors (KNN) is one
of the core kernels used in many machine learning, data
mining and scientific computing applications. Although kd-tree
based O(log n) algorithms have been proposed for computing
KNN, due to its inherent sequentiality, linear algorithms are
being used in practice. This limits the applicability of such
methods to millions of data points, with limited scalability
for Big Data analytics challenges in the scientific domain.
In this paper, we present parallel and highly optimized kd-
tree based KNN algorithms (both construction and querying)
suitable for distributed architectures. Our algorithm includes
novel approaches for pruning search space and improving
load balancing and partitioning among nodes and threads.
Using TB-sized datasets from three science applications: as-
trophysics, plasma physics, and particle physics, we show
that our implementation can construct kd-tree of 189 billion
particles in 48 seconds on utilizing ∼50,000 cores. We also
demonstrate computation of KNN of 19 billion queries in
12 seconds. We demonstrate almost linear speedup both for
shared and distributed memory computers. Our algorithms
outperforms earlier implementations by more than order of
magnitude; thereby radically improving the applicability of our
implementation to state-of-the-art Big Data analytics problems.

Keywords-Big Data Analytics, KNN, kd-tree, Classification,
Parallel Algorithms, and Load Balancing.

I. INTRODUCTION

The k-nearest neighbor (KNN) algorithm is a fundamental
classification and regression method for machine learning.
KNN is used for many tasks such as text classification [1],
prediction of economic events [2], medical diagnosis [3],
object classification in images, prediction of protein interac-
tions, and so on. KNN works by finding the k nearest points
to a given query point in the feature space. The continuous
or discrete predicted output value for the query is then com-
puted using the corresponding values of the neighbors (e.g.
using a majority vote for discrete classification problems, or
an average of values in a continuous regression setting).

With the advent of sophisticated data collection mech-
anisms, machine learning on large datasets has becoming
very important. Scientific disciplines such as cosmology and
plasma physics perform simulations in the range of billions
of particles and produce many terabytes of data per time
step [4]. Modern Particle Physics experiments such as Daya
Bay and the Large Hadron collider deploy tens of thousands

of sensors that are capable of capturing data at nano-second
precision; such experiments can produce 1000s of TBs per
year of data. For such large datasets, the data is typically
distributed in the memory of multiple nodes in a cluster of
machines, and machine learning methods such as KNN must
in turn be able to leverage this data and perform distributed
computations on them. Moreover, in the case of simulation
data, each simulation timestep must run in a small amount
of time in the range of minutes to be useful to a domain
scientist, and this imposes strict runtime restrictions on the
machine learning model as well. At the scale of billions of
points, it is important to leverage all the available parallelism
in the hardware – at the cluster level and inside each compute
node – in order to provide results in a suitable timeframe.

Since KNN is a fundamental algorithm used in a variety
of machine learning contexts, a significant amount of time
has gone into making it run fast on parallel hardware [5],
[6], [7]. However, most of this work has been done to
reduce algorithmic complexity or parallelization in a shared
memory setting. An important algorithmic contribution has
been the introduction of acceleration data structures such as
kd-trees [8] (which hierarchically partitions points in a k
dimentional space) to reduce the order complexity of near
neighbor searches per query from linear to logarithmic in
the number of points. Such data structures work well in a
variety of scientific applications where the dimensionality of
data is not very high, and are critical for large data sets where
we cannot afford to scan the entire data set for each query.
Furthermore, parallel algorithms that can utilize multiple
cores of a single shared memory machine to speed up kd-tree
based KNN have been developed [5], [6], [7]. However, there
has not been much work on parallelizing this in a distributed
setting. Indeed, previous work for distributed KNN has
mainly focused on brute force linear-time approaches per
query without using acceleration data structures [9], [10].
A recent work [11], a clustering algorithm, performs radius
search based nearest neighbor computation in a distributed
setting. However, in a distributed setting, radius based search
is an easier problem; the fixed radius allows easy pruning
of the points that need to be searched. [11] relies on the
radius being small; indeed, for large radius values, the entire
dataset may need to be gathered to one node. This makes it
unsuitable for KNN, where the radius is not known apriori.

There are many challenges in developing a distributed
algorithm for kd-tree based KNN computations. Consider
the straightforward data-parallel approach where the data
is evenly distributed among the nodes; and each node
constructs its own local kd-tree. While this makes kd-tree
construction trivially parallel, each nearest neighbor query
must then be run on all nodes and a top-k algorithm must
then be run on the results of each node to find the global
nearest neighbors. This results in unnecessary network traffic
on the interconnect between the nodes as well as unneces-
sary kd-tree traversal steps - indeed to find the k nearest
neighbors, it is easy to see that we compute and transfer
P ∗ k near neighbors and throw away all but the nearest k.
We can do much better if we can spatially partition the data
and distribute the partitions among the nodes. In fact, we can
build a global kd-tree containing all data points from these
spatial partitions. In this case, on average, we will only query
O(log(P)) nodes for each query, which improves scalability.
This also reduces the communication time proportionately.
The tradeoff here is that more time is spent in construction of
the kd-tree itself, but the kd-tree in most application contexts
is reused heavily, making this worthwhile.

In this paper, we demonstrate a fully distributed imple-
mentation for kd-tree based KNN computations. This is, to
the best of our knowledge, the first such work. In addition
to adopting the global kd-tree approach, we also focus on
various optimizations to utilize all levels of parallelism, both
at the cluster and intra-node level to make both construction
and querying fast. Additionally, we improve network per-
formance by overlapping computation and communication
through software pipelining. Our resulting implementation
is more than an order of magnitude faster than previous
approaches on a single node; and scales near linearly with
number of cores and nodes. Using ∼50,000 cores, we can
construct kd-tree of 189B points (∼3 TB dataset) in 48
seconds and run 19B queries on that dataset in ∼12 seconds.

