
Collective Computing for Scientific Big Data Analysis

Jialin Liu
Department of Computer Science

Texas Tech University
Lubbock, TX, 79409

Email: jaln.liu@ttu.edu

Yong Chen
Department of Computer Science

Texas Tech University
Lubbock, TX, 79409

Email: yong.chen@ttu.edu

Surendra Byna
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA, 94720

Email: sbyna@lbl.gov

Abstract—Big science discovery requires an efficient com-
puting framework in the high performance computing archi-
tecture. Traditional scientific data analysis relies on Message
Passing Interface (MPI) and MPI-IO to achieve fast computing
and low I/O bottleneck. Among them, two-phase collective I/O
is commonly used to reduce data movement by optimizing the
non-contiguous I/O pattern. However, the inherent constraint
of collective I/O prevents it from having a flexible combi-
nation with computing and lacks an efficient non-blocking
I/O-Computing framework in current HPC. In this work,
we propose Collective Computing, a framework that breaks
the constraint of the two-phase collective I/O and provides
an efficient non-blocking computing paradigm with runtime
support. The fundamental idea is to move the analysis stage
in advance and insert the computation into the two-phase I/O,
such that the data in the first I/O phase can be computed
in place and the second shuffle phase is minimized with a
reduce operation. We motivate this idea by profiling the I/O
and CPU usage. With both theoretical analysis and evaluation
on real application and benchmarks, we show that the collective
computing can achieve 2.5X speedup and is promising in big
scientific data analysis.

Keywords-collective computing; big data; map reduce

I. INTRODUCTION

In current scientific applications, big data solution is
recognized as the key to big science and big discovery.
Though the software and hardware have been largely im-
proved to keep up with the big data problem, it still faces
challenges as the data volume increases. The source of scien-
tific data includes instruments, simulations, and applications.
Scientists face more challenges in discovering knowledge
with increasing data size. For example, the Large Synoptic
Survey Telescope (LSST), which is scheduled to go live in
2020, will feature a 3.2-gigapixel camera capturing ultra-
high-resolution images of the sky every 15 seconds, every
night, for at least 10 years [1]. Table I shows the data
requirements of representative scientific applications run at
Argonne Leadership Computing Facility (ALCF) through
the DOE’s INCITE program several years ago[19]. The data
volume processed online by many applications has exceeded
TBs or even tens of TBs; the off-line data is near PBs of
scale.

I/O bottleneck continues to dominate the data analysis per-
formance in most scientific applications. The major reason

Table I: Data Requirements of Representative INCITE Ap-
plications at ALCF [19]

Project On-Line Data Off-Line Data
FLASH: Buoyancy-Driven Turbu-
lent Nuclear Burning

75TB 300TB

Reactor Core Hydrodynamics 2TB 5TB
Computational Nuclear Structure 4TB 40TB
Computational Protein Structure 1TB 2TB
Performance Evaluation and Anal-
ysis

1TB 1TB

Climate Science 10TB 345TB
Parkinson’s Disease 2.5TB 50TB
Plasma Microturbulence 2TB 10TB
Lattice QCD 1TB 44TB
Thermal Striping in Sodium
Cooled Reactors

4TB 8TB

is that scientific data processing generates large amounts of
non-contiguous I/O requests and often involves huge data
movements from storage to compute nodes [7, 12, 23].
The traditional two-phase collective I/O has been commonly
used to optimize the non-contiguous I/O in scientific data
analysis [5, 22]. It has also been integrated in most popular
high-level I/O libraries, e.g., HDF5 [2, 6, 14, 25] and
PnetCDF [15, 21]. This I/O strategy performs effectively
in addressing the non-contiguous data access in scientific
applications. However, the data movement is still challeng-
ing. The issues come from the inherent two-phase design.
The traditional two-phase collective I/O is only motivated
from an I/O perspective. Such design abstracts the I/O layer
that delivers high bandwidth I/O for applications; however it
also prevents it from efficient combination with the analysis
stage. The analysis stage, which happens after the I/O stage,
must wait for the completion of I/O in a blocking way. The
non-blocking collective I/O [4, 24, 27] touches this issue, but
in a coarse granularity and does not address it well. There
lacks a flexible computation paradigm with collective I/O.

Existing related work also includes node reordering [3],
dynamic file domain partitioning [13], and inter-server co-
ordination [28], etc. These works optimized the collective
I/O by considering the network topology, data locality and
concurrency. However, few of them tackle the two-phase
constraint and enhance it beyond I/O perspective. In this



paper, we provide a novel computing paradigm for scientific
applications based on the two-phase collective I/O. This
computing paradigm integrates the collective I/O with com-
putation into a paradigm, i.e., ‘collective computing’. The
fundamental idea is to split the collective I/O’s ‘two-phase’,
and proactively conduct the computation onto the collected
segments such that the analysis stage is moved in advance
of the second phase, and the second phase is optimized with
reduced data size. The intermediate computation results are
distributed to other nodes during the second phase. After
the two-phase I/O, we can have partial results ready for
the future analysis stage. The analysis stage becomes a
lightweight results reduction process.

