Accelerating Science with the NERSC Burst Buffer
Early User Program

Wahid Bhimji*, Debbie Bard*, Melissa Romanus*t, David Paul*,
Andrey Ovsyannikov*, Brian Friesen*, Matt Bryson®*, Joaquin Correa*,
Glenn K. Lockwood*, Vakho Tsulaia*, Suren Byna*, Steve Farrell*,
Doga Gursoy?,Chris Daley*,Vince Beckner*,Brian Van Straalen*,
Nicholas J Wright*, Katie Antypas*, Prabhat*
* Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA, Email: wbhimji@Ibl.gov
t Rutgers Discovery Informatics Institute, Rutgers University, Piscataway, NJ, USA
fAdvanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

Abstract—NVRAM-based Burst Buffers are an important part
of the emerging HPC storage landscape. The National Energy
Research Scientific Computing Center (NERSC) at Lawrence
Berkeley National Laboratory recently installed one of the first
Burst Buffer systems as part of its new Cori supercomputer,
collaborating with Cray on the development of the DataWarp
software. NERSC has a diverse user base comprised of over
6500 users in 700 different projects spanning a wide variety
of scientific computing applications. The use-cases of the Burst
Buffer at NERSC are therefore also considerable and diverse. We
describe here performance measurements and lessons learned
from the Burst Buffer Early User Program at NERSC, which
selected a number of research projects to gain early access to the
Burst Buffer and exercise its capability to enable new scientific
advancements. To the best of our knowledge this is the first time
a Burst Buffer has been stressed at scale by diverse, real user
workloads and therefore these lessons will be of considerable
benefit to shaping the developing use of Burst Buffers at HPC
centers.

Index Terms—Nonvolatile memory, Data storage systems,
Burst Buffer, Parallel I/0, High Performance Computing

I. INTRODUCTION

HPC faces a growing I/O challenge. One path forward is
a fast storage layer, close to the compute, termed a Burst
Buffer [1]. Such a layer was deployed with the first phase
of the Cori Cray XC40 System at NERSC in the later half
of 2015, providing around 900 TB of NVRAM-based storage.
This system not only employs state-of-the-art SSD hardware,
but also a new approach to on-demand filesystems through
Cray’s DataWarp software. In order to enable scientific ap-
plications to utilize this new layer in the storage hierarchy,
NERSC is running the Burst Buffer Early User Program,
focused on real science applications and workflows that can
benefit from the accelerated I/O the system provides. The
program is providing a means to test and debug the new
technology as well as drive new science results.

In this paper we first briefly review the motivation for Burst
Buffers and the range of potential use-cases for NERSC’s
diverse scientific workload. We then provide a brief overview
of the architecture deployed at NERSC in Section II-B before
outlining the Early User Program and the projects selected.
We then focus on five specific projects and describe in detail

their workflow, initial results and performance measurements.
We conclude with several important lessons learned from this
first application of Burst Buffers at scale for HPC.

A. The I/O Hierarchy

Recent hardware advancements in HPC systems have en-
abled scientific simulations and experimental workflows to
tackle larger problems than ever before. The increase in scale
and complexity of the applications and scientific instruments
has led to corresponding increase in data exchange, interaction,
and communication. The efficient management of I/O has
become one of the biggest challenges in accelerating the time-
to-discovery for science.

Historically, the memory architecture of HPC machines has
involved compute nodes with on-node memory (DRAM), a
limited number of I/O subsystem nodes for handling 1/O
requests, and a disk-based storage appliance exposed as a
parallel file system. DRAM node-memory is an expensive
commodity with limited capacity, but fast read/write access,
while disk-based storage systems provide a relatively inexpen-
sive way to store and persist large amounts of data, but with
considerably lower bandwidth and higher latency.

This traditional HPC architecture is often unable to meet the
I/O coordination and communication needs of the applications
that run on it, particularly at extreme scale. In order to address
this I/O bottleneck system architects have explored ways of
offering cost-effective memory and filesystem solutions that
can offer faster performance than parallel filesystems on disk-
based storage. A natural extension of this work has been to
explore ways of deepening the memory hierarchies on HPC
machines to include multiple storage layers in-between DRAM
and disk. These proposed solutions leverage technology ad-
vancements like solid-state devices (SSDs), as well as other
flash-based and/or NVRAM offerings.

Therefore, some state-of-the-art HPC systems now include a
new tier of ‘intermediate’ storage between the compute nodes
and the hard disk storage, known as a ‘Burst Buffer’. This
layer is slower (but higher capacity) than on-node memory,
but faster (and lower capacity) than HDD-based storage.

B. The Burst Buffer

Burst Buffers can be realized in a variety of ways. In
the case of the Cray DataWarp implementation [2], it is
achieved through SSDs in I/0 nodes that are directly connected
to the high-speed network, rather than in compute nodes.
The DataWarp software presents to the application a POSIX
filesystem interface built on these SSDs. However, unlike a tra-
ditional parallel filesystem, this mount is only available to the
compute nodes using it, and for limited duration. The software
also allows for ‘persistent’” Burst Buffer reservations so data
can be re-used by subsequent (or simultaneous) compute jobs
without re-staging. Further details of the software involved are
provided in Section II-C.

The Burst Buffer therefore has the potential for considerably
higher performance than the underlying Parallel File System
(PES) for a variety of reasons, including the underlying storage
medium and the high-performance network connection, as well
as the possibility to limit metadata load by exposing only the
namespace required for the job or workflow.

C. Burst Buffer use-cases

Burst Buffer technology was primarily conceived as a high-
bandwidth solution for a checkpoint-and-restart application,
but at NERSC there are a variety of additional purposes for
which this technology can be valuable [3]. Example use cases
include:

e IO improvements for:

— High-bandwidth streaming reads and writes, e.g. for
checkpoint-and-restart

— Complex I/O patterns, including those with high 10
operations per second (IOPs), e.g. non-sequential
table lookup

— Out-of-core applications

o Workflow performance improvements (either within one

compute job or across many jobs using a persistent Burst
Buffer reservation) for:

— Coupling applications, using the Burst Buffer as
interim storage between for example simulation and
analysis codes.

— Optimizing node usage by changing node concur-
rency partway through a workflow

— Analysis and visualization: including in-situ, in-
transit and interactive

The early-user projects selected for the NERSC program stress
many of these different use-cases as shown in Section III.

II. NERSC BURST BUFFER
A. Cori

Cori is NERSC’s newest supercomputer system. The Cori
system will be delivered in two phases with the first phase
online now and the second expected in mid-2016. Phase 2 will
be based on the second generation of the Intel Xeon Phi family
of products, called the Knights Landing (KNL) Architecture.
The Phase 1 system (also known as the “Cori Data Partition™)
is a Cray XC40 System with 1632 dual-socket compute nodes

with two 2.3 GHz 16-core Haswell processors and 128 GB
of DRAM per node, a Cray Aries high speed “dragonfly”
topology interconnect and a number of new features that
will benefit data-intensive science, including the Burst Buffer.
The Cori system also has a very high performance Lustre
scratch filesystem with 27 PB of storage served by 248 OSTs,
providing over 700 GB/s peak performance.

B. Burst Buffer Architecture

The current Cori Phase 1 system has 144 Burst Buffer
nodes. Each NERSC Burst Buffer node contains two Intel
P3608 3.2 TB NAND flash SSD modules attached over two
PClIe gen3 interfaces. A single SSD appears as 2 block devices.
These are packaged two to a blade (shown in Figure 1), and
attached directly to the Cray Aries network interconnect of the
Cori system (Figure 2).