The main technical contributions are as follows:
• This is the first distributed kd-tree based KNN code

that is demonstrated to scale up to ∼50,000 cores.
• This is the first KNN algorithm that has been run on

massive dataset ranging up 100B+ dataset from diverse
scientific disciplines.

• We successfully demonstrate both strong and weak
scalability of KNN at this scale.

• Our implementation is more than an order of magnitude
faster than state-of-the-art KNN implementation.

II. SCIENCE MOTIVATION

The construction and application of kd-trees are highly de-
pendent on the distribution of the underlying dataset. Instead
of choosing a random dataset, we have decided to utilize
scientific datasets from HPC simulations (cosmology and
plasma physics) and experiments (Daya Bay). Cosmology
and Plasma physics datasets are representative of the spatial

distribution of particles subject to gravitational and electro-
magnetic forces. The Daya Bay dataset is representative of
discrete spatio-temporal events.

Cosmology: Cosmology has been at the frontier of physi-
cal sciences over the past two decades. Cosmology observa-
tions and simulations produce and analyze massive amounts
of data. The quest for ever-fainter Cosmic Microwave Back-
ground (CMB) signals from the ground, balloons, and space
has driven an exponential growth in data volumes in the
last 25 years. Projects such as Sloan Digital Sky Survey
(SDSS) collect terabytes of data related to observations of
billions of objects. Analysis of these large datasets lead to an
understanding of cosmology mysteries such as dark matter
and the accelerated expansion of the universe.

Gravitational instability, where small initial density fluc-
tuations are rapidly enhanced in time, drive the formation
of structure in the universe. The resultant density field in
the structure contains large void spaces, many filaments,
and dense clumps of matter within filaments. The existence
of those localized, highly over-dense clumps of dark mat-
ter, termed halos, is an interesting astronomical object in
current cosmological models. Dark matter halos occupy a
central place in the paradigm of structure formation: gas
condensation, resultant star formation, and eventual galaxy
formation all occur within halos. A basic analysis task is to
find and classify these clusters of particles, and measure their
properties like mass, velocity dispersion, density profile, and
others. Since cosmology datasets surveying or simulating the
universe contain billions of low dimensional particles, highly
scalable KNN algorithms for classification are required.

Figure 1. The interior of one of the cylindrical Daya Bay antineutrino de-
tectors (Credit: Roy Kaltschmidt, Lawrence Berkeley National Laboratory)

Plasma Physics: Magnetic reconnection is a mechanism
that releases magnetic energy explosively as field lines break
and reconnect in plasmas. This fundamental process plays a
significant role in the dynamics of various systems including
laboratory fusion experiments, the Earth’s magnetosphere
reactions to solar eruptions, and the solar corona. Com-
putational plasma physicists are often interested in under-
standing the behavior of highly energetic particles near the
magnetic reconnection that could lead to understanding the
causes of the phenomenon. Plasma physics simulations, such
as VPIC, simulate trillions of particles running on large-
scale supercomputers and stores electron properties. The
capability to classify particle features such as flux ropes,

and high density clusters in phase space is an important
analytics task that can facilitate storage of spatial subsets,
and Adaptive Mesh Refinement strategies. The primary
challenge in accomplishing this task is the development of
highly scalable classification and regression algorithms that
could scale to billions of low dimensional particles.

Particle Physics: Particle physics explores the nature of
fundamental sub-atomic particles. Modern particle physics
experiments involve the deployment of instruments with
many channels, recording data at high-frequency. These
experiments produce petabyte scale datasets. The signals of
interest in these huge datasets are often rare new particles or
infrequent interactions and the infeasibility of storing all the
data recorded by these experiments make fast and accurate
classification critical. For this study we use data from the
Daya Bay Reactor Neutrino Experiment (Figure 1) which is
designed to observe and characterize neutrino oscillations, a
phenomena that goes beyond the so-called ‘Standard Model’
of Particle Physics.

III. ALGORITHMS

Given the large size of the datasets that are regularly
generated or observed in scientific applications, it is essential
to utilize all available levels of parallelism in a system to
achieve best performance. In many large scientific simu-
lations involving billions of particles, k-nearest neighbor
queries need to be run for a large percentage of the particles
at each simulation step, imposing high performance require-
ments for distributed KNN queries. Since such simulations
typically deal with low dimensional data, acceleration struc-
tures such as kd-trees work well and are essential to reduce
the order complexity of KNN queries.

Most previous work on distributed KNN querying has
used exhaustive search over all particles rather than using kd-
trees [9], [10]. While kd-trees offer lower order complexity,
constructing and querying such trees does involve more
global data redistribution and control divergence. It is then
imperative to perform careful optimizations for both kd-tree
construction and querying in order to reap the benefits of the
improved order complexity. Further, there are tradeoffs to be
made between kd-tree construction times versus the quality
of trees produced (which dictates query times). In typical
simulation scenarios, the particles move at the end of each
iteration, and one would like to reconstruct a new kd-tree
every few iterations to keep queries fast. This means that
while it is important to optimize the performance of both
kd-tree construction and queries in a distributed setting, we
have some flexibility for construction that we can exploit.

In this section, we describe our algorithm (called PANDA)
for distributed kd-tree construction and querying for k-
nearest neighbors. Our algorithm take advantage of multiple
nodes, multiple cores and SIMD. We also describe the trade-
offs we made between kd-tree construction and querying.

A. Distributed kd-tree construction

As mentioned earlier, ours is the first fully distributed
and optimized kd-tree construction algorithm scaling up
to ∼ 50, 000 cores. We achieve this by taking advantage
of parallelism at all levels in the hardware: multinode,
multicore and SIMD. The kd-tree has a global component
and local components. The global component (called global
kd-tree), refer to the partition tree of the dataset among the
nodes according to their geometry. The local components
(called local kd-tree) refers to the kd-tree formed from
among the points assigned to a given node.