It is the first time to integrate the analysis stage within
the collective I/O, and the idea of fusing computation and
I/O provides a highly efficient mapreduce-like paradigm
while maintaining MPI’s advantages. The contributions of
this work include:

• We break the two-phase I/O constraint and form a
flexible collective computing paradigm.

• We propose ‘object I/O’ to integrate the analysis task
within the collective I/O.

• We design ‘logical map’ to recognize the byte sequence
among I/O phases and iterations.

• We analyze the collective computing experimentally
using both benchmark and real application.

In the rest of the paper, we first introduce the collective
I/O and motivate our idea using an initial profiling in Sec-
tion II-A. We then briefly discuss the potential of applying
a mapreduce paradigm and compare it with collective I/O
in the remaining subsections of Section II. We discuss the
design of collective computing in Section III. We evaluate
the framework in Section IV and discuss the related work
in Section V. We conclude the work in Section VI.

II. MOTIVATION

A. Two-Phase Collective I/O

MPI is the dominant parallel programming model on all
large-scale parallel machines, such as Cray XT5/XK6/XK7,
IBM Blue Gene/P, and IBM Blue Gene/Q supercomputers.
MPI-IO is a subset of the MPI-2/MPI-3 specification [8].
It defines an I/O access interface for parallel I/O. ROMIO
is a popular MPI-IO implementation [22]. It provides an
abstract-device interface called ADIO for implementing the
portable parallel I/O API. It performs various optimizations,
including collective I/O and data sieving, for common access
patterns of parallel applications. Collective I/O is one of the
most important I/O access optimizations. In collective I/O,
multiple processes cooperate with each other to carry out
large aggregated I/O requests, instead of performing many
non-contiguous and small I/Os independently. A widely-
used implementation of collective I/O is the two-phase I/O
protocol [22]. This strategy serves the I/O requests using an

I/O phase and a data exchange/shuffle phase. In the case
of two phase collective read, the first phase consists of a
certain number of processes that are assigned as aggregators
to access large contiguous data. In the second phase, those
aggregators shuffle the data among all processes to the
desired destination. Two-phase collective I/O provides satis-
fying I/O performance for large scale scientific applications,
and its nonblocking support is by far the best solution for
overlapping the shuffle phase with the I/O phase. However,
we argue that it faces challenges in extreme scale computing
due to its high communication overhead and the ‘two phase’
constraints. To support these arguments, we profile the two
phases in finer granularity. The test is a collective I/O run

0 5000 15000 25000 35000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iteration

T
im

e 
(s

)

Read
Shuffle

Figure 1: I/O Profiling of Two Phase Collective I/O

using 72 processes, among which 6 are aggregators on each
node, and the node has 12 CPUs each. A 4-D climate dataset
is distributed on 40 OSTs in a round robin fashion with
4MBs stripe size. The size of the dataset is 1024 x 1024 x
100 x 1024, from fast dimension to slowest dimension. We
run the code to access a 4-D subset, which has size 100 x
100 x 10 x 720, and each process is assigned to access 100
x 100 x 10 x 10. This I/O request generates large amounts
of non-contiguous small requests, therefore it can benefit
from the collective I/O. Figure 1 shows the result of this
I/O request with separate timing of read and shuffle phase
in each iteration. (The buffer is 4MB as default). We can
find that even though the shuffle phase is well overlapped
by the I/O phase in a nonblocking way, the shuffle phase
still consumes substantial time and the total shuffle cost
approaches the actual I/O cost. By comparing the final I/O
cost (including two phases), the overhead caused by the
shuffle phase is about 20%. When increasing the scale, this
overhead is shown to be increasing as well.



0 

50 

100 
00

:1
2 

00
:1

3 

00
:1

4 

00
:1

5 

00
:1

6 

00
:1

7 

00
:1

8 

00
:1

9 

00
:2

0 

00
:2

1 

00
:2

2 

00
:2

3 

00
:2

4 

00
:2

5 

00
:2

6 

00
:2

7 Pe
rc

en
ta

ge
 %

 