PCle Gen3 8x

PCle Gen3 8x

PCle Gen3 8x

PCle Gen3 8x

Fig. 1. A Cori Burst Buffer Blade

Blade =2 x Burst Buffer Node (2x SSD)
I /
[\ 1/0 Node (2x InfiniBand HCA)
SSD
o ov (ov o fov ee 33D
SSD
oo oo’ fon|-ea 52
SSD
o ov (ov o fov es 3D
CORCIRENRCIRENS o i
SsD
ool oo ol o8 33
Y : Y

Aries High-Speed Network InfiniBand Fabric

Compute Nodes

Lustre OSSs/OSTs

Storage Fabric (InfiniBand)

Storage Servers

Fig. 2. Placement of Burst Buffer nodes in the Cori System

C. Software Environment

In addition to the hardware, NERSC has invested in software
through Non-Recurring Engineering (NRE) projects with Cray
and SchedMD, supporting the Cray DataWarp software, and
integration with the SLURM workload manager (WLM). This
is being delivered in a series of stages. Stage 1 (currently

deployed) supports a range of features allowing users to
automatically setup filesystems on Burst Buffer nodes.

Users can allocate Burst Buffer resources via the SLURM
WLM. Resources can be striped across different Burst Buffer
nodes, or used in a ‘private’ mode whereby each compute node
gets its own namespace which potentially offers improved
metadata handling. These are documented in the Cray and
Slurm User Guides [2] [4] as well as numerous practical
examples provided on the NERSC website [5].

Details of the entire DataWarp software stack, including
the services that create the mount points, can be found in
the DataWarp admin guide [6]. We note here that a single
DataWarp filesystem mount involves several layers:

o Logical Volume Manger (LVM) is used to group the
multiple SSD block devices on a single node into one
logical block device.

o An XFS file system that is created for every Burst Buffer
allocation, comprising the allocated Burst Buffer space.
The Burst Buffer allocation therefore appears to the user
as an isolated filesystem.

o The DataWarp File System (DWES), which is a stacked
file system based on wrapfs [7]. It handles coordination
between the Burst Buffer nodes and staging data in/out of
the Burst Buffer allocation, and provides the namespaces
(e.g. striped access type) described above.

e Cray Data Virtualization Service (DVS) [8], used for
communication between DWFS and the compute nodes.

These layers are shown schematically in Figure 3, and their
interaction when striping a file between Burst Buffer nodes is
shown in Figure 4.

XFS XFS

LVIM (4 MB| physical extents)

/dev/sdb

/dev/sdc | | /dev/sdd /dev/sde

Fig. 3. Schematic of the different layers of the DataWarp software. The Burst
Buffer node is logically 4 SSD block devices, which are aggregated by LVM.
When a Burst Buffer allocation is requested by the user, an XFS filesystem
is created by the DataWarp software on that allocation. In this example, two
different allocations coexist on the same Burst Buffer node

To illustrate the normal user-level interaction with the Burst
Buffer, example batch script directives are given below:

#DW jobdw capacity=1000GB \
access_mode=striped type=scratch

#DW stage_in source=/lustre/inputs \
destination=$DW_JOB_STRIPED/inputs \
type=directory

#DW stage_in source=/lustre/file.dat \
destination=$DW_JOB_STRIPED/ type=file

#DW stage_out source=$DW_JOB_STRIPED/outputs \
destination=/lustre/outputs type=directory

srun my.x ——indir=$DW_JOB_STRIPED/inputs \
--infile=$DW_JOB_STRIPED/file.dat \
——outdir=$DW_JOB_STRIPED/outputs

DataWarp Client (Compute Node)

| 128 MB file \

| sss0 | sss1 | ss2 | s8] sssa | sss5 | sss6 | .|

sss1 | st JEH] sss2 | sss5 |

Substripe
/mnt/xfs0/12345.1

Substripe
/mnt/xfs0/12345.0

Substripe
/mnt/xfs0/12345.2

XFS, e.g., /mnt/xfsO

DataWarp 1/0 Service (BB Node)

Fig. 4. Schematic of how a file is striped over the DataWarp software on one
Burst Buffer node. DVS serves the file to DataWarp in (configurable) SMB
chunks, which are laid out across the three (configurable) substripes on the
Burst Buffer node.

This example requests a Burst Buffer allocation for the
duration of the compute job (“type=scratch”) and that would
be visible from all compute nodes (“access_mode=striped”).
The allocation is distributed across Burst Buffer nodes in units
of ‘granularity’ (currently 218 GB on the NERSC system). So
a request of 1000 GB will normally be placed over 5 separate
Burst Buffer nodes (though this is not guaranteed). A file and
a directory are staged in using the “stage_in” directive, and a
directory is staged out at the end of the job using “stage_out”.
Since the path to the Burst Buffer allocation is unknown when
the job is submitted, the user can configure their executable
to read in the $DW_JOB_STRIPED variable at runtime.

An API in the C language is also provided, which allows
DataWarp users to control the flow of data to/from the Burst
Buffer from within their application code, including staging
data in/out asynchronously with compute operations.

Future planned stages of DataWarp software will add im-
plicit caching (Stage 2) and in-transit analysis capabilities
(Stage 3). Implicit caching will allow data to be transferred
between the PFS and the Burst Buffer without the user
specifying how, when or where the data is moved. Staging
data in and out of the Burst Buffer and caching temporary
files will be performed by the DataWarp software. In-transit
analysis in Stage 3 will make use of the Intel Xeon CPU on
the Burst Buffer node to do fast analysis of data stored on the
local Burst Buffer SSD.

D. Benchmark Performance

The performance of the Cori Phase 1 Burst Buffer was
measured on installation using the IOR benchmark. Bandwidth
tests were performed with 8 GB block size and 1 MB transfer
size, using total file sizes greater than 1.5x the compute node’s
memory. IOPS benchmark tests were performed with random
4KB-sized transfers. 1120 compute nodes were used with 4
processes per node. At the time 140 Burst Buffer nodes were
in service. Results are given in Table I. The total Cori Phase
1 Burst Buffer system provides approximately 900 GB/second

of peak I/O performance and over 12.5M IOPS. The MPI-10
shared file bandwidth is not at the desired performance level
for the system, however this should be improved in future
versions of the DataWarp software where it will be possible
to use more sub-stripes on the underlying Burst Buffer nodes
(and therefore increased parallelism). All benchmark band-
width numbers (including MPI-IO Shared file) outperform the
Lustre scratch filesystem which achieves around 700-750 GB/s
peak (POSIX File-Per-Process) bandwidth and 573/223 GB/s
Read/Write performance for MPI-IO shared file.

TABLE I
1/0 PERFORMANCE TO THE CORI BURST BUFFER AS MEASURED WITH
THE IOR BENCHMARK (DETAILS GIVEN IN THE TEXT)

o ATLAS/Yoda: simulation and data analysis for the LHC
ATLAS detector

Table II shows that these applications exercise various different
use-cases of the Burst Buffer as introduced above. It is
also worth noting that we provide examples from both the
simulation and experimental science community. The later
community provides interesting use-cases for the Burst Buffer
in having both challenging I/O requirements and workflows
that extend beyond the compute facility.

TABLE 11
A TABLE OF THE BURST BUFFER USE-CASES DEMONSTRATED BY THE
FEATURED APPLICATIONS (USE-CASES HAVE BEEN MERGED INTO MORE
GENERAL HEADINGS FROM THOSE SHOWN IN THE TEXT).

Posix File-Per-Process MPI-IO Shared File 10PS 10 High Complex 10 | Workflow coupling
Read Write Read Write Read Write Bandwidth patterns Visualization
905 GB/s | 873 GB/s | 803 GB/s | 351 GB/s | 126 M | 125 M Nyx/Boxlib X X
Chombo-Crunch+Vislt X X X
VPIC-IO X
TomoPy X X
ITII. BURST BUFFER EARLY USER PROGRAM OVERVIEW ATLAS X X

NERSC has the most diverse user base of all the DOE
computing facilities, with over 6500 users working on more
than 700 projects, running over 700 codes [9]. This makes
NERSC an ideal environment to comprehensively test the use
of Burst Buffers as a new layer in the storage hierarchy.
The diversity of the user base ensures that the hardware and
software is challenged in unforeseen ways, as highlighted in
Section V. To facilitate the testing and configuration of the
Cori Phase 1 Burst Buffer, and to give interested users a first
chance to run their code on cutting-edge hardware, NERSC
initiated an Early User Program for the Burst Buffer.