There are two strategies to achieve a distributed kd-tree
- (1) One option is to perform no global redistribution of
points and let each node construct its own independent kd-
tree of a (load-balanced) subset of points. This achieves
good performance on tree construction, however querying
is much slower as each query has to be sent to all the nodes
to get the right answer. (2) The other option is to create one
large kd-tree for all the points. This necessarily involves
global redistribution of points, however this cost is more
than balanced out by the reduced runtime of querying as
each query only needs to be answered by a small subset
of the nodes. We follow the latter approach since we have
some leeway in construction costs as described previously.

Figure 2 refers to the overall structure of distributed kd-
tree construction. This phase consists of 4 main steps:

i) Global kd-tree construction: We assume that each
node reads in an approximately equal number of points
(in no particular order). At every level of the kd-tree, the
data points need to be split approximately equally into two
subsets. We perform this split by choosing a dimension and
a split point along that dimension. The algorithms used for
these choices are presented below in detail (Section III-A1).
Once the split point is chosen, nodes need to redistribute
points so that every node only has points belonging to one of
the subsets. This necessarily involves communication across
the network. The process continues until each node has a
non-overlapping subset of points.

ii) Local kd-tree (data parallel): We then continue this
process of calculating split points and shuffling in each node
on its local points. Within a shared memory environment,
the shuffling stage only involves moving the index, not the
points themselves. At the top levels of the local kd-tree, there
are not enough branches to exploit thread level parallelism,
hence we use data parallelism to calculate the split & shuffle
points and proceed in breadth-first fashion (one level at a
time). Once there are sufficient branches (typically, number
of threads ×10), then we move to the next stage.

iii) Local kd-tree (thread parallel): In this stage, each
thread proceeds to create the kd-tree from a distinct, non-
overlapping set of points. In order to ensure cache locality,
this tree construction proceeds in a depth-first fashion. We
declare a node to be a leaf node when the number of points

Node 1
Local kd
tree

Global
kd tree

Node 0
Local kd
tree

Node 1
Local kd
tree

Data parallel

.

.

. Thread
1

Thread 0

SIMD
Optimized
buckets

.

.

.

Figure 2. (a) Distributed kd-tree. The top levels of the tree are global, whereas the bottom levels are localized to different nodes. (b) Local kd-tree. The
top levels are constructed through data parallelism, whereas the lower levels are optimized using thread-level parallelism and SIMD.

in it reaches a threshold (maximum bucket size).
iv) SIMD packing: Once the points in each bucket are

fixed, we shuffle the dataset so that points within a bucket are
localized in memory. This improves the query performance
as we need to perform exhaustive distance computation with
all points in a bucket (if selected) at query time.

1) Algorithmic choices: We discuss some of the algorith-
mic choices we used in distributed kd-tree construction.

Choice of split dimension: As mentioned earlier, at every
level of the kd-tree the data needs to be split approximately
equally into two subsets. We perform this split by choosing a
dimension and a split point along that dimension. The former
choice may be based on maximum range (e.g. ANN[12])
or a more nuanced metric allowing for better partitioning.
We use the dimension with maximum variance as the best
dimension to split in the kd-tree. As this computation
could be expensive, we take a subset of points to compute
variances. This is similar to the strategy used in FLANN[13].
Although this adds up to 18% to the kd-tree construction
time, we observe that this can improve query performance
by up to 43% (e.g. particle physics dataset).

Choice of split point: We then have to choose the split
point along that dimension. The ideal point is the median
along that dimension that promises to divide the dataset into
2 equal subsets. Calculating the median is expensive, hence
we use heuristics to approximate this. We utilize a sampling
heuristic to estimate the data distribution along a dimension
and choose a point close to the median as the split point.
Our heuristic is similar to that of [11]. For the global kd-
tree, every node samples a small set of points (m points
each; m = 256 for global kd-tree) and sends it to all the
other nodes. Given the set of P × m points, each node
constructs the histogram along the chosen dimension using
these as the (non-uniform) interval points. This histogram
information is broadcast to all nodes, thereby allowing all
the nodes to construct a global histogram of all points in the
dataset at non-uniform bins. We then choose the approximate
median using the global distribution (interval point closest

to 50%). This technique is also applied at the local level to
obtain approximate median at the node level (1024 samples
for local kd-tree). The threads then co-operatively build the
histogram for the local points using these interval points
to obtain an approximate median. We further optimize the
operation of finding the right histogram bin to increment per
data point. Rather than doing a binary search on the sorted
interval points (which suffers from branch misprediction),
we pull in every 32nd interval point into a separate sub-
interval array as a pre-processing step. This is then scanned
using SIMD. Once we identify the two sub-interval points
between which the data point lies, we scan that specific range
of 32-elements in the full interval point array (again using
SIMD) and locate the histogram bin to increment. We get
overall performance gains of up to 42% (e.g. cosmology
dataset) during local kd-tree construction over binary search.

Choice of bucket size (number of levels): The global
kd-tree has log2 P levels, where P is the number of nodes.
In the local kd-tree, we create new levels until the number
of points in a leaf node is ≤ a predefined bucket size. Once
this is reached, we stop creating new levels and pack the
points into a bucket. Larger buckets improve construction
time, but make querying more expensive (Querying with a
bucket is exhaustive). Empirically, we found that a bucket
size of 32 gave the best performance.

B. Distributed KNN querying

The key to efficient nearest neighbor querying is to exploit
locality i.e. we need to ensure that points that are nearby
geometrically are also localized in memory. This is impos-
sible to do with the exhaustive search approach. We can,
however, construct a fully distributed kd-tree that ensures
that the geometric domain is partitioned among the nodes.
This means that any query only has to go to a small subset
of nodes to compute nearest neighbors accurately. This is
illustrated in Figure 3. We explain all the steps involved in
a fully distributed KNN querying algorithm below:

X
o

o
o

o

o

o

o

o

o

o o
o

o
o

o
oP0

P1

P2

P3

P4

Figure 3. Figure shows the data points (denoted by o) in 2D space divided
among 5 nodes. Query point is shown as X . KNN with k = 3 is run in
node P1 (owner of X). This returns 3 points owned by P1 and a max
distance (denoted by green circle around X). Only P2 and P4 might own
points within this radius. KNN is run on P2 and P4 for X and the closest
3 points are chosen (within purple circle around X).