System Time, 9-30-2014, CST 

Total CPU Profiling of Two-phase Collective I/O 

User% Sys% Wait% 

Figure 2: CPU Profiling of Two Phase Collective I/O

0 

50 

100 

22
:2

8 
22

:2
9 

22
:3

0 
22

:3
1 

22
:3

1 
22

:3
2 

22
:3

3 
22

:3
4 

22
:3

5 
22

:3
6 

22
:3

6 
22

:3
7 

22
:3

8 
22

:3
9 

22
:4

0 
22

:4
1 

22
:4

1 
22

:4
2 

22
:4

3 
22

:4
4 Pe

rc
en

ta
ge

 %
 

System Time, 9-29-2014, CST 

Total CPU Profiling of Independent I/O 

User% Sys% Wait% 

Figure 3: CPU Profiling of Independent I/O

B. MapReduce Computing Paradigm

MapReduce is a programming model that has been
popular in cloud computing for a few years. Computing
paradigms based on mapreduce, such as, hadoop, haloop
and spark, continue to dominate today’s big data mar-
ket. The reason that MapReduce has become successful
is its simplicity, scalability, and fault-tolerance that can be
achieved for a variety of applications. Programs written in
mapreduce style are parallelized automatically on a large
cluster of commodity machines. MapReduce has a restricted
programming framework, which also includes two phase,
i.e., map and reduce. This incites us to conceptually compare
the mapreduce and collective I/O. In the "Map" phase: The
master node takes the computing problem as input and
divides it into smaller sub-problems, and distributes them
to worker nodes. A worker node may do this again in turn,
leading to a multi-level tree structure. The worker node
processes the smaller problem, and passes the answer back to
its master node. In the "Reduce" step: The master node then
collects the answers to all the sub-problems and combines
them to form the output to the problem it was originally
trying to solve.

III. COLLECTIVE COMPUTING

We can see that the mapreduce and two-phase collective
I/O share the same idea of splitting task (computation or
I/O) to enable parallelism. In this section, we propose to
design a collective computing paradigm by incorporating
the mapreduce workflow in the two-phase collective I/O.
The fundamental idea is to break the collective I/O’s ‘two-
phase’ constraint, and insert a ‘map’ between the I/O, such
that the analysis stage in most scientific applications are

moved ahead to combine with the collective I/O into a finer-
granularity non-blocking I/O (see section V for common
coarse-granularity, non-blocking I/O). The collective com-
puting framework is illustrated in Figure 4. In Figure 4, the
framework contains two basic phases, I/O phase and shuffle
phase, which is same with traditional two-phase collective
I/O. Between the two phases, where the collective I/O used
to have the data ready on compute nodes before shuffle,
now we insert the ‘map’, such that the data is computed
directly on each local node before shuffle. After the map,
partial results are generated from the computation on the raw
data. Therefore, the size of message to be sent is reduced
dramatically. As shown in Figure 4, the shuffle phase is
continued with a small amount of analysis results, and a
‘reduce’ process is conducted on the analysis results, which
is same with mapreduce’s reduce phase. This new collective
computing framework essentially combines the mapreduce’s
reduce and collective I/O’s shuffle into one phase, as shown
in the figure, p1 has the final result.

Figure 4: Collective Computing

The collective computing framework can be seen as a
mapreduce-like computing paradigm for HPC based on
collective I/O. Unlike the mapreduce, where I/O is just
implicitly controlled and computing is explicitly parallelized
by writing a map task, two-phase collective I/O is just
an I/O middle-layer. It has a long way to go before it
becomes an efficient computing framework, i.e., collective
computing. Therefore, the first challenge is to find a way
to represent the computation in the collective I/O. We
introduce the concept of object I/O, where computation can
be programmed into an object and explicitly passed into
the collective I/O function call by users. Collective I/O is
performed in byte level, but the later map operation needs to
recognize the data as meaningful subsets. Therefore, When
the data is ready on compute nodes after the I/O phase, we
perform the map operation on each segment, then shuffle the
computation results to one final compute node to compute
the reduction (or distribute the results to each corresponding
node). We explain the concepts and describe the design
details separately in the following subsections.

A. Object I/O and Runtime Support

Traditionally, collective I/O sits between high-level APIs,
e.g., PnetCDF, and low-level file system drivers, e.g., Lustre



ADIO driver. When conducting scientific analysis using
the collective I/O, users usually write the parallel ‘read’
code first, and then write the parallel computing code using
nprocs processes. We illustrate a sample code in Figure 5.

1. start[0] = (dim/nprocs)*rank; !
2. count[0] = (dim/nprocs);!
3. temp=(float *)malloc(SIZE*sizeof(float));!
4. ncmpi_get_vara_float_all(!
   ncid, varid, start, count, temp);!
5. for(i = 0;i < count[0];i++){!
6. sum += temp[i];!
7. }!
8. MPI_Reduce(sum, SUM, size, MPI_FLOAT,  !

!MPI_SUM,0,MPI_COMM_WORLD);!

I/O
 

C
om

pu
ta

tio
n 

Figure 5: Traditional MPI Code with Collective I/O

In Figure 5, line1 1-4 define the access region for each
process, lines 5-7 specify the computation, and line 8
reduces all the sub-results into the final result. The sum
operation is not ready to execute until the data in temp is
received. Using collective I/O, the data in temp is partially
accessed from the current process and partially received
from other processes. In order to represent the computation
into the collective I/O, we declare computation and I/O
separately and group them together to comprise an object
I/O. This object I/O transfers the function routine to the
lower-level collective I/O call and finally reaches the two-
phase layer, where the I/O aggregation and shuffling is
conducted. We demonstrate this programming structure in
Figure 6.