In August 2015, NERSC put out a call for proposals,
asking the entire user-base of NERSC for projects that could
benefit from the Burst Buffer. NERSC received 30 high-
quality responses spanning the six DOE Offices of Science
and representing the full range of Burst Buffer use cases given
in Section I-C. Submissions were evaluated according to the
relevance and diversity of their science and computing goals.
Proposals that demonstrated a significant potential benefit from
the Burst Buffer, and that spanned a representative range of
Burst Buffer use cases, were selected to receive individual
attention from NERSC computing and data experts. Other
proposals were granted early access to the Burst Buffer,
without the active support. A compete list of projects selected
can be found in Appendix A.

In this paper we focus on detailed results from the following
representative projects:

o Nyx/BoxLib: cosmology simulation code

e Chombo-Crunch + Vislt: simulation and visualization of
carbon sequestration processes

e VPIC-IO: simulation and analysis of plasma physics
simulations

e TomoPy and SPOT: real-time image reconstruction of
Advanced Light Source (ALS) and Advanced Photon
Source (APS) data

IV. SCIENCE USE CASES

Fig. 5. Volume rendering of a Nyx calculation at redshift z=3. The problem
domain spans 10 Mpc per side, discretized on a grid of size 5123 points. The
baryonic matter collapses into filaments, shown in blue. The green spheres
indicate the centroids of dark matter halos which surround the filaments.

A. Nyx/Boxlib

1) Science Motivation: Cosmology is the study of the
universe as a whole - its contents, history and expansion.
Cosmological theory makes predictions about the state of the
universe under certain conditions - the amount of regular
(baryonic) matter; the amount of dark (non-baryonic) matter;
and the amount of dark energy (the as-yet unknown force that
is driving the accelerated expansion of the universe). These
theories are tested in simulations of miniature universes, which
can be used to make predictions about observables that can

1.0}

&
&)
=
=1
% - 8KBTS
0.
2 512 KB TS
-‘§ H 4mMBTS
0.0
16% 323 64° 1283

size of Boxes written

(a) IO performance of Nyx using different transfer sizes, for
different Box size. This simulation used 2 MPI ranks per compute
node, and one Burst Buffer node. Blue: small (8KB); Yellow:
mid-size (512KB) ; Black: large (4MB) transfer sizes (TS).

F 1 writer/socket
F 2 writers/socket

write bandwidth (GB/s)

o

0.5 1 2 4 8 16 32
compute nodes

(b) IO performance using either one or two MPI writers per socket driving
the IO on a single Burst Buffer node, for different numbers of compute
nodes running the simulation. 0.5 compute nodes refers to use of 1 socket
on a compute node.

Fig. 6. Maximizing write bandwidth to a single Burst Buffer node using Nyx.

write bandwidth (GB/s)

1 2 4 8 16 32 64
burst buffer nodes

(a) IO performance of Nyx for different numbers of Burst Buffer nodes, for
a simulation using 8 compute nodes, each with 2 MPI writers. The vertical
black line denotes 1 Burst Buffer node for each compute node.

H BB
F Lustre
20
@
@
S
=15
3
2
=1
5
810
3
B
z
5
0
1 2 4 8 16 32

compute nodes and BB nodes

(b) 10 performance of Nyx on the Burst Buffer and on the Lustre PFS, fixing
the ratio of compute to Burst Buffer nodes to 1:1. Individual files on Lustre
were not striped across OSTSs, which is appropriate for the relatively small
files, but they will be distributed across OSTs.

Fig. 7. Scaling up Nyx performance to more Burst Buffer nodes, and more compute nodes.

be measured from the real universe we see around us. For
example, the statistical distribution of galaxies predicted by
theoretical simulations can be compared to that observed by
astronomical survey telescopes.

Nyx [10] is a cosmological simulation code based on
a widely-used adaptive mesh refinement (AMR) library,
BoxLib [11]. Many theoretical models in cosmology run simu-
lations of a universe that contains only dark matter, neglecting
the baryonic matter contained in gas, dust, stars and galaxies.
This makes the simulations easier to run, since dark matter can
be assumed to interact only via the gravitational force, whereas
baryonic matter also interacts via complex electromagnetic
processes. Modeling the behavior of baryonic matter in codes
such as Nyx allows cosmologists to simulate observable phe-
nomena accurately, such as the Lyman-a Forest [12]

The largest cosmology simulations evolve from the early

universe (redshift z=150, roughly 900,000 years after the Big
Bang) to the present day, which takes thousands of time steps.
The data files (“plotfiles”) written at certain time steps can be
large, O(TB), and the checkpoint files even larger. I/O time
can therefore consume a significant fraction of run time in
these large simulations - so writing the plotfiles and checkpoint
files to the Burst Buffer offers a large potential compute time
savings.

2) Project Workflow: The Nyx simulation code starts by
reading either a checkpoint file or configuration file contain-
ing the initial conditions of the matter (both baryonic and
dark). This model universe is then evolved using a hybrid N-
body/compressible gas dynamics algorithm. The properties of
the baryonic matter is calculated at the AMR mesh points,
whereas the dark matter particles are treated individually. The
input files and the Nyx executable are staged in to the Burst

Buffer. The compute job then runs entirely off the Burst
Buffer, writing output plotfiles and checkpoint files to the
space allocated.

Nyx is generally run on Cori in a configuration of two
MPI processes per compute node with 16 threads each -
i.e. one MPI process per socket. We vary the number of
writers per MPI process to determine how to best drive the
Burst Buffer bandwidth. For the studies described here, each
MPI process writes separate plotfiles. For these tests mesh
data was written but we disabled writing particle data to
avoid potential load imbalance, since particles can coalesce on
different compute nodes. The simulation size used was 2563
mesh points, decomposed into sub-volumes known as Boxes.
Each plotfile was around 1.8GB; future work will investigate
the optimal configuration for writing out checkpoint files.

3) Results: Our first test consisted of a single compute node
writing plotfiles at each of six consecutive time steps to a
single Burst Buffer node, with two concurrent file streams
issued to one Burst Buffer node. The results are shown in
Figure 6(a). The performance achieved strongly depends on
the transfer size used for the write - larger transfer sizes (at
least 512 KB) are required to achieve good IO bandwidth. At
large Box sizes Nyx can achieve 1.1 GiB/s for large transfer
sizes.

However, this is still below the peak write bandwidth of a
single Burst Buffer node, which is around 6 GiB/s (see Section
II-D). Two write instruction streams coming from a compute
node is not enough work to saturate the Burst Buffer node
bandwidth. This is confirmed in Figure 6(b), which shows the
IO bandwidth to a single Burst Buffer node when the IO is
driven by different numbers of MPI writers. Using more than
16 MPI writers (i.e. one writer per socket on eight compute
nodes, or two writers per socket on four compute nodes) gets
close to the peak theoretical write bandwidth.

We next scale up the number of Burst Buffer nodes used
in this configuration, using 16 MPI writers over 8 compute
nodes, but increasing the number of Burst Buffer nodes. This
assesses the benefit of striping files over multiple Burst Buffer
nodes to attain better bandwidth. Figure 7(a) shows application
I/0 bandwidth approximately doubles when using two Burst
Buffer nodes, but the scaling does not continue above this
point, indicating that the limited size of the simulation is
not providing enough data to fully drive the Burst Buffer
IO bandwidth. The best performance is achieved when using
one Burst Buffer node for every compute node, however,
using this ratio for the described Nyx configuration leaves
significant Burst Buffer performance potential, as well as
capacity, unused.

Finally, we scale up the simulation, matching the number of
compute nodes with the number of Burst Buffer nodes. Figure
7(b) shows that performance scales almost linearly. This figure
also shows a comparison of performance when writing to the
Lustre PFS, and demonstrates that the Burst Buffer performs
as well as Lustre, and indicates that it will scale better than
Lustre when the number of compute nodes is increased further.