1) Find owner and send query to that node: Once a
query arrives at any of the nodes, we traverse the global kd-
tree to identify the node that owns the domain containing
the query (e.g. Node P1 in Figure 3). Since the domain is
divided into non-overlapping regions and every node has
a copy of the global kd-tree structure, this can be done
efficiently. Once the owner is identified, we send the query
over to that node.

2) Find local KNN for queries: This is the most
computationally intensive part of the query process, taking
40-65% of the overall query runtime. We need to traverse the
local kd-tree in order to identify the top k closest neighbors
among the local points. This traversal is explained in detail
in Section III-C. At the end of this stage, we get the local
k closest neighbors of X . This essentially gives a bound
of maximum distance, r′ for X that any remote neighbors
(owned by other nodes) can not be far from r′ as we already
have local k neighbors within distance r′. This helps pruning
the search space, both remote nodes and remote neighbors.

3) Send query to other nodes within r′ of boundary:
We use the r′ bound and the global kd-tree to identify which
other nodes are within r′ distance from the query, X . We
then send X to those nodes as well.

4) For received queries, find local KNN and send back:
Every node then checks if it has received any queries from its
neighbors as part of the previous step. We perform a local
KNN computation for these queries. As we also received
r′ with each query, local KNN search algorithm (Section
III-C) performs early pruning to reduce search space and
achieve good performance. The results are then sent back
to the owner of the query. In Section V, we show that the
local and remote KNN query steps together take 65-85% of
overall query runtime.

5) For received responses, pick the top k among local
and remote neighbors: Once the responses from other
nodes are received, we put them all in a heap ordered by
the distance from X and pick the top k nearest neighbors.

We perform several optimizations to the process explained
earlier. The most important one is batching of queries
(computing local KNN of a subset of queries, not all and

communicate with remote nodes). This ensures load balance
among nodes and better throughput overall. We also perform
software pipelining between the stages to facilitate overlap
of communication and computation. These optimizations are
important for good scaling as the number of nodes increase.

Algorithm 1 Finding k-nearest neighbors from the local kd-
tree. Input: kd-tree T , Query q, k, search radius, r (default
r =∞). Output: A set, R of k nearest neighbors within r.

1: procedure FINDKNN(T, q, k, r)
2: r′ ← r; push (root, 0) into S
3: while S is not empty do
4: (node, d)← pop from S
5: if node is leaf then
6: for each particle x in node do
7: compute distance, d[x] of x from q
8: if d[x] < r′ then
9: if |H| < k then

10: add x into H
11: if |H| = k then
12: r′ ← H.maxi dis
13: else if d[x] < max distance in H then
14: replace the topmost point H by x
15: r′ ← d[x]
16: else
17: if d < r′ then
18: d′ ← q[node.dim]− node.median
19: d′ ←

√
d ∗ d+ d′ ∗ d′

20: C1 ← closer child of node from q
21: C2 ← other child of node
22: if d′ < r′ then
23: push (C2, d

′) into S
24: push (C1, d) into S
25: R← H

C. Local KNN querying

The algorithm for finding the k nearest neighbors from
a local kd-tree, T is given as pseudo-code in Algorithm 1.
Finding k nearest neighbors from local kd-trees comes up
in two contexts in our application - (1) When a query owner
wants to find the top-k neighbors and (2) when nodes that
own domains that are adjacent to the query owner check to
see if they have closer neighbors than those within the owner
node. Both solutions rely on maintaining bounds on the
distance to kth neighbor (denoted as r′ in Algorithm 1) and
progressively refining it while using it to prune regions of
the tree to limit exploration. Before traversing a node down
in the tree, we always keep track of the minimum distance
of the query point to all the points in the node (denoted by
d and d′ in Algorithm 1) and use this for pruning. Once we
reach a leaf node, we find the distance from query to all
the points in the bucket. This computation is very SIMD-
friendly as the required points are localized in memory as

well. In the non-leaf node, we push the closer child, C1 of
node from q (d′ < 0) into stack S later than the other child
C2 to get the closer neighbors of q earlier. This essentially
helps pruning (Line 17 and 22) the search space for the later
processed nodes. We use heap H to keep track of k nearest
neighbors found so far.

IV. EXPERIMENTAL SETUP

We now describe datasets, system, and software tools used
to evaluate the performance of different phases in PANDA.

A. Platforms

Our experiments were performed on Edison, a Cray XC30
supercomputing system, at the National Energy Research
Scientific Computing Center (NERSC). The system consists
of 5576 compute nodes, each configured with two 12-core
Intel R© Xeon R© 1 E5-2695 v2 processors at 2.4 GHz and 64
GB of 1866-DDR3 memory. Compute nodes communicate
using a Cray Aries interconnect that supports injection
rates of 10 GB/s bi-directional bandwidth per node. We
implemented KNN construction and querying in C/C++ and
compiled using Intel R© C++ compiler v.15.0.12. The code
was parallelized using OpenMP and MPI. We used Intel R©

MPI library v.5.0.2.
Table I

ATTRIBUTES OF THE COSMOLOGY (cosmo∗), PLASMA PHYSICS
(plasma∗) AND PARTICLE PHYSICS (dayabay∗) DATASETS WITH

TAKEN TIME BY PANDA IN SECONDS. M, B, C, AND Q STAND FOR
MILLION, BILLION, KD-TREE CONSTRUCTION AND QUERYING.