1. io.start[0] = (dim/nprocs)*rank; !
2. io.count[0] = (dim/nprocs);!
3. io.temp  = (float *)malloc(SIZE*sizeof(float));!
4. io.mode  = collective;!
5. io.block = false;!
6. void compute(out, in, len, dtype)!
7. for(i = 0;i < len;i++){!
8. out += in[i];!
9. }!
10.MPI_Op_create((MPI_User_function*)compute,1,&op);!
11.ncmpi_object_get_vara_float(io,op);!

I/O
 

C
om

pu
ta

tio
n 

Object 

Figure 6: Object I/O

As shown in Figure 6, the object I/O consists of three
parts: I/O region, computation function, and the final object
encapsulation. In the I/O region, users can specify the
accessing information as usual, with the only difference
in defining the I/O mode. We use ADIOS-like [16] I/O
description, where I/O routines are specified separately. The
io.mode = collective sets the I/O as collective I/O, and
other options can be independent. The io.block = false
tells the code to use our non-blocking framework, i.e.,
collective computing. If the io.block is set to be true, then the
code is essentially identical to the traditional MPI-IO code,
where computation and I/O are performed separately and

the two-phase collective I/O is restricted without inserting
analysis code between the two phases.

High-level I/O: PnetCDF (object io) 

I/O Middle Layer: MPI-IO 

non-block 

Phase 1 

I/O Thread Map 

Phase 2 

File System I/O Driver 

Inter. 
Result 

Shuffle Thread Reduce 

Local Final 
Result 

block 

Figure 7: Collective Computing Runtime

B. Map on Logical Subsets

In collective computing, the map operation is performed
on the incomplete data block. There are two reasons that the
data is incomplete. One is because in the I/O phase, the data
on one node is an aggregated data block, which has other
processes’ requested data. The aggregated block may or may
not cover the local processes’ requests. The second reason
is that we support non-blocking collective computing, such
that the data block may be only one or several iterations’
return (the I/O aggregator has multiple iterations to finish
the I/O, with each iteration only accessing a portion of the
data).

Such an incomplete data block is just a sequence of
bytes, with no self-describing metadata as in high-level I/O
layer, e.g., PnetCDF. As shown in Figure 8, the high-level
I/O request, e.g., HDF5 or PnetCDF, defines the logical
access coordinates of the dataset. The logical information
becomes lost in the MPI-IO layer. When the logical requests
come into the MPI-IO layer, all processes will share their
accessing information by exchanging the ‘offset list’. During
I/O aggregation, a global offset list is then sorted to form a
contiguous access region. After dividing into several even
aggregated I/Os (in Figure 8’s example, it is three), the
selected process, e.g., p0, will work as the aggregator to
complete the I/O. In the second phase, when the aggregated
request is fetched in the buffer, we need to reconstruct
the logical coordinates of the byte sequence and then pass
the logical information to the ‘map’ function. The con-
struction process utilizes the offset list information and the
raw dataset metadata, e.g., dimension and size. During the
construction, for each byte sequence, we first calculate its
corresponding offset list, e.g., sequence0 = {(offset0 =
0, length0 = 100), ...}. Then we compute its coordinates
in the original dataset, e.g., sequence0 = {(start0 =
0, length0 = 10, start1 = 0, length1 = 10), ...}. Mapping



M
PI

-I
O

 

Flatten I/O 
Aggregation 

I/O 
Request 

P0 P1 P2 P3 

P0 

Construction 

Offset List 

P3 P2 P1 P0 

Ph
as

e 
1 

Ph
as

e 
2 

Map 
r0 r1 r2 r3 

Pn
et

C
D

F 

Figure 8: Map on Logical Subsets

the offset to coordinates may result in non-contiguous logical
subsets (this is why sequence0 can have multiple start/length
pairs). We group them into one set and pass them to the
‘map’ function. With the logical coordinates, we are able to
perform a ‘map’ operation on the logical subset and store the
intermediate result for future ‘reduce’. A map operation is
a user-defined function parsed from the upper layer’s object
I/O. For example, the map operation can be a summation
process, as shown in the sample in Figure 5. This function
will go through each available logical subset in the buffer
to compute the intermediate results. Therefore, a process’
desired result now lies in several partial results. These
intermediate partial results have the process information and
logical coordinate information integrated as metadata.