These tests highlight competing interests in the overall per-

formance of Nyx. On one hand, the floating-point performance
of Nyx is optimal when we use a small number of MPI
processes (ideally one per NUMA domain) and a large number
of threads. However, this leads to a small number of I/O
instructions streaming from compute nodes to Burst Buffer
nodes, which, as we have seen, underutilizes the available
Burst Buffer bandwidth. This can be compensated by using
a large ratio of compute nodes to Burst Buffer nodes, i.e.
16 MPI writers per Burst Buffer node, which can drive the
maximum available bandwidth.

4) Future Work: Analysis of the plotfiles that result from
the Nyx simulations also require significant computing time.
This could be reduced by running the analysis code over the
plot file as they are written to the Burst Buffer, simultaneously
with the simulation code that creates the plotfiles. This exam-
ple of using the Burst Buffer to enable a coupled workflow is
being actively developed. Future work will also include tuning
Nyx configuration for writing checkpoint files.

B. Chombo-Crunch + Vislt

1) Science Motivation: CO4 is one of the largest contribu-
tors to global climate change. One proposed method to reduce
the amount of CO; entering the atmosphere is to inject the
COx, into the Earths subsurface and trap it there. However, this
process affects the porous soil and rock that comprise Earths
surface and subsurface, so more insight must be gained into the
short and long term effects of this process, via experimentation
and computational simulation, before it can be considered a
safe and viable solution for the future.

The disruption caused by carbon injection forces the sur-
face/subsurface system to come out of equilibrium both chem-
ically and mechanically. This results in a nonlinear dynamical
regime in which emergent behavior develops at several differ-
ent scales. These nonlinear interactions between multiphase
flow, solute transport, mineral dissolution, and precipitation
have been addressed at the larger scale where soil grains and
pores are not resolved, but have been largely neglected at
the pore scale where the chemical and physical environments
undergo strong variations locally in space and time. The key
fluid-fluid (H,O and CO;) and fluid-solid interfaces need
to be resolved in order to understand how to control COs
injection in the subsurface. By carefully modeling processes
at the pore scale, the overall goal of this research is to bring
such knowledge to bear on the macroscopic scale of a COq
reservoir.

2) Project Workflow: Chombo-Crunch [13], [14] is an MPI-
based simulation software for modeling subsurface flow and
reactive transport processes associated with carbon sequestra-
tion over time. The simulation generates data in the form
of a single .plt file per time step, i.e., all MPI ranks
contribute the data they computed to a single shared file. The
file management over the MPI ranks is handled by HDF5 [15],
however, it is important to note that these .plt files can
vary from O(10) GB up to O(1) TB in size depending on
the resolution of the simulation. Depending on the number of
time steps that the simulation runs for, the aggregate data size

associated with the simulation can easily exceed hundreds of
terabytes.

The other component application for this workflow is
Vislt [16], a visualization and analysis tool for scientific data.
In this workflow, the role of Vislt is to read each .plt file as
it is generated by Chombo-Crunch and begin performing data
analysis on it. The result is a .png file representing a movie
frame. These frame files can then be compiled into a movie
using third-party encoding software, such as ffmpeg. The
combined Chombo-Crunch and Visit workflow, incorporating
the Burst Buffer is shown in Figure 8.

This workflow is too IO-intensive for traditional disk-based
storage. Traditionally, Chombo-Crunch would run indepen-
dently of Vislt, writing each file to the Lustre PFS - Vislt
would then run on the stored files. There are two major
bottlenecks to scalability of the workflow. First, the Chombo-
Crunch processes cannot progress to the next step until the
.plt file is finished being written. Checkpoint files written
by the Chombo-Crunch simulation also blocked the simulation
from progressing until they were finished writing. Second,
Vislt then reads these file from the PFS into node-local
memory. It is worth noting that the end-result movie is of
scientific interest, and the intermediate .plt or .png files
need not be retained.

By using the Burst Buffer, Chombo-Crunch and Vislt can
write and read their files to/from this intermediate storage
layer for faster data exchange. In the modified Burst Buffer
workflow, Vislt runs in conjunction with Chombo-Crunch and
can read .plt files directly from the burst buffer as soon as
they are generated. In addition, Vislt can write the resultant
.png files to the Burst Buffer. These image files are staged
out to the PFS at the end of the job.

3) Results: Figure 9 shows the bandwidth and scaling
achieved by Chombo-Crunch in writing data to the Burst
Buffer and to the Cori Lustre PFS. The number of compute
nodes is doubled in each case starting with 16 compute nodes
writing to a single Burst Buffer node, up to 1024 compute
nodes writing to 64 Burst Buffer nodes. This corresponds to
an increase in simulation resolution. Although the bandwidth
achieved is around a quarter of the peak bandwidth per Burst
Buffer node (6GB/s), the application is using HDF5 collective
I/O [17] which is currently unable to reach peak file-per-
process I/O rates (as discussed also in more depth for the
VPIC-IO case in Section IV-C). The Lustre results used a
IMB stripe size and a stripe count of 72 OSTs in all cases.
The Burst Buffer significantly out performs Lustre for this
application at all resolution levels and the bandwidth scales
exceptionally well.

We then ran the full Chombo-Crunch and Vislt workflow
for a ‘packed cylinder’ problem [14]. This Chombo-Crunch
simulation ran on 8192 cores over 256 nodes with 8 further
nodes used for Vislt. It used the full Burst Buffer available
at the time, around 140 nodes and achieved a bandwidth of
90.7GB/s. Figure 10 shows the movie assembled from this
workflow, demonstrating a coupled science workflow using
the Burst Buffer for the first time.

n timesteps

Chkpt Manager
Detects Large .chk us_er |
Issues asynch stage out conflr? via

python
script

AN

0(100) GB

chk Burst Buffer
7 Img File
Dataarp SW - .png 3" for movic VISUAL.IZATION
Stage Out May be >1 moyig Vislt
’
A Multiple

.png Files
PFS
Lustre v

Movie Encoder

Movie
.mp4

Wait for N .pngs, encode,
place result in DRAM, at end,
concatenate movies

Local DRAM

LEGEND
— Input Data / Program Flow
———P SW Output / Data Out

AN

Fig. 8. Chombo-Crunch + VisIt workflow

number of Burst Buffer nodes
1 2 4 8 16 32 64

T T T T
Lustre PFS —A—
Burst Buffer —#—

32

bandwidth (GB/s)

8 16 32 64 128 256 512
file size (GB)

Fig. 9. Chombo-Crunch I/O bandwidth scaling.The compute node to Burst
Buffer node ratio is fixed at 16:1

4) Future Work: As shown in Figure 8, checkpoint files
are written out every 10 timesteps. This can be done by
the main Chombo-Crunch application, however in-order to
further improve the run time, the DataWarp C API will be
used to stage out the files to the PFS asynchronously without
interrupting the workflow. Furthermore the movie produced by
the workflow will also be produced in a coupled application
running on the input files in place.

Fig. 10.
Chombo-Crunch and Vislt workflow. Full movie is
http://portal.nersc.gov/project/mpccc/wbhimji/BurstBuffer/packedCylinder.mp4

Snapshots from movie produced by a ‘packed cylinder’ [14]
available from

C. VPIC-IO

1) Science Motivation: Plasmas are clouds of unbound
positively and negatively charged particles, which play an
important role in many astrophysical phenomena, from stars
to supernovae to the interstellar medium. Because plasmas
contain many charge carriers, they are particularly sensitive
to electromagnetic processes. Magnetic reconnection is one
such process, and occurs when the magnetic field within a
plasma rearranges itself - which can be accompanied by a
huge release of energy. For example, magnetic reconnection
is thought to be the cause of solar flares from the Sun, and
magnetic reconnection in the Earth’s magnetosphere produces
the aurora.