Name Particles Dims Time (C) k Queries (%) Time (Q) Cores
cosmo small 1.1 B 3 23.3 5 10 12.2 96
cosmo medium 8.1 B 3 31.4 5 10 14.7 768
cosmo large 68.7 B 3 12.2 5 10 3.8 49152
plasma large 188.8 B 3 47.8 5 10 11.6 49152
dayabay large 2.7 B 10 4.0 5 0.5 6.8 6144
cosmo thin 50 M 3 1.1 5 10 1.1 24
plasma thin 37 M 3 1.0 5 10 0.8 24
dayabay thin 27 M 10 1.8 5 0.5 3.2 24

B. Dataset

1) Cosmology: To evaluate the scalability of PANDA, the
proposed parallel KNN, we have used datasets produced by
three cosmological N-body simulations using Gadget code
[14]. We use datasets of three sizes for the large scale
runs: referred to as cosmo small, cosmo medium, and
cosmo large. The volume of simulations and the number of
particles increase synchronously in these three datasets and
the number of particles is equal to 1.1, 8.1, and 68.7 billion,

1Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other
countries.

2Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimiza-
tions. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel micro-architecture are reserved for Intel micro-
processors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice. Notice
revision #20110804

respectively. Particle properties in all cosmology datasets
include spatial location (x, y, and z), and particle velocities
(vx, vy, and vz). All the datasets have been stored as HDF5
files and each property was stored as one HDF5 1D array
dataset. We used spatial locations in our experiments, and
the resulting sizes of the datasets are ∼12 GB, ∼96 GB,
and ∼0.8 TB, respectively.

2) Plasma Physics: The 3D simulation of magnetic re-
connection in electron-positron plasma was performed using
high-performance fully relativistic PIC code VPIC [15].
The simulation is performed in a 3D domain with open
boundary conditions [16] of size (330×330×132)c/ωpe with
2000×2000×800 cells. The average initial particle density
is 320 particles per species per cell, so that the simulation
started tracking roughly two trillion particles (one trillion
electrons and one trillion ions) and as it progressed more
particles were added due to the open boundaries. Particle
properties of interest in this simulation include spatial loca-
tion (x,y,z), kinetic energy E = mec

2(γ−1), and individual
components of particle velocity Ux, Uy , and Uz . In this
study, we have extracted all the data related to particles
with E > 1.1mec

2 and used spatial locations, thus the
resulting size for KNN becomes ∼2.5 TB (plasma large)
that contained 189 billion particles.

3) Particle physics: For this study, we analyze data
collected from one of the cylindrical antineutrino detectors
(Figure 1) at the Daya Bay experiment. The ‘records’ in the
dataset correspond to snapshots in time of a 24 by 8 set
of signals recorded from the detector that have undergone
calibration but are not reconstructed into derived physics
quantities. We encode this data into a 10-dimensional rep-
resentation using a deep autoencoder neural network with
hyperbolic tangent neurons and shape 192-100-10-100-192.
We label into 3 classes corresponding to types of physics
events that have been previously identified by physicists
working on the data. The resulting size of the dataset
(dayabay large) is ∼30 GB with 2.7 billion records.

In our multinode strong scaling and performance analysis,
we used all the largest (∗ large) dataset. For weak scaling,
we used only the cosmology datasets (small, medium, and
large using 96 to 6144 cores) as it was the only dataset
available that kept the density characteristics similar while
increasing the dataset size. For single node experiments, we
used relatively smaller datasets (∗ thin) with less than 50M
particles or records from all the three applications.

V. RESULTS

In this section we present our experimental results for
KNN construction and querying, PANDA on Edison using
cosmology, plasma physics, and particle physics datasets.
We first show results in the multinode and single node
settings. We then compare our results with state-of-the-art
KNN implementations followed by science results.

1

2

4

8

6144 12288 24576 49152

Sp
ee
du

p
co
m
pa

re
d

to
 6
14

4
co
re
s

Cores

Construction Querying

(a) Cosmology

1

2

4

12288 24576 49152

Sp
ee
du

p
co
m
pa

re
d

to
 1
22

88
 co

re
s

Cores

Construction Querying

(b) Plasma physics

1

2

4

8

768 1536 3072 6144

Sp
ee
du

p
co
m
pa

re
d

to
 7
68

 c
or
es

Cores

Construction Querying

(c) Particle physics

Figure 4. Strong scaling on cosmo large (69B particles), plasma large (189B particles) and dayabay large (3B records) datasets normalized to the
time taken on 6144, 24576, and 768 cores respectively. Dashed lines denote ideal scaling.

A. Multinode

1) Strong Scaling: We demonstrate the strong scaling
performance of kd-tree construction and querying of PANDA
using a varying number of cores. We use the largest datasets,
cosmo large (69B particles), plasma large (189B parti-
cles), and dayabay large (3B records) from the cosmology,
plasma physics, and particle physics application domains.
Figure 4 shows the results of our strong scaling experiments.
Due to memory constraints, we start our experiments at
6144, 12288, and 768 cores for the three datasets respec-
tively. Figures 4(a) shows that the construction and querying
phases of PANDA on the cosmo large dataset scales by
4.3X and 5.2X as we increase the number of cores from 6144
to 49152 cores (8X). The corresponding scaling number
for plasma large are 2.7X and 4.4X for construction and
querying respectively (Figure 4(b)), when increasing cores
from 12288 to 49152 (4X). For the dayabay large dataset,
the scaling numbers are 6.5X and 6.6X (Figure 4(c)) when
increasing cores from 768 to 6144 cores (8X). As we
increase the number of cores, we need to partition the
dataset more finely. For the construction phase, the depth
of the global kd-tree increases as we increase core count
leading to additional computation and communication steps.
This affects scalability of the construction step (for instance,
plasma large scales by 2.7X on a 4X increase in core
count). In the querying phase, we also see some increase in
computation since each query is more likely to be processed
by multiple nodes. However, as opposed to construction,
querying does not require communication of the original
dataset (rather only a small amount of data per query),
and hence querying scales better than construction (we see
scalability of upto 6.6X vs 5.1X using 8X more cores).