C. Results Reduce and Construction

After the map operation, the intermediate results are
cached in the aggregator’s buffer on compute nodes. In
traditional collective I/O, the contents in the buffer are sup-
posed to be shuffled among all the processes. In collective
computing, we support both all-to-one reduce and all-to-all
reduce. The only difference is when the intermediate results
are shuffled. In all-to-one reduce, all the intermediate results
are sent to one single node, and each process’ partial results
are constructed on that node. The final reduce also happens
on the same node. For all-to-all reduce, the intermediate
results are shuffled among all processes, such that each
process only has its own partial results. After this shuffle,
each process conducts its own reduce locally. Then the
results of each process are sent to one node to perform a final
reduce. All-to-all reduce clearly brings more communication
overhead than all-to-one reduce, but it is desired in some
scenarios where each process has further processing on the
results, locally.

IV. EXPERIMENTS RESULTS AND ANALYSES

A. Experimental Setup

We conduct our evaluation on a cray XE6 cluster, Hopper.
The Hopper cluster has 153,216 compute cores for parallel
jobs, 212 terabytes of memory and 2 Petabytes of disk.
Each node has two 12-core AMD ‘MagnyCours’ 2.1 GHz
processors and at least 32 GB memory per node. The Lustre
file system we used has 156 OSTs with a 35 GB/s peak I/O
bandwidth. The compute nodes are connected via a custom
high-bandwidth, low-latency network provided by Cray. The
connectivity is in the form of a ‘mesh’. The collective
computing framework is implemented using MPICH 3.1.2,
which is the latest stable MPICH version. We evaluate the
framework with both benchmarks and real applications. The
benchmark is a climate simulation with a synthetic dataset.
The real application is the model used in Weather Research
& Forecasting (WRF). We evaluate the collective computing
in the performance, scalability, and overhead.

B. Benchmark Evaluation

We benchmark the collective computing framework using
a synthetic climate dataset, which has size of 800 GBs. We
simulate the computation part with different operations, e.g.,
sum, max, and average, etc. In the first test, we vary the ratio
of computation and I/O from 10:1 to 1:10. The ratio 10:1
means computation cost is 10 times of I/O cost in the overall
execution time. We would see how this computation/IO ratio
can impact the collective computing performance. We run

10:1 5:1 2:1 1:1 1:2 1:5 1:10

Computation vs I/O

S
pe

ed
up

0.
0

0.
5

1.
0

1.
5

2.
0

2.4

Avg=1.3
Avg=1.5

Figure 9: Speedup with Different Computation I/O Ratio

the simulation code with different ratio each time and with
120 processes. Among them, the number of aggregators is
equal to the number of compute nodes, i.e., 5 (each has 24
cores). We use this configuration for aggregator as default
for the following evaluations. Each test is performed three
times to get the average. The I/O in each test is accessing



a 3-D subset of the climate data on only one variable,
e.g., temperature. In each test, the collective computing
is compared with traditional MPI computing, in which
collective computing pass the computation into I/O while
traditional MPI computing only perform computation after
completion of the I/O. From Figure 9, the collective com-
puting framework achieves 1.57X overall average speedup
over the traditional MPI computing. Besides the overall
speedup, we also observe that the different performance
speedup with various computation-I/O ratio. As reported in
the figure, the speedup is increased and then decreased, with
the peak of speedup 2.44X at ratio of 1:1. This is because
that the major benefit of the collective computing is that
the analysis time is moved in advance. We also labeled two
average speedup in the figure, in which, one is the average
speedup of ‘computation>I/O’ and the other is the speedup
of ‘I/O>Computation’. The fact that later one is better than
the former one shows that the collective computing favors
the data intensive application. The reason is that the in-
advance analysis transforms the large data into a small result,
and this transformation benefits the communication/shuffle
phase more when the data is intensive.

24 48 120 240 480 1024

0
10

0
30

0
50

0
70

0

1.42

● ●

●

●

●

●

1
2

Number of Processes

E
xe

cu
tio

n 
T

im
e 

(s
)

S
pe

ed
up

CC
MPI

Figure 10: Scalability of Collective Computing

We continue to evaluate the collective computing on its
scalability and overhead. As shown in Figure 10(a), the
‘CC’ stands for collective computing and ‘MPI’ refers to the
traditional MPI computing. We set the computation-I/O ratio
as 1:5, which is equal to the sixth bar in the Figure 9. We also
set the request size in each process to be same, therefore,
the workload is increasing monotonically with the number
of processes. As the number of processes increases, with
our default configuration, the number of aggregators will
also increase, such that the communication/shuffle cost in
traditional MPI is increased too. In this case, we find that the
collective computing can further increase the performance at

the fixed computation-I/O ratio, i.e., the speedup is increased
from 1.42X to 1.7X as the processes increasing from 120 to
1024, which correspondingly has a reduction of execution
time from 27s to 313s.