Magnetic reconnection is inherently a multi-scale problem.
It is initiated at small scale around individual electrons in the
plasma but eventually leads to a large-scale reconfiguration
of the full magnetic field. Recent simulations have revealed
that electron kinetic physics is not only important in trigger-
ing reconnection [18], but also in its subsequent evolution.
Modeling the detailed electron motion requires 3D simulations
of reconnection in plasmas consisting of large numbers of
particles, which poses severe computational challenges. The
combination of advances in particle simulations and large-
scale supercomputers are now enabling simulations of trillions
of particles. Fueled by the new capabilities of these highly-
optimized simulations, supercomputers have been providing

the first glimpses of collisionless reconnection in 3D space.

2) Project Workflow: The VPIC code performs shared file
I/O using the HDFS library. Simulations of trillions of particles
involve massive amounts of data. For example, a recent
simulation of magnetic reconnection involving two trillion
particles (one trillion electrons and one trillion ions) using
the VPIC code [19] produced data files in the range of 32TB
to 40TB in size per time step [20]. The simulation runs for
tens of thousands of timesteps to understand the evolution of
electron motion and energy.

The fast I/O offered by the Burst Buffer promises to
accelerate writing-out of data for each time step. The data
can then be moved asynchronously to the PFS. In addition,
while the data is in the Burst Buffer, in-transit analysis can be
performed efficiently avoiding data reads from the PFS. Figure
11 gives an example of this kind of visualization, showing
the mapped magnetic field for highly energetic particles in
physical space.

B

v 250

g, 7150

Fig. 11. Mapped magnetic field data in the z dimension (bz) for all highly
energetic particles (Energy>1.5) in physical space (x, y, and z dimensions).
The plots use a linear color scale. The range is restricted to [0.4, 0.4] for bz.

3) Results: We compared running VPIC’s I/O kernel in
various configurations accessing the Burst Buffer and Cori’s
Lustre PFS, shown in Figure 12, over a range of compute
scales. The I/O time includes the times for opening, writing,
and closing the HDFS5 file. Typically, the times for opening
and closing are negligible.

We have compared the I/O rate of VPIC-IO kernel for
writing data to the Lustre file system on Cori with three
configurations of MPI-IO in writing data to the burst buffer.
In the first configuration, 65 Burst Buffer nodes were used
which did not match the MPI-IO aggregators. In MPI-IO, in
order to reduce the number of writers, aggregator processes
are used to collect the data and to initiate writing only from
those aggregated processes. This is called two-phase 1/O or
collective buffering in the MPI-IO implementation.

In the second configuration, we have selected 64 Burst
Buffer nodes to match the number of aggregators. This is
similar to the MPI-10 collective buffering in CB2 mode, where

" Collective I/O, Lustre Scratch

uC,

ive 1/0, BB, (w/ #BB and #agg)
Collective I/0, BB (w/ matched #BB and #agg)
®Independent I/O, BB

1024 (32/Node)

2048 (32/Node)

4096 (32/Node)

Number of MPI Processes

8192 (32/Node)

0.00

20.00

40.00 60.00 80.00 100.00

/0 Rate (GBIs)

120.00 140.00 160.00

Fig. 12. Performance of the VPIC-IO kernel, comparing different scales
and configurations of MPI-IO. Blue: I/O bandwidth for MPI collective I/O
using the Lustre PFS; Red: MPI collective I/O using the Burst Buffer and
the number of aggregators not matching the number of Burst Buffer nodes;
Yellow: matching the number of MPI aggregators; Green: using independent
I/O on the Burst Buffer.

the number of aggregators is an integer multiple of the number
of storage devices.

In the third configuration, we have disabled collective
buffering, i.e., each process initiates writing data, called in-
dependent I/0 mode in MPI-10.

Our evaluation demonstrates that the imbalance caused
by having a number of Burst Buffer nodes that were not
matched to the number of MPI aggregators deteriorates 1/O
performance (shown in the red bar in figure 12). By matching
the number of aggregators to the number of the Burst Buffer
nodes, we observed that the I/O rate is 60% faster on average,
which demonstrates the importance of balancing the load on
the DataWarp servers - if two compute nodes are accessing the
same Burst Buffer node then their accesses will be competing
for bandwidth, resulting in significantly degraded performance
for the entire compute job. This imbalance was confirmed by
implementing monitoring of I/O counters for the DVS service
on the compute node.

Despite the improvement with matching aggregators, we
observe that performance of VPIC-IO with MPI-10 collective
buffering in writing data to the Burst Buffer is not always
superior compared to the Lustre file system. Previous work has
shown that collective buffering performs better than indepen-
dent I/O on disk-based file systems as a few MPI aggregator
processes write large chunks of contiguous data, reducing the
number of seeks [21], [22]. However, collective I/O has an
overhead on the compute nodes as the aggregators have to
synchronize write operations. The green bar in Fig. 12 shows a
a significant performance gain using independent I/O with the
Burst Buffer, since SSDs perform better for random seeks than
the disks. Compared to the collective I/O performance on Burst
Buffer with matched number of aggregators, the independent
I/O mode performs 4 x better. This I/O rate with Burst Buffer
is also up to 3.5x better than that of the Lustre PFS. In order
to explore the overhead of collective I/O on Burst Buffer in
more detail, we profiled VPIC-IO using the Darshan I/O tool

| [23] and determined that for a run over 20 Burst Buffer nodes
using collective I/O, the underlying POSIX I/O rate was 27
GiB/sec (around 1.3 GiB/sec/node), but the MPI-1O rate was
10 GiB/sec. Around two-thirds of performance was lost in the
MPI-IO layer.

This was further confirmed by mimicking VPIC-IO using
the IOR benchmark with three APIs: HDF5, MPI-1IO, and
POSIX. This configuration used 64 compute nodes and 64
Burst Buffer Nodes with collective I/O enabled, and achieved
the I/O rates shown in Table III, again showing a significant
overhead for MPI I/O.

TABLE III
BANDWIDTH FOR AN IOR RUN CONFIGURED TO BROADLY MATCH
VPIC-IO AND SHOW MPI I/O OVERHEAD, USING 64 COMPUTE NODES
AND 64 BURST BUFFER NODES.

API Max(GiB/s) | Min(GiB/s) | Mean(GiB/s)
HDF5 14.8 14.6 14.7
MPIIO 15.7 15.0 15.4
POSIX 66.9 66.1 66.5

4) Future work: We are working with Cray developers
to understand and improve MPI collective I/O as well as
considering if the layout of HDF5 files on the Burst Buffer
can yield further improvements.

D. TomoPy and the ALS Spot Suite

1) Science Motivation: Tomographic reconstruction (as
used with CT or computed tomography scanners in hospitals)
creates a three-dimensional image of an object based on a
series of two-dimensional projection images taken from multi-
ple directions. Getting results from tomographic reconstruction
very quickly is essential for researchers in order to monitor
data quality as well as to inform the next experimental steps
when performing time-resolved experiments. In most cases,
the raw 2D data is not sufficient to give the information needed
for this. Lightsource science, such as that conducted at the
Advanced Light Source (ALS) and Advanced Photon Source
(APS), puts heavy value on time-to-knowledge.

TomoPy [24] is an open-sourced Python toolbox to perform
tomographic data processing and image reconstruction tasks.
TomoPy could be used by multiple beamlines at the ALS.

ALS - Detector}

Metadata

Raw data from detector |

[T

Fig. 13. SPOT suite used for processing data from the ALS at NERSC.

2) Project Workflow: TomoPy is run on data collected at
the ALS and the APS. These datasets are packaged in HDF5
form [25] and transferred from the beamline experiments to the
filesystems at NERSC for processing. This can be performed
in an integrated workflow using the SPOT suite [26] (see
Figure 13) which runs analysis code on compute resources

at NERSC such as Cori. The results of the analysis can then
be explored using web portals at NERSC (as in figure 15).

In order to ensure prompt turnaround for compute resources,
use is made of the ’realtime’ queue at NERSC [27] which uses
the SLURM workload manager on Cori to provide access to a
pool of dedicated resources and priority on the compute nodes.
Use of the Burst Buffer can further improve time to insight for
these workflows. In this project the Burst Buffer is integrated
into this workflow and TomoPy is run on images staged into
the Burst Buffer rather than the Lustre PFS.