2) Weak Scaling: We now show weak scaling results on
the cosmology datasets. This is the only scientific dataset
for which we have data with varying number of particles
with similar density characteristics. We fix the number of
particles per node to be ∼250M, and run experiments with
96, 768 and 6144 cores (total of 64X difference in core
count). As shown in Figure 5(a), the overall runtime for kd-
tree construction and querying increases only by a factor
of 2.2X and 1.5X respectively, as we increase the core

counts by 64X. Although both construction and querying
performance scale well, we observe that querying scales
even better than construction. This trend is similar to strong
scaling as discussed above.

3) Runtime breakdown: Figure 5(b) and 5(c) show
the timing breakdown for construction and querying on
the largest datasets, cosmo large, plasma large and
dayabay large. We show results on 6144, 12288 and 768
cores respectively, the starting point for our strong scaling
experiments. From Figure 5(b), we observe that the global
kd-tree construction and particle redistribution steps domi-
nate the overall construction cost, taking over 75% of overall
time in the cosmo large and plasma large datasets. This
is due to the fact that these steps require traversals of
the entire dataset during median computation and explicit
data movement among the nodes. However, in local kd-
tree construction, the median computation happens on the
already moved local datasets. In addition, it optimizes the
communication in the shared memory setting by exploiting
the fact that all data is accessible and only moves data
indexes rather than the values explicitly in all dimensions.
However, for the dayabay large dataset which has 10
dimensions, we observe that we spent more time in selecting
the right split dimension (as opposed to the 3D cosmo large
and plasma large datasets). This increases local kd-tree
computation time, and the global kd-tree construction costs
reduces to 58% of overall time. With increasing core counts,
the portion of the construction that deals with the global kd-
tree construction and redistribution become more dominant.
This is due to the fact that while the total height of the global
and local sections of the kd-tree remain constant for a fixed
data set, increasing core counts means that some levels of
the local kd-tree move to the global kd-tree.

To showcase the timing breakdown of querying, we
use the same settings as construction (same dataset and
core counts). Although the kd-trees was built on the en-
tire datasets, for querying, we use 10%, 10%, and 0.5%
random particles of cosmo large, plasma large, and
dayabay large datasets, respectively. As shown in Figure
5(c), local KNN (searching local kd-tree) takes most of the
time (up to 67%). This is expected as after reading the

0.0

0.5

1.0

1.5

2.0

2.5

96 768 6144

Ti
m
e
no

rm
al
iz
ed

 to
 9
6
co
re
s

Cores

Construction Querying

(a) Weak scaling (Cosmology)

0

20

40

60

80

100

Ti
m
in
g
br
ea
kd
ow

n
(%

) Local kd‐tree
(SIMD packing)
Local kdree
(thread parallel)
Local kd‐tree
(data parallel)
Redistribute
particles
Global kd‐tree
construction

(b) Construction time

0

20

40

60

80

100

Ti
m
in
g
br
ea
kd
ow

n
(%

)

Non‐overlapped
communication
Remote KNN

Identify remote
nodes
Local KNN

Find owner

(c) Querying time

Figure 5. (a) Weak scaling on small, medium and large cosmology datasets using 96, 768, and 6,144 cores, respectively. Dashed line denotes ideal scaling.
(b-c) Taken time by different steps of PANDA on the largest cosmology (cosmo large, 69B particles), plasma physics (plasma large, 189B particles)
and particle physics (dayabay large, 3B records) using 6144, 12288, and 768 cores, respectively.

queries, each node moves the points to their owners (find
owners, taking up to 3% of total time). This was was possible
due to the global view of the entire dataset using the global
kd-tree. Identifying remote nodes after local KNN, where
a query has to be sent, takes an additional 3.5% of the
total time. For the cosmo large and plasma large dataset,
we observe that 5% and 9% queries are sent to at least
one remote node for computing remote KNN. However,
since each query is sent with a radius value (distance to
its local kth neighbor), the remote node prunes most of
the search space, thus end up taking only up to 3% of
the total time by remote KNN. In our implementation,
communication overlaps with computation. We measure the
non-overlapped communication time and found that to be
29% (cosmo large) and 26% (plasma large) of the total
time. However, for the dayabay large dataset, we observe
a different behavior for remote KNN, which takes 46% time.
Further investigation shows that even though the kd-tree
is balanced, each query ended up with asking an average
of 22 remote nodes. This happens due to the fact that a
significant number of records are co-located in the particle
physics dataset and hence each node ended up searching a
huge range, although each query receives only an average of
1 remote nearest neighbor due to heavy pruning technique.

B. Single Node

0

6

12

18

24

Sp
ee
du

p

Cores

cosmo plasma dayabay

(a) Construction

0

6

12

18

24

Sp
ee
du

p

Cores

cosmo plasma dayabay

(b) Querying

Figure 6. Speedup of PANDA construction and querying on single node.

1) Scalability: We study the scaling of both the construc-
tion and querying phases of PANDA on the cosmo thin,
plasma thin and dayabay thin datasets from the cos-

mology, plasma physics and particle physics domains re-
spectively. These datasets contain 50M, 37M and 27M
particles respectively. We run scaling experiments from 1
to 24 threads on our 24-core CPU, and additionally explore
the impact of Simultaneous Multi-Threading (SMT) using
a 48-threads run (each core can run 2 threads). Figure
6(a) shows that our kd-tree construction code scales well,
achieving 17-20X scaling on 24 cores without using SMT,
with a further improvement to 18.3-22.4X scaling on 24
cores using SMT. This near linear scaling shows that we
have successfully distributed the construction with varying
levels of parallelism to threads with minimal load imbalance.
Figure 6(b) shows that the scaling of the querying code
is 8.8-12.2X on 24 cores without using SMT. The code
is significantly limited by memory accesses, since there is
very little work done at each node of the kd-tree traversal.
The only computation is the distance computation at the
leaf nodes, and this work increases with dimensionality of
the dataset (cosmo thin and plasma thin with 3D data
scales worse than dayabay thin with 10D data). We notice
that there is a significant impact of using SMT on the
cosmo thin and plasma thin datasets (we get additional
1.5-1.7X performance gains), since these datasets have little
compute and are highly limited by memory latency. For the
dayabay thin dataset, the impact of SMT is lower (1.2X
performance gain). Overall, we obtain a scaling of 12.9-
16.2X scaling on 24 cores. Our performance after using
SMT heavily utilizes memory bandwidth (we obtain more
than 70% of peak memory bandwidth).

