
BD-CATS: Big Data Clustering at Trillion Particle Scale

Md. Mostofa Ali Patwary1,†, Suren Byna2, Nadathur Satish1, Narayanan Sundaram1,
Zarija Lukić2, Vadim Roytershteyn3, Michael Anderson1, Yushu Yao2,

Prabhat2, Pradeep Dubey1

1Intel Corporation, 2Lawrence Berkeley National Laboratory, 3Space Science Institute
†Corresponding author: mostofa.ali.patwary@intel.com

ABSTRACT
Modern cosmology and plasma physics codes are now capable of
simulating trillions of particles on petascale systems. Each timestep
output from such simulations is on the order of 10s of TBs. Sum-
marizing and analyzing raw particle data is challenging, and sci-
entists often focus on density structures, whether in the real 3D
space, or a high-dimensional phase space. In this work, we develop
a highly scalable version of the clustering algorithm DBSCAN, and
apply it to the largest datasets produced by state-of-the-art codes.
Our system, called BD-CATS, is the first one capable of performing
end-to-end analysis at trillion particle scale (including: loading the
data, geometric partitioning, computing kd-trees, performing clus-
tering analysis, and storing the results). We show analysis of 1.4
trillion particles from a plasma physics simulation, and a 10,2403

particle cosmological simulation, utilizing ∼100,000 cores in 30
minutes. BD-CATS is helping infer mechanisms behind particle
acceleration in plasma physics and holds promise for qualitatively
superior clustering in cosmology. Both of these results were previ-
ously intractable at the trillion particle scale.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communication]: Interconnec-
tions—Parallel I/O; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering; I.5.3 [Pattern Recog-
nition]: Clustering—Algorithms

Keywords
Density-based clustering, DBSCAN, Parallel I/O, KDTree

1. INTRODUCTION
Clustering is an important data mining kernel used in many sci-

entific applications including satellite image segmentation [36], find-
ing halos in cosmology [30], noise filtering and outlier detection
[4], prediction of stock prices [26], and bioinformatics [34]. Clus-
tering classifies a given set of points into meaningful subclasses
(called clusters) that minimizes intra-differences and maximizes

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SC ’15, November 15 - 20, 2015, Austin, TX, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807616

inter-differences among them. Even though there exist several clus-
tering algorithms such as K-means [33], K-medoids [37], STING
[48] or WaveCluster [43], density based clustering (DBSCAN [16]
and OPTICS [2, 31]) has received significant attention from the re-
search community in recent years. This is mainly due to the unique
nature of DBSCAN in identifying irregularly shaped clusters and
filtering noise particles. The key idea of DBSCAN is that, for each
data point in a cluster, the neighborhood in a given radius (called ε)
has to contain at least a minimum number of points (minpts).

DBSCAN was known to be an inherently sequential algorithm for
decades. Major progress has been made in parallelizing the algo-
rithm, transitioning from master-slave based implementations [8,
17] to highly parallel techniques [39], GPU or map-reduce based
implementations [50, 24], and even approximate algorithms [40].
Most of these efforts are centered around the core kernel and not
much attention has been paid to the other steps (rather consid-
ered as either pre-processing or post-processing steps although they
may take more time than DBSCAN itself). Some of these steps
include reading the dataset, geometrically partitioning the dataset
for better load balancing and reduced communication, and kd-tree
construction for efficient neighborhood searches. Several of these
steps (such as partitioning and kd-tree construction) have the same
computational complexity as DBSCAN, O(n logn), where n is the
number of particles. In most cases, these steps were either con-
sidered sequential or partially parallel [24, 40], hence not an end-
to-end scalable solution for large scale scientific applications. To
the best of our knowledge, only [50], a GPU based DBSCAN im-
plementation, considered end-to-end analytics. However, due to
memory requirements, their system could only handle a few tens of
millions of particles per node, making trillion particle scale analy-
sis infeasible.

In this paper, we develop the first end-to-end DBSCAN cluster-
ing solution at trillion particle scale on 10’s of TB datasets to en-
able scientific analysis at previously unexplored scales. Our so-
lution uses HDF5-based parallel I/O for reading the dataset and
writing the clustering solution. We use a novel sampling based
median computation technique (previously used in a different con-
text, sample sort [18, 14]) to improve the load imbalance in ge-
ometric partitioning (from 2.7× using previous implementations
using geometric means down to 1.0× using our technique). We
also use the same technique in the kd-tree construction in contrast
to the usual mean-based technique [40], leading to balanced bi-
nary trees and reducing the load imbalance in the nearest neighbor
search in DBSCAN. Our hybrid implementation uses both MPI and
OpenMP to take advantage of modern multithreaded architectures,
and reduces overall communication time compared to previous im-
plementations [39, 40, 50].