The tomographic reconstruction part of the pipeline can be
run in different ways and current approaches store intermediate
results to disk which can be IO intensive. TomoPy has been
designed to avoid writing intermediate data to disk and also to
optimize handling of operations on data in memory. Nonethe-
less more than 30% of the application runtime is spent in I/O.

3) Results: In Figure 14 we show a comparison of the
total time for various I/O operations performed by TomoPy on
files stored on the Burst Buffer and the Lustre filesystem. The
analysis is run on 4 nodes of the ‘realtime’ queue at NERSC
using 9.9GB of input data. 500 GB of scratch Burst Buffer
space in striped access mode was requested. For this run it
can be clearly seen that running the analysis on data stored on
the Burst Buffer outperforms that on Lustre, however other
runs on production data show more variation in results that
still require further investigation.

TomoPy reconstruction

Burst Buffer

W Read
B Write

Lustre

6

Total time [s]

10 14

Fig. 14. Total time for read and write operations by TomoPy running on 9.9
GB of input data on 500 GB Burst Buffer allocation.

Figure 15 shows a snapshot of the SPOT interface showing
the experimental data pipeline incorporating a TomoPy anal-
ysis on the Burst Buffer. This is the first coupling of Burst
Buffer technology into an experimental science workflow.

E. Further work

We have integrated the Burst Buffer with TomoPy and
experimental ALS workflows, seeing clear I/O time advantages
in some cases. This study is being repeated for other datasets
and analyses to ensure the Burst Buffer is optimal in all cases.
In addition high availability of the Burst Buffer system will
need to be demonstrated (see also section V) to make use of
it by default in production.

10

Joaun

D @GO v JNE

Image: 0@ o

Fig. 15. A screenshot of the SPOT webportal at NERSC, illustrating both
the output of TomoPy and how it is running in the production pipeline using
the Burst Buffer.

F. ATLAS: simulations and data analysis for the ATLAS de-
tector at the LHC

1) Science Motivation: The ATLAS detector at the Large
Hadron Collider (LHC) at CERN is designed to search for new
fundamental particles and forces of nature at the highest en-
ergies ever produced by mankind. The LHC collides together
protons at the centre of the ATLAS detector 40 million times
a second. ATLAS is a complex instrument with over 100m
channels of electronics, so this results in a considerable data
rate (initially PB/s) which must be filtered by fast electronics
on the detector followed by considerable computing offline.
New discoveries, such as the recently discovered Higgs Boson,
are often rare signals within a large amount of background
events. An example of a filtered signal candidate event is
shown in figure 16. Furthermore both signal and background
physics must be simulated with a computationally expensive
simulation of the underlying physics and the response of
the detector. Collected and simulated data, even after initial
filtering, amounts to hundreds of petabytes. To process this,
ATLAS makes use of distributed computing resources in the
Worldwide LHC Computing Grid. Until recently however we
were not able to make use of large supercomputers at facilities
such as those at NERSC.

Use of Cray machines at NERSC is now being made
possible by Yoda [28]. Yoda packages ATLAS computing tasks
into highly-parallel workloads suitable for running on super-
computers; it is now used in regular production for ATLAS.
However due to the I/O limitations of previous machines, it
has been restricted only to running the least I/O intensive of
ATLAS workloads. The Burst Buffer will enable ATLAS to
run all workloads, including the most I/O intensive ones, on

QATLA
B EXPERIMENT
http://atlas.ch

Fig. 16. Example Higgs (decaying to b-quarks) signal ’event’ in the ATLAS
detector.

Cori. These workloads are currently run on a separate compute
cluster at NERSC (called PDSF), so enabling these to be run
on the large Cray machines will be an important achievement
for the direction of NERSC computing, and more generally
for the use of HPC facilities by experimental science.

2) Project Workflow: Yoda runs one MPI-rank per compute
node. The responsibility of Rank O (the master) is to dynam-
ically distribute workload (events) between other ranks (the
slaves). Each of the slaves occupies the entire compute node
by running a parallel version of the ATLAS event framework,
which actually processes the events and writes out separate
output files to disk. Currently, as mentioned above, Yoda is
used primarily for running event simulation and that is the
first application we consider here. This application is relatively
computationally expensive.

As well as simulation workflows, the Burst Buffer also
allows the most I/O intensive ‘analysis’ applications to run on
Cori. These run filtering of data to find rare events and would
require the ability to read their highly compressed input data at
rates of around 500 GB/s to run at full machine scale on Cori.
The read pattern can also be somewhat complex depending on
the different types of analyses run. For this study we run on
a 475G dataset of Atlas data in compressed ‘XAOD’ ROOT
format [29] [30] starting with a single node fully occupied
with 32 processes and using a 2 TB Burst Buffer allocation.

3) Results: Figure 17 shows the average time taken for
simulating an event of the ATLAS simulation described above
using the Yoda framework and scaling up to 300 compute
nodes (9600 cores). This time includes both the compute
time and the I/O time. As mentioned above this step is
relatively compute intensive but the particular physics was
chosen to provide the more relative I/O than most runs. The
I/O corresponds to around 7% of the run time on Lustre. As
shown Lustre initially outperforms the Burst Buffer (smaller
total time per event). However the default configuration of the
run was to use a ‘basket’ size for the underlying ROOT I/O
layer of 2 KB. This corresponds to the amount kept in memory
before compression and flushing to disk. Increasing this to 512
KB, as seen for other projects, improves the write performance

11

1900
1880
1860
1840

E 1820

r

£ 1800 —Lustre Scratch

§ 1780 BB 2k ‘basket size'

* 1260 BB-512KB 'basket' size

1740

1720

1700 +

50 100 150

Compute Nodes

200 300

Fig. 17. Scaling of total time per ‘event’ for ATLAS simulation for the Lustre
Scratch filesystem and the Burst Buffer with both the default 2k ‘basket’
(transfer) size and a 512k basket size. This time also includes compute time
but this is constant for the different storage backends.

to the Burst Buffer which then outperforms Lustre at low node
concurrences.

Figure 17 also shows that this workflow can scale well to
300 nodes. However initial runs used the Burst Buffer as a
working directory for all files including many small log files.
When this was done it was repeatedly seen that the at scales
of 300 (or greater) nodes the event time for the Burst Buffer
considerably increased to around 2500 ms even with the larger
basket size. This scaling issue was not seen with the working
directory held on Lustre. This was resolved for the results
shown above by moving the log files to Lustre and only using
the Burst Buffer for the data output. However it illustrates
possible scaling issues for small files on the Burst Buffer.

200

180

=
@
=]

[
B
o

i
N
=}

=
o
=}

©
=]

Bandwidth per process (MB/s)

@
=]

B
=]

N
=1

Lustre BurstBuffer
TTreeCache=100M TTreeCache=100M

Lustre
TTreeCache=2M

BurstBuffer
TTreeCache=2M

Fig. 18. Bandwidth per process for the ATLAS analysis application with the
default ‘TTreeCache’ size of 2M and an increased cache of 100M.

In Figure 18 we show the average bandwidth per process for
reading data in the ATLAS ‘analysis’ application. The initial
run showed significantly worse performance for the Burst
Buffer than the Lustre filesystem. Further investigation showed

that the application was making over 2 million read calls.
ROOT allows for use of a configurable ‘TTreeCache’ that
‘learns’ what data ‘branches’ are being used and prefetches
these into a memory cache [30]. By default this cache size
was set to a very low value in the application (2.5 MB).
Increasing the cache size to 100 MB significantly improves
the Burst Buffer performance which then out-performs Lustre.
This clearly illustrates again that client-side caching in Lustre
masks the challenge of small transactions but that Burst Buffer
can perform well for larger transactions.

G. Further work

We have demonstrated that the Burst Buffer can be used at
scale for production ATLAS simulation workflows and also
that, with the use of an application memory cache, we can
also run the more challenging analysis workflows with better
performance on the Burst Buffer than on Lustre. The analysis
workflows will be integrated into the Yoda framework in order
to run these in production at at the larger scales that has already
been demonstrated here for simulation.