2) Comparison to Previous Implementations: We com-
pare the performance of our implementation, PANDA ver-
sus the most popular KNN implementations, FLANN [13]
and ANN [12]. We use all three ∗ thin datasets for the
comparison. For kd-tree construction, neither FLANN nor
ANN can run in parallel. On a single core, we observe
that our kd-tree construction code is up 2.2X and 2.6X
faster than FLANN and ANN, respectively. FLANN uses
variance to select a dimension and then takes an average of
the first 100 points over that dimension to compute median

0.1

1

10

100

cosmo plasma dayabayTi
m
e
in
 se

co
nd

s (
lo
g
sc
al
e)

FLANN ANN PANDA‐1 PANDA‐24

(a) Training

10

100

1,000

cosmo plasma dayabayTi
m
e
in
 se

co
nd

s (
lo
g
sc
al
e)

FLANN ANN PANDA‐1

(b) Classification (1 thread)

0.1

1

10

100

cosmo plasma dayabayTi
m
e
in
 se

co
nd

s (
lo
g
sc
al
e)

FLANN PANDA‐24

(c) Classification (24 thread)

Figure 7. Comparing PANDA with FLANN [13] and ANN [12]. PANDA-1 and PANDA-24 means running on 1 thread and 24 threads respectively

during the kd-tree construction. ANN on the other hand
uses upper and lower bound of each dimension and select
the dimension with maximum difference. Then it takes the
average of the lower and upper values of that dimension
to compute median. This makes ANN construction faster
than FLANN (up to 1.7X except dayabay dataset where the
tree becomes more imbalanced and ANN ended up doing
more iterations, depth 109 vs. 32 in FLANN). In contrast,
our PANDA construction uses sampling based median com-
putation (Section III-A1) leading better balanced trees. We
attribute our single core performance improvement of kd-
tree construction over FLANN and ANN to implementation
optimization including software prefetching, reduced branch
misprediction and vectorization in binary search, etc. Using
24 cores, our kd-tree construction becomes more than an
order of magnitude faster (39X and 59X) than these two
popular implementations. Figure 7(a) shows the performance
comparisons of the construction.

We now compare querying on PANDA vs FLANN and
ANN. On a single core, we showcase that our implementa-
tion is up to 48X and 3X faster than FLANN and ANN,
respectively. We observe that although the height of the
kd-tree constructed by ANN is higher than FLANN (e.g.
on cosmo thin, the depths are 34 vs 49), querying on
FLANN ended up with more node traversals than ANN
(e.g. on cosmo thin, 7X more node traversal). In contrast,
our kd-tree has lesser height (21 for cosmo thin dataset)
and performs less tree node traversals (2X and 12X on
cosmo thin than FLANN and ANN) leading to more than
an order of magnitude performance improvement. Since par-
allelizing over queries on shared memory is simple, we use
the same outer loop of parallel querying both for FLANN
and our querying code. Using 24 cores, we found that our
implementation is up to 22X faster than FLANN. Figure 7(b)
and 7(c) shows the querying results on 1 core and 24 cores
respectively. We have not implemented parallel querying for
ANN as the code uses many global variables in different
functions making the code unsuitable for parallelization.

C. Science Results

The primary purpose of this work was to explore the
performance of our PANDA implementation on realistic sci-

entific datasets produced by state of the art simulations and
experiments. While we have outlined specific classification
tasks for astrophysics and plasma physics datasets, we did
not have manually labeled classes (or a procedural criteria)
on hand for prediction and regression tasks. However, in
the case of the Daya Bay dataset, we did have access to
3-class labels annotated by domain science experts. After
applying our PANDA system; we observe 87% accuracy in
classification performance. To the best of our knowledge,
this is the first time machine learning techniques have
been used to directly classify an entire raw particle physics
dataset without using interim domain specific reconstruction.
We can certainly envision more sophisticated classification
schemes that utilize spatial weighting of the k-neighbors
to make even more accurate predictions; but we are quite
pleased with the results of this baseline method.

VI. RELATED WORK

As mentioned earlier, KNN is one of the core machine
learning algorithms and therefore there has been a lot of
focus on optimizing and parallelizing the algorithm. Al-
though there has been work done on kd-tree based KNN
implementations with O(log n) complexity per query in a
shared-memory multi-core setting, most distributed-memory
implementations perform a linear time exhaustive search
over all points without using kd-trees [9], [10]. [17] presents
an approximate distributed KNN algorithm. Even in a shared
memory setting, several brute-force approaches have been
explored [5], [7]. Most of these linear time algorithms are
most suitable for higher dimensional datasets [18], [6] where
kd-trees do not work well; and they have only been able
to scale up to millions of data points. In contrast, today’s
bigdata scientific applications come with billions or trillions
of particles in a low dimensional space [19].

Recently, there have been some efforts on parallelizing kd-
tree construction [20], [21], [22] in the context of dynamic
scene ray tracing, where the authors show speedup of up
to 7X using 16 cores (while our implementation achieves
17X on 18 cores). Since the authors’ codebases are not
publicly available, we were unable to compare them directly.
A variant of the classical kd-tree (called buffered kd-tree) has
been proposed recently [19], which parallelizes querying on

GPUs given a kd-tree. The idea is to gather queries at leafs
of the tree until some number of queries are buffered; these
are then processed in parallel. A buffered approach is most
useful when latency of queries is not an issue and the total
number of queries is very large compared to the data set
(e.g. [19] uses scenarios with ∼500X more queries than data
points). In scientific applications, the number of queries is
likely to be much lesser than the datapoints, and we cannot
afford to have large buffers of queries at kd-tree leafs.