From the Section III, we can see that additional works
are needed in order to support the collective computing,
e.g., logical construction and intermediate results reduction
(Figure 8). We sum up all the additional works as ‘local
reduction’ overhead and plot in the Figure 11. In this test, we

Number of Processes

O
ve

rh
ea

d 
(s

)

128 256 512
0

2
4

6

MPI−40G
CC−40G
CC−80G

Figure 11: Overhead Analysis

run with 128, 256, 512 processes separately and measure the
MPI’s reduction and collective computing’s local reduction.
The total I/O size in each test is same, which is 40 GB
or 80GB. As shown in Figure 11, we plot both collective
computing and traditional MPI programming. We can see
that the collective computing does not bring much overhead
compared to MPI programming. The ‘CC-80G’ is higher
than ‘CC-40G’ confirms that when the number of processes
is the same, the workload will determine the overhead
(case of #256 is an exception due to the runtime noise
in the cluster, the averge case matches with our analysis).
Overall, the overhead caused by collective computing’s local
reduction will not cause bottleneck comparing to the total
I/O cost (in this experiment, the I/O cost is 76s in average).

As we see in section III-B, maintaining the logical in-
formation as metadata for the intermediate result can cause
additional storage overhead. The metadata includes process
information and logical coordinates. The size of the metadata
are affected by many different factors. Among which, the
number of aggregators, the number of processes, the MPI
buffer size, and the I/O pattern are the major ones. We
evaluate the storage overhead caused by the metadata. We
only plot the result with varying MPI buffer size. As shown
in Figure 12 The MPI buffer size has an impact on the
metadata size which is similar to the typical issue in file



MPI Collective Buffer Size (MBs)

M
et

aD
at

a 
O

ve
rh

ea
d 

(M
B

s)

1 4 8 12 24

30
60

90
12

0

Figure 12: Metadata Overhead Analysis

system management, i.e., the size of the block has an impact
on the disk space efficiency. With smaller MPI buffer size,
for example 1 MB, if the intermediate logical subset has
average larger size than 1MB and less than 2MB, then the
subset will be broken and accessed in two iterations to fit
the limited buffer size. In each of the two accesses, the
collective computing runtime will generate the metadata and
index the intermediate result, which eventually generates
two copies of metadata for this single logical subset. But
with a larger buffer size, this situation can be optimized. In
Figure 12, we can find that the metadata overhead is reduced
as the buffer size increases. We also find that the largest
buffer size will not further reduce the overhead. Instead, the
optimal buffer size is around 8 MB to 12 MB. The reason
is similar to the previous mentioned typical file system
problem. Besides this, the I/O pattern also has impact to the
benefit of larger buffer size. For example, non-contiguous
I/O for high dimensional subset often generates more smaller
sub-subsets in the runtime, while contiguous I/O pattern
generate more larger sub-subsets. Both cases prefer larger
buffer size, but the later one benefits more from larger buffer
size since smaller buffer size can also satisfy the smaller
sub-subsets.

C. Application Tests

Scientific applications become data intensive and desire
an efficient computing paradigm. We evaluate our collective
computing framework using the Weather Research & Fore-
casting (WRF) [20] Model. The WRF is a next-generation
mesoscale numerical weather prediction system designed
for atmospheric research. The model serves a wide range
of meteorological applications across scales from tens of
meters to thousands of kilometers. The WRF allows re-
searchers to generate atmospheric simulations based on real

data(observations, analyses) or idealized conditions. Besides
this, WRF has a large worldwide community of registered
users (over 25000 in over 130 countries). Choosing WRF
as our evaluation application can have a broader impact. We
select two common analysis tasks found in the WRF and put
in our collective computing framework. The two tasks are
extracted from a hurricane simulation, which are ‘Min Sea-
Level Pressure (hPa)’ and ‘Max 10m wind speed(knots)’.
This two analysis tasks have a common feature which is
that the I/O is a subset access in a non-contiguous pattern
and the computing is an additive operation that can be
map and reduced. We plot the result of the first task in
Figure 13, as the second test demonstrates similar results.
As shown in Figure 13, our collective computing improves

40 80 200 400

0
20

40
60

80
10

0

Workload Size(GB)

E
xe

cu
tio

n 
T

im
e 

(s
)

CC
MPI

Figure 13: WRF Performance with Collective Computing

the performance of the WRF task by 1.45X speedup.

V. RELATED WORK

A. Nonblocking Collective Operations

Nonblocking operations allow computation and commu-
nication to be overlapped and thus to leverage hardware par-
allelism for the asynchronous message transmission. Such a
technique has existed for a decade [26]. There are two previ-
ous works in MPI that are related to our approach. They are
nonblocking collective communication(NB-COM) [11] and
nonblocking collective I/O(NB-CIO) [4, 24, 27]. The former
standardizes the MPI’s nonblocking collective operations,
e.g., MPI_Alltoall. When used in suitable applications, for
example the three dimensional fast fourier transformations
(FFT), as soon as the first data element is ready, the commu-
nication of them is started in a non-blocking way. Therefore,
the communication is overlapped with the computation of
the following elements. The NB-COM focuses on the MPI’s
process communication instead of I/O, which is different
from our proposed collective computing. The NB-CIO in