Additionally, a second step of the simulation workflow
involves merging of the output files and is largely I/O bound.
Currently this is not performed at NERSC but instead output
files produced by the first step are staged out to a distributed
external storage (object store) for final merging at compute
resources elsewhere on the Grid. However the Bust Buffer
should allow this part of the workflow to also run as a separate
coupled application with the data in place.

Once all ATLAS workflows, including those with heavy
I/O, are demonstrated at scale with the Burst Buffer it will be
possible to enable the bulk of ATLAS workflows on the Cori
supercomputer instead of relying on separate computational
resources for this community.

V. CHALLENGES

The NERSC Burst Buffer Early User program was very
effective in immediately revealing bugs and limitations in the
available software. This was crucial given it is the first time
that the Cray Burst Buffer and DataWarp software has been
used at large scale and for a wide variety of applications.
Many of these issues were quickly rectified by the Cray and
SchedMD developers, benefiting from the close collaboration
of the NRE arrangement. Others will require longer term de-
velopment which is being folded into Stage 2 of the DataWarp
software. These issues included:

o posix_fadvise calls against DataWarp mounts induced
compute node kernel panic: This was determined in the
first week of the early-user program by a user employing
‘tar -x’. A patch was promptly provided by Cray.

« stat/fstat system calls on the DataWarp mounts, returned
a sub-optimal value for st_blksize: This led to ‘cp’ (and
other applications) using very small transfer sizes and
therefore performing poorly. This was again discovered
very early on by users and various workarounds could be
employed until a patch was installed.

e Use of the DVS_MAXNODES environment variable
(used for GPFS DVS mounts at NERSC) prevented
DataWarp from striping across more than one BurstBuffer
node: This was resolved by preventing this variable from
being passed through in the central scripts executed for
DataWarp mounts.

o Stage-in failed for large numbers of files (>7000 files,
depending also on file sizes): This was due to timeout
values in the REST API communication. Currently we
are employing a workaround of increasing timeout values.
Re-engineering is underway by Cray to improve perfor-
mance.

e Limits to the number of open files on the underlying
filesystem: This led to, for example, jobs that loaded
very large numbers of shared libraries failing with
‘No such file or directory’ errors. A workaround is in
place of increasing the sysctl ‘fs.file-max’ parameter.
Re-engineering is underway to reduce number of files
particularly once the number of substripes is increased.

o The ‘granularity’ size which governs how large an allo-
cation must be before it is striped across multiple nodes,
cannot be lowered below around 200 GB: This means
that users who do not require more space either do not
get striped file performance, or must occupy more space
then needed which will increasingly become a problem
as more users are permitted on the system. This will be
fixed in future releases of the DataWarp software.

o Lack of client side caching for Burst Buffer mounts: This
means that in the cases of small (sequential) transactions
and re-reads of data recently written, the Burst Buffer
significantly under-performs relative to Lustre which does
have such caching. DVS client-side caching is expected
in future releases of DataWarp software available in late-
2016.

e MPI-IO Shared file performance: As noted in Section
II-D MPI-IO shared file performance does not meet
expectations. Cray engineers have demonstrated that this
can be improved with increased sub-stripe counts. How-
ever metadata handling improvements are also required
to allow this increase. This limitation will be addressed
in future software releases.

o Kernel panics on Burst Buffer nodes: Two issues that
caused kernel panics on Burst Buffer nodes were discov-
ered: the first has been patched by Cray; the second is a
“Null pointer” exception that in understood by Cray and
fixed, but not yet backported to NERSC’s version of the
software.

o DVS Client hang: This causes compute nodes to be held
in a “completing” state in the SLURM WLM while Burst
Buffer nodes cannot unmount the DataWarp filesystem
due to a “busy” thread. This has been identified as an
XFS deadlock and is under investigation by Cray.

VI. LESSONS LEARNED

As well as the challenges noted in the last section, a range of
valuable lessons have been learned by the science applications

discussed here. Here we summarize some of these and also
note some general themes.

1) Early User programs are a very useful way to debug
complex new technologies. As shown in the last section,
a large number of performance improvements and fixes
to scaling limits, operational problems and usability
issues have occurred because of the dedicated early user
program. This would have been difficult to achieve with
synthetic tests or with large numbers of generic users.
The Burst Buffer provides a high-performance so-
lution for large streaming I/O . We show here, par-
ticularly in the Nyx and Chombo-Crunch applications,
that large block transfers can work well with the Burst
Buffer.

The Burst Buffer enables coupled workflows. The
Chombo-Crunch plus Vislt workflow illustrates this for
visualization. The SPOT suite and TomoPy workflow
shows this can also be done for experimental science
workflows. This activity is just beginning, but now we
have demonstrated that there is considerable potential
for exploring new approaches to workflows.

More challenging I/0 patterns currently have a
mixed performance . We can see here in the TomoPy
and tuned ATLAS analysis applications that there are
benefits for some more challenging I/O patterns. This
is also seen in the random IOPS benchmark. However
small files and varied I/O patterns are also still perform-
ing poorly, for example in the default ATLAS use case
or with smaller transfer sizes for the Nyx application.
MPI-IO with Burst Buffers will require further
tuning to perform well. As shown particularly in the
VPIC-IO study, there is considerable work that could be
done to improve performance to the level the system is
capable of. The Cray MPI used here did not contain
any MPI-IO optimizations for DataWarp, whereas it
did contain several years worth of optimizations for a
Lustre PFS. A complicating factor is that MPI-1IO does
contain optimizations for DVS which are active for these
tests, but these do not necessarily improve DataWarp
performance, so the interplay between these factors will
need to be understood. Much of this work is underway
and the use of real applications like those shown here
should be an important part of this development.
Tuning of transfer size and number of parallel
writers is needed with the Burst Buffer, more so
than with Lustre. Even the use of the Burst Buffer
for checkpointing has required tuning of applications in
some cases to see performance benefits. Larger transfer
sizes have been generally seen to be better (for example
in the Nyx application), though this may be different
on a heavily contended system where allocating large
parts of Burst Buffer DRAM may not be possible. It is
not possible to max out Burst Buffer bandwidth using a
single process on a single node.

7) The NERSC Cray DataWarp system now functions

2)

3)

4)

5)

6)

13

quite well. Having resolved many of the challenges
mentioned in the last section we now have a functional
system that can run with large scale applications as
demonstrated here. This is the culmination of consid-
erable efforts by Cray, SchedMD, NERSC systems and
user staff and the early users.

VII. CONCLUSIONS

We have described here the Early User Program for the
NERSC Burst Buffer. This program has brought real science
applications to one of the first large scale 900 TB, on-demand,
SSD-based filesystems provided by the Cray DataWarp soft-
ware.

This program has pushed the frontier of Burst Buffer
technology development by uncovering numerous stability,
performance, usability and scaling issues. Many of these issues
have been addressed, resulting in a fully-functional technology
that can deliver I/O acceleration for science.

We have demonstrated that we can:

o Achieve near peak bandwidth for real science applica-
tions, such as Nyx.

Couple simulation and visualization applications using
the Burst Buffer as interim storage such as in Chombo-
Crunch and Vislt.

Significantly outperform the underlying Lustre fileystem
for applications such as VPIC-IO.

Accelerate challenging I/O patterns and use the Burst
Buffer directly in production experimental data analysis
workflows for TomoPy at the ALS and the ATLAS LHC
experiment.

However we have also demonstrated that there are a number
of remaining challenges, such as:

o Achieving the results above has required significant tun-
ing in some cases. Untuned performance can still be
worse than the underlying Lustre filesystem.

e MPI collective I/O significantly under-performs on the
current Burst Buffer.

In order to address these, we are continuing to work with Cray
on I/O profiling and optimization for these workflows and the
other user projects. Considerable work is also underway at
NERSC to provide multi-level I/O monitoring.

As these issues become resolved and as the stability of the
DataWarp system improves, many of these projects are now
moving into a phase where new science can be enabled from
the increased I/O capabilities.