We apply our end-to-end clustering solution on two scientific

applications: cosmology and plasma-physics. Their simulations
are now reaching trillions of particles, producing 10’s of TBs of
data per single time output. Summarizing and visualizing these
particle data is extremely challenging; using our scalable solution,
we demonstrate end-to-end analysis on 1 and 1.4 trillion particles
from cosmology and plasma physics simulation respectively utiliz-
ing ∼ 100, 000 cores.

Our specific contributions are the following:

• We have developed the first end-to-end clustering (BD-CATS)
solution, which is capable of analyzing trillions of particles
and 10’s of TBs of data. This is more than two orders of
magnitude larger than those ever attempted before. This has
directly enabled scientific analysis of such large simulation
results for the first time.

• Compared to previous work [40], BD-CATS improves load
balancing and is more scalable. On 32 nodes, this leads to an
end-to-end speedup of 7.7× over that work. This includes
data reading, geometric partitioning, kd-tree construction, in-
memory analytics, and storing clustering results.

• We demonstrate strong and weak scalability of BD-CATS up
to 98,304 cores.

• BD-CATS has enabled new insights into trillion particle data-
sets for the first time. For cosmology datasets, we show that
clustering solution using DBSCAN may qualitatively be supe-
rior — avoiding the cluster bridging problem — compared to
a baseline method of friends-of-friends. For plasma physics
applications, we are able to examine phase space composi-
tion of regions with large plasma densities, which helps in-
fer mechanisms behind the acceleration of particles. Both of
these results were previously intractable at the trillion parti-
cle scale.

The remainder of this paper is organized as follows. In Section
2, we discuss the motivation of this research in terms of scientific
applications. We describe all the technical details and experimen-
tal setup in Section 3 and Section 4, respectively. We analyze the
results in Section 5 with related works in Section 6. We conclude
and propose future work in Section 7.

2. APPLICATIONS
Big Data Analytics is key for gaining scientific insights from

large scale simulation output. In this paper, we consider two scien-
tific domains: Cosmology and Plasma Physics, where large scale
simulations are routinely used to test our theoretical models of the
natural world. State-of-the-art simulations in both domains pro-
duce truly massive particle datasets, and any comprehensive anal-
ysis mandates scalable analytics capabilities. This paper makes a
key contribution in developing a scalable, end-to-end clustering so-
lution for the largest datasets in both domains. We now discuss the
scientific motivation for this clustering analysis.

2.1 Cosmology
Over the last two decades, Cosmology has been one of the most

rapidly advancing areas of physical sciences. That advance was en-
abled by increasingly precise sky surveys, covering a wide range of
wavelengths, from X-ray to the radio part of the spectrum. Differ-
ent sky surveys all arrive at the same picture of the Universe, where
∼25% of its content is in form of pressureless dark matter which
interact only via gravity, and ∼70% is in spatially smooth compo-
nent, consistent with cosmological constants (e.g. recent results by

Figure 1: Visualization of one of cosmological simulations used
in this paper. We scatter-plot particles, but for clarity we show
only ∼250,000 particles out of 10243. In this image we see fil-
aments — long and narrow features with density ∼ 10× the
mean density, as well as halos — gravitationally bound regions
of very high densities (in excess of 100×mean). In cosmological
simulations, lot of focus is on characterizing halos, and the tool
used to identify them in simulations is called “halo finder” [30].

Planck collaboration [42]) What is actually dark matter, and what
is the smooth component which drives the accelerated expansion of
the universe remains a mystery.

To answer these important questions, sky surveys continue their
rapid advance, but it is also imperative to have theoretical mod-
eling at least as accurate as observational data (precision level of
roughly 1%). By and large, future observations focus on the evolu-
tion of density fluctuations in the Universe, and the task for theory
is to produce predictions for what those fluctuations are in different
cosmological models. The picture is complicated by the fact that
density fluctuations are difficult to probe directly, but we rather ob-
serve some biased tracer of the density field, like galaxies, clusters
of galaxies, or Lyman-alpha flux decrement. The only way to reli-
ably model the small scale non-linear fluctuations at <∼ 100 Mpc
(megaparsec; 1 parsec = 3.26 light years, or 3.08×1016 meters)
scales is via numerical simulations. Back of the envelope require-
ment for simulations of future sky surveys is a few Gpc box size,
with resolution of ∼1 kpc. In order to resolve relevant structures
by enough mass tracers, simulations will have trillion particles or
more. Note that it is not a single “heroic” simulation that will suf-
fice, but many such simulations for different cosmological models.
The computational requirements are therefore tenacious, and cos-
mological simulations require both computational- and memory-
efficient parallel codes.