current MPI based open source project, e.g., libNBC, and in
the high-level I/O, e.g., PnetCDF, focuses on the I/O and has
overlap with our approach, but still differs fundamentally.
Existing NB-CIO supports the collective I/O’s to run in
a non-blocking way and overlap with computation during
write and read operation. The NB-CIO is essentially a
variant of NB-COM in an I/O version with only difference
that NB-CIO can have different message size while NB-
COM always have same message size. The two existing
approaches share the non-blocking idea with our approach,
but our collective computing is designed in a more finer
fashion, in which the two phases are split and computation
is inserted into each cycle of aggregator’s I/O operation. One
of our CC’s functionality where computation is conducted
on the same data with I/O is not supported in existing
approaches. Existing approaches do support computation to
overlap with I/O or communication, but the computation is
actually performed on different dataset that are independent
with the I/O or communication.

B. Combination of MPI and Mapreduce

MPI is a dominate programming language in high per-
formance computing and mapreduce is a simplified com-
puting framework in cloud computing. The combination of
the two has been explored in several existing works [17].
Both of the computing frameworks have advantages and
disadvantages. One example is that MPI is complex but
supports flexible derived data types while MapReduce is
simple but can enable embarrassingly parallel computation
on a large cluster of commodity machines. Among the
existing works, DataMPI [17] designs a Hadoop-like big data
computing framework for HPC. This framework extends
MPI to efficiently process and communicate large number
of key-value pair instances in a Hadoop-like fashion. Our
collective computing framework is designed for HPC, which
is in an opposite direction with DataMPI. Related work
towards efficient mapreduce using MPI can also be found in
[9, 10, 18]. Our work differs in that we use a MapReduce-
like paradigm to benefit MPI instead of the opposite way
in these existing works. Besides this, we utilize the similar-
ities between two-phase collective I/O and mapreduce and
provide a flexible computing paradigm for solving scientific
big data problems in current HPC.

VI. CONCLUSION

Scientific applications face challenges in analyzing large
amounts of data sets. Traditional MPI blocking computing
workflow can not conduct analysis until the I/O is finished.
Existing non-blocking MPI programming also does not sup-
port computation on I/O stream in the two-phase collective
I/O. We design the collective computing which is a finer non-
blocking computing paradigm, that moves the analysis stage
in advance. The collective computing framework breaks the
two-phase I/O constraint and has an object I/O to represent

computation inside the I/O phase. We design the logical
map to recognize the byte sequence. We have evaluated the
collective computing experimentally and have shown that it
can improve the performance of scientific big data analysis
by 2.5X speedup. In the future, we would like to support
the iterative operations and investigate the fault tolerance of
the collective computing.

REFERENCES

[1] Big data meets big science. http:
//cacm.acm.org/magazines/2014/7/
176202-big-data-meets-big-science/fulltext.

[2] B. Behzad, S. Byna, S. M. Wild, and M. Snir. Improv-
ing parallel i/o autotuning with performance modeling.
In HPDC. 23rd International ACM Symposium on
High-Performance Parallel and Distributed Computing,
HPDC’14, 2014.

[3] K. Cha and S. Maeng. Reducing communication costs
in collective I/O in multi-core cluster systems with non-
exclusive scheduling. The Journal of Supercomputing,
61(3):966–996, 2012.

[4] P. Dickens and R. Thakur. Improving collective i/o
performance using threads. In 13th International and
10th Symposium on Parallel and Distributed Process-
ing. 1999 IPPS/SPDP., pages 38–45, Apr 1999.

[5] P. M. Dickens and R. Thakur. Evaluation of collective
I/O implementations on parallel architectures. Journal
of Parallel and Distributed Computing, 61(8):1052–
1076, Aug. 2001.

[6] M. Folk, A. Cheng, and K. Yates. HDF5: A file
format and i/o library for high performance computing
applications. In Proceedings of Supercomputing’99
(CD-ROM), Portland, OR, Nov. 1999. ACM SIGARCH
and IEEE.

[7] K. Gao, W. keng Liao, A. N. Choudhary, R. B. Ross,
and R. Latham. Combining I/O operations for multiple
array variables in parallel netCDF. In CLUSTER, pages
1–10. IEEE, 2009.

[8] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2:
Advanced Features of the Message Passing Interface.
Scientific and engineering computation. MIT Press,
pub-MIT:adr, 2000.

[9] Y.-F. Ho, S.-W. Chen, C.-Y. Chen, Y.-C. Hsu, and
P. Liu. A mapreduce programming framework using
message passing. In Computer Symposium (ICS), 2010
International, pages 883–888, Dec 2010.

[10] T. Hoefler, A. Lumsdaine, and J. Dongarra. Towards
efficient mapreduce using mpi. In Proceedings of
the 16th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 240–249, Berlin,
Heidelberg, 2009. Springer-Verlag.