With the Phase 2 Cori system (mid-2016), an additional
900 TB of storage will be added to the Burst Buffer pool.
Additionally, around this time, Stage 2 of the DataWarp
software is also expected to be available, adding transparent
caching to the underlying Lustre filesystem.

We expect that these improvements, together with the
lessons learned during this program, will provide important
direction for future HPC storage as well as accelerating
science.

ACKNOWLEDGMENTS

The authors would like to thank Tina Declerck and Doug
Jacobsen from NERSC, and the Cray on-site staff, in particular
Robert Johnson, for systems support of the Cori Burst Buffer;
Rei Lee and Yun He at NERSC for being part of the initial
project selection; Cray DataWarp developers Dave Henseler
and Benjamin Landsteiner for rapid fixes and numerous clar-
ifying discussions; Dilworth Parkinson, Beamline Scientist
for the BL8.3.2 Tomography Beamline at the Advance Light
Source for data used in the TomoPy study; the ATLAS
Collaboration for data used in the ATLAS study; and David
Trebotich and Gunther Weber for help with Chombo-Crunch
and VisIT respectively.

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231.

[1]

[2

—

[4

=

[5]

—
2

[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on. 1EEE, 2012, pp. 1-11.

Cray. (2016) DataWarp User Guide. [Online]. Available: http:
//docs.cray.com/books/S-2558-5204/S-2558-5204.pdf
Trinity nersc8 use cases. [Online]. Available:

https : // www . nersc . gov/ assets / Trinity--NERSC-8-RFP/Documents /
trinity-NERSC8-use-case-v1.2a.pdf

SchedMD. (2016) SLURM Burst Buffer Guide. [Online]. Available:
http://slurm.schedmd.com/burst_buffer.html

Nersc burst buffer example batch scripts. [Online]. Available:
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
example-batch-scripts/

Cray. (2016) DataWarp Administration Guide. [Online]. Available:
http://docs.cray.com/books/S-2557-5204/S-2557-5204.pdf
Wrapfs: A stackable passthru file system. [Online].
http://wrapfs.filesystems.org

S. Sugiyama and D. Wallace. (2008) Cray dvs: Data virtualization
service. [Online]. Available: https://cug.org/5-publications/proceedings_
attendee_lists/2008CD/S08_Proceedings/pages/Authors/16-19Thursday/
Wallace-Thursday 16B/Sugiyama- Wallace-Thursday 16B-paper.pdf
2014 nersc workload analysis. [Online]. Available: http://portal.nersc.
gov/project/mpccc/baustin/NERSC_2014_Workload_Analysis_v1.1.pdf
A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and E. Van Andel,
“Nyx: a massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

(2011) Boxlib. [Online]. Available: https://ccse.lbl.gov/BoxLib

Z. Luki¢, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and
A. Almgren, “The lyman « forest in optically thin hydrodynamical
simulations,” Monthly Notices of the Royal Astronomical Society, vol.
446, no. 4, pp. 3697-3724, 2015.

D. Trebotich, M. F. Adams, S. Molins, C. I. Steefel, and C. Shen, “High-
resolution simulation of pore-scale reactive transport processes associ-
ated with carbon sequestration,” Computing in Science & Engineering,
vol. 16, no. 6, pp. 22-31, 2014.

D. Trebotich and D. Graves, “An adaptive finite volume method for
the incompressible navier—stokes equations in complex geometries,”
Communications in Applied Mathematics and Computational Science,
vol. 10, no. 1, pp. 43-82, 2015.

The HDF Group. (2000-2010) Hierarchical data format version 5.
[Online]. Available: http://www.hdfgroup.org/HDF5

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Riibel, M. Durant,
J. M. Favre, and P. Navritil, “VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data,” in High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, Oct 2012, pp. 357-372.

Auvailable:

14

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” Proc. of the 7th Symposium on the Frontiers of Massively
Parallel Computation, p. 182189, 1999.

W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J. Albright,
B. Bergen, and K. J. Bowers, “Role of electron physics in the devel-
opment of turbulent magnetic reconnection in collisionless plasmas,”
Nature Physics, vol. 7, no. 7, pp. 539-542, Jul. 2011.

K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation,” Physics of Plasmas, vol. 15, no. 5, p. 7,
2008.

S. Byna, J. Chou, O. Riibel, Prabhat, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
A. Shoshani, A. Uselton, and K. Wu, “Parallel i/o, analysis, and
visualization of a trillion particle simulation,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC "12, 2012.

B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming parallel i/0 complexity with auto-
tuning,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2013 International Conference for, 2013, pp. 1-12.

M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf, “Tuning
HDF5 for Lustre File Systems,” in Proceedings of 2010 Workshop
on Interfaces and Abstractions for Scientific Data Storage (IASDS10),
Heraklion, Crete, Greece, Sep. 2010, IBNL-4803E.

P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale i/o workloads.” in IEEE CLUSTER
2009. 1EEE Computer Society, 2009, pp. 1-10.

D. Giirsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a
framework for the analysis of synchrotron tomographic data,” Journal
of Synchrotron Radiation, vol. 21, no. 5, pp. 1188-1193, Sep 2014.

F. De Carlo, D. Giirsoy, F. Marone, M. Rivers, D. Y. Parkinson, F. Khan,
N. Schwarz, D. J. Vine, S. Vogt, S.-C. Gleber et al., “Scientific data
exchange: a schema for hdf5-based storage of raw and analyzed data,”
Journal of synchrotron radiation, vol. 21, no. 6, pp. 1224-1230, 2014.
The spot suite. [Online]. Available: http://spot.nersc.gov/index.php
NERSC, “Cori - a system to support data-intensive computing,” CUG
2016: This Conference, 2016.

P. Calafiura, K. De, W. Guan, T. Maeno, P. Nilsson, D. Oleynik,
S. Panitkin, V. Tsulaia, P. V. Gemmeren, and T. Wenaus, “Fine grained
event processing on hpcs with the atlas yoda system,” Journal of Physics:
Conference Series, vol. 664, no. 9, p. 092025, 2015.

A. Buckley, T. Eifert, M. Elsing, D. Gillberg, K. Koeneke, A. Krasz-
nahorkay, E. Moyse, M. Nowak, S. Snyder, and P. van Gemmeren,
“Implementation of the ATLAS Run 2 event data model,” J. Phys. Conf.
Ser., vol. 664, no. 7, p. 072045, 2015.

T. Maier, D. Benjamin, W. Bhimji, J. Elmsheuser, P. van Gemmeren,
D. Malon, and N. Krumnack, “Atlas i/o performance optimization in
as-deployed environments,” Journal of Physics: Conference Series, vol.
664, no. 4, p. 042033, 2015.

APPENDIX A

L1sT OF NERSC BURST BUFFER EARLY USER PROJECTS
NERSC-supported: New Efforts

Nyx/BoxLib cosmology simulations

Phoenix: 3D atmosphere simulator for supernovae
Chombo-Crunch + Vislt for carbon sequestration
Sigma/UniFam/Sipros bioinformatics codes
XGC1 for plasma simulation

PSANA for LCLS

NERSC-supported: Existing Engagements

ALICE data analysis

Tractor: Cosmological data analysis (DESI)
VPIC-IO performance

YODA: Geant4 simulations for the ATLAS detector
Advanced Light Source SPOT Suite

TomoPy for ALS and APS image reconstruction
kitware: VPIC/Catalyst/ParaView

Early Access

« Image processing in cryo-microscopy/structural biology

htslib for bioinformatics

Falcon genome assembler

Ray/HipMer genome assembly

HipMer

CESM Earth System model

ACME/UV-CDAT for climate

GVR with AMR, neutron transport, molecular dynamics
XRootD for Open Science Grid
OpenSpeedShop/component-based tool framework
DL-POLY for material science

CP2K for geoscience/physica chemistry

ATLAS simulation of ITK with Geant4

ATLAS data analysis

Spark

In-situ Analysis and I/O using Warp and Vislt

15