In scientific contexts, both kd-tree construction and query
times are important. To the best of our knowledge, no recent
work has performed parallel kd-tree construction as well as
querying for distributed KNN computation. Since FLANN
[13] and ANN [12] are popularly known in the scientific
community and their source codes are available online, we
compare the performance of both kd-tree construction and
querying with our implementation.

VII. CONCLUSION

In this paper, we present PANDA, a distributed kd-tree
based KNN implementation that parallelizes both kd-tree
construction and querying on massive datasets of up to 189B
particles taken from diverse scientific disciplines. Compared
to the state-of-the-art KNN implementations, PANDA is more
than an order of magnitude faster on a single node. Further,
we show that PANDA scales well up to∼50,000 cores in both
strong and weak scaling senses for all stages of computation.
As a result, PANDA can construct kd-trees for 189B particles
in ∼48 seconds, and answer 19B KNN queries in ∼12
seconds using 50,000 cores. We believe that scalable and fast
kd-tree construction and KNN query times will be critical
for the analysis of both scientific simulation and observation
datasets. In future, we intend to use PANDA in regression and
other scientific applications to gain more insights.

VIII. ACKNOWLEDGMENTS

This work is supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center. The authors
would like to thank Zarija Lukic and Vadim Roytershteyn for
providing access to datasets. We would also like to acknowl-
edge Tina Declerck and Lisa Gerhardt for their assistance
in faciliating large scale runs on NERSC platforms.

REFERENCES

[1] S. Tan, “Neighbor-weighted k-nearest neighbor for unbal-
anced text corpus,” Expert Syst. Appl., vol. 28, no. 4, pp.
667–671, May 2005.

[2] S. Imandoust and M. Bolandraftar, “Application of k-nearest
neighbor (knn) approach for predicting economic events:
Theoretical background,” JERA, pp. 605–610, 2013, 3(5).

[3] M. Sarkar and T. Y. Leong, “Application of K-Nearest Neigh-
bors Algorithm on Breast Cancer Diagnosis Problem,” in
Proceedings of the AMIA Symposium, 2000, pp. 759–763.

[4] G. Lemson and the Virgo Consortium, “Halo and galaxy
formation histories from the millennium simulation,” Arxiv
preprint astro-ph/0608019, 2006.

[5] N. Sismanis, N. Pitsianis, and X. Sun, “Parallel search of
k-nearest neighbors with synchronous operations,” in HPEC.
IEEE, 2012, pp. 1–6.

[6] Q. Kuang and L. Zhao, “A practical gpu based knn algorithm,”
in ISCSCT. Citeseer, 2009, pp. 151–155.

[7] S. Liang, Y. Liu, C. Wang, and L. Jian, “A cuda-based
parallel implementation of k-nearest neighbor algorithm,” in
CyberC’09. IEEE, 2009, pp. 291–296.

[8] J. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[9] C. D. Yu, J. Huang, W. Austin, B. Xiao, and G. Biros,
“Performance optimization for the k-nearest neighbors kernel
on x86 architectures,” in SC ’15. ACM, 2015.

[10] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for
large data in mapreduce,” in EDBT. ACM, 2012, pp. 38–49.

[11] M. Patwary, S. Byna, N. Satish, N. Sundaram, Z. Lukic,
V. Roytershteyn, M. Anderson, Y. Yao, Prabhat, and P. Dubey,
“Bd-cats: Big data clustering at trillion particle scale,” in SC
’15. ACM, 2015.

[12] D. M. Mount and S. Arya, “Ann: A library for approx-
imate nearest neighbor searching,” https://www.cs.umd.edu/
∼mount/ANN/, 2010, version 1.1.2.

[13] M. Muja and D. G. Lowe, “Flann - fast library for approxi-
mate nearest neighbors,” http://www.cs.ubc.ca/research/flann/,
2013, [Version 1.8.4].

[14] V. Springel, “The cosmological simulation code GADGET-
2,” Monthly Notices of the Royal Astronomical Society, vol.
364, pp. 1105–1134, Dec. 2005.

[15] K. J. B. et.al., “Ultrahigh performance three-dimensional elec-
tromagnetic relativistic kinetic plasma simulationa,” Physics
of Plasmas, 2008, 15(5).

[16] W. Daughton, J. Scudder, and H. Karimabadi, “Fully kinetic
simulations of undriven magnetic reconnection with open
boundary conditions,” Physics of Plasmas, 2006, 13(7).

[17] P. Haghani, S. Michel, P. Cudré-Mauroux, and K. Aberer,
“Lsh at large-distributed knn search in high dimensions.” in
WebDB, 2008.

[18] E. Plaku and L. E. Kavraki, “Distributed computation of the
knn graph for large high-dimensional point sets,” Journal of
parallel and distributed computing, pp. 346–359, 2007, 67(3).

[19] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Buffer kd
trees: processing massive nearest neighbor queries on gpus,”
in ICML, 2014, pp. 172–180.

[20] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino,
S. V. Adve, and J. C. Hart, “Parallel sah k-d tree construction,”
in HPG ’10. Eurographics Association, 2010, pp. 77–86.

[21] ——, “Parallel sah k-d tree construction for fast dynamic
scene ray tracing,” 2009.

[22] M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel
fast kd-tree construction for interactive ray tracing of dynamic
scenes,” in CGF ’07, 2007, pp. 395–404, 26(3).

https://www.cs.umd.edu/~mount/ANN/
https://www.cs.umd.edu/~mount/ANN/
http://www.cs.ubc.ca/research/flann/