[11] T. Hoefler, A. Lumsdaine, and W. Rehm. Imple-
mentation and Performance Analysis of Non-Blocking

http://cacm.acm.org/magazines/2014/7/176202-big-data-meets-big-science/fulltext
http://cacm.acm.org/magazines/2014/7/176202-big-data-meets-big-science/fulltext
http://cacm.acm.org/magazines/2014/7/176202-big-data-meets-big-science/fulltext


Collective Operations for MPI. In Proceedings of the
2007 International Conference on High Performance
Computing, Networking, Storage and Analysis, SC07.
IEEE Computer Society/ACM, Nov. 2007.

[12] C. Jin, S. Sehrish, W. keng Liao, A. N. Choudhary, and
K. Schuchardt. Improving the average response time
in collective I/O. In Recent Advances in the Message
Passing Interface - 18th European MPI Users’ Group
Meeting, EuroMPI 2011, Santorini, Greece, September
18-21, 2011. Proceedings, volume 6960 of Lecture
Notes in Computer Science, pages 71–80. Springer,
2011.

[13] W. keng Liao and A. Choudhary. Dynamically adapting
file domain partitioning methods for collective I/O
based on underlying parallel file system locking proto-
cols. In SC’08. ACM/IEEE, Austin, TX, Nov. 2008.

[14] Q. Koziol. HDF5. In Encyclopedia of Parallel
Computing, pages 827–833. Springer, 2011.

[15] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netCDF: a high-performance
scientific I/O interface. In SC2003, 2003.

[16] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich io methods for portable high
performance io. In Proceedings of IPDPS’09, May 25-
29, Rome, Italy, 2009.

[17] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. Datampi:
Extending mpi to hadoop-like big data computing.
In 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium,IPDPS’14, pages 829–
838, May 2014.

[18] H. Mohamed and S. Marchand-Maillet. Enhancing
mapreduce using mpi and an optimized data exchange
policy. In 41st International Conference onParallel
Processing Workshops (ICPPW),2012, pages 11–18,
Sept 2012.

[19] R. Ross, R. Latham, M. Unangst, and B. Welch. Paral-
lel I/O in practice, tutorial notes. In SC’08. ACM/IEEE,
Austin, TX, Nov. 2008.

[20] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O.
Gill, D. M. Barker, W. Wang, and J. G. Powers. A
description of the advanced research wrf version 2.
AVAILABLE FROM NCAR; P.O. BOX 3000; BOUL-
DER, CO, 88:7–25, 2001.

[21] Y. Su and G. Agrawal. Supporting user-defined sub-
setting and aggregation over parallel netCDF datasets.
In CCGRID, pages 212–219. IEEE, 2012.

[22] R. Thakur, W. Gropp, and E. Lusk. Data sieving
and collective I/O in ROMIO. In Proc. of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, pages 182–189. IEEE, Feb. 1999.

[23] Y. Tian, S. Klasky, H. Abbasi, J. F. Lofstead, R. W.
Grout, N. Podhorszki, Q. Liu, Y. Wang, and W. Yu.
EDO: Improving read performance for scientific appli-

cations through elastic data organization. In CLUSTER,
pages 93–102. IEEE, 2011.

[24] V. Venkatesan, M. Chaarawi, E. Gabriel, and T. Hoe-
fler. Design and Evaluation of Nonblocking Collective
I/O Operations. In Recent Advances in the Message
Passing Interface (EuroMPI’11), volume 6960, pages
90–98. Springer, Sep. 2011.

[25] Y. Wang, Y. Su, and G. Agrawal. Supporting a light-
weight data management layer over HDF5. In CCGrid,
pages 335–342. IEEE Computer Society, 2013.

[26] Non-blocking algorithm. http://en.wikipedia.org/wiki/
Non-blocking_algorithm.

[27] Y. Yu, J. Wu, Z. Lan, D. Rudd, N. Gnedin, and
A. Kravtsov. A transparent collective i/o implemen-
tation. In IEEE 27th International Symposium on
Parallel Distributed Processing (IPDPS), 2013, pages
297–307, May 2013.

[28] X. Zhang, K. Davis, and S. Jiang. IOrchestrator:
Improving the performance of multi-node I/O systems
via inter-server coordination. In SC’10. ACM/IEEE,
New Orleans, LA, USA, Nov. 2010.

http://en.wikipedia.org/wiki/Non-blocking_algorithm
http://en.wikipedia.org/wiki/Non-blocking_algorithm

	Introduction
	Motivation
	Two-Phase Collective I/O
	MapReduce Computing Paradigm

	Collective Computing
	Object I/O and Runtime Support
	Map on Logical Subsets
	Results Reduce and Construction

	Experiments Results and Analyses
	Experimental Setup
	Benchmark Evaluation
	Application Tests

	Related Work
	Nonblocking Collective Operations
	Combination of MPI and Mapreduce

	Conclusion