Formation of structure in the universe is driven by gravitational
instability, where small initial density fluctuations are rapidly en-
hanced in time [41]. The resulting density field has large void
spaces, many filaments, and dense clumps of matter within fila-
ments (Figure 1). The existence of those localized, highly over-
dense clumps of dark matter, termed halos, is an essential feature
of non-linear gravitational collapse in current cosmological mod-
els. Dark matter halos occupy a central place in the paradigm of
structure formation: gas condensation, resultant star formation, and
eventual galaxy formation all occur within halos. A basic anal-
ysis task is to find these clusters of particles, and measure their
properties like mass, velocity dispersion, density profile, and oth-
ers. The most common method (although not the only one) for
finding halos in cosmological simulations is friends-of-friends al-
gorithm (FOF; first used in [15] and [13]), a percolation motivated

halo finder, which approximately tracks isodensity contours. FOF
is an efficient method, but suffers from numerical insufficiencies,
most notably the fact that total halo mass will change in a sys-
tematically biased way as we reduce number of sampling parti-
cles in a halo [49], and that different halos can be “bridged” in
one by a tiny stream of particles [52, 32]. DBSCAN is similarly a
percolation-based algorithm, and in fact, FOF is just a special case
of a DBSCAN algorithm, where the minimum number of neighbors
is set to one. Therefore DBSCAN can be used to give just the same
results as FOF, but in significant addition to that, the extra param-
eter of DBSCAN can be utilized to reduce the number of bridged
halos in the final halo catalog and improve overall accuracy.

2.2 Plasma Physics
Magnetic reconnection is a process of rapid topological rear-

rangement of magnetic fields embedded into plasma. Often accom-
panied by an explosive release of accumulated magnetic energy,
this fundamental plasma physics process plays a significant role in
the dynamics of many systems across a wide range of scales. Some
important examples include laboratory fusion experiments, magne-
tospheres of the Earth and of other planets, the solar corona, and
many astrophysical objects.

Magnetic reconnection arises as a nontrivial process because typ-
ical plasma viewed on large spatial and long temporal scales be-
haves as a superconducting fluid, such that the embedded magnetic
field is constrained to move together with (or, as it is often said, be
"frozen into") plasma. This often leads to accumulation of signifi-
cant amount of magnetic energy in the system and the appearance
of narrow spatial regions where magnetic field is highly stressed.
In these narrow layers, termed current sheets, deviations from the
idealized "frozen-in" approximation become essential and may lead
to breakup of the current sheets and associated rapid relaxation in
the system. Some of the most spectacular observable examples of
events thought to be inherently associated with magnetic reconnec-
tion are solar flares and coronal mass ejections.

In high-temperature rarefied plasmas typical of many systems,
the microscopic physical processes ultimately responsible for mag-
netic reconnection are of kinetic origin and can only be adequately
described in a formalism that retains information about interac-
tion of individual particles with electromagnetic field. Fully ki-
netic Particle-In-Cell (PIC) simulations have greatly advanced un-
derstanding of magnetic reconnection in recent decades. In fact,
many of the specific goals of recently launched Magnetospheric
Multiscale (MMS) NASA mission [1] dedicated to studies of mag-
netic reconnection are motivated by recent theoretical advances. At
the same time, analysis of the simulation data becomes increas-
ingly challenging as the size of the simulations grow. Fully kinetic
PIC codes use Lagrangian markers to efficiently sample the six-
dimensional coordinate-velocity phase space. With the advent of
petascale computing, simulations with upwards of 1012 particles
have become common. At the same time, the tools for analysis of
such massive amount of data have lagged behind. Today, a typical
analysis of the large-scale datasets produced by PIC simulations fo-
cuses on reduced information obtained for example by computing
the moments of distribution function on a pre-defined spatial grid.
At best, one might compute cumulative energy distributions for par-
ticles in a given region. Meanwhile, a more detailed view of the
phase-space is of great interest. For example, magnetic reconnec-
tion sites are known to be efficient particles accelerators. Several
competing microscopic acceleration mechanisms have been pro-
posed in the literature and understanding of if and how they operate
in a particular simulation requires clusters of high-energy particles
to be identified and quantified. This is further complicated by the

fact that magnetic reconnection in 3D current sheets is inherently
turbulent [11], so that multiple reconnection and acceleration sites
of complex geometry are present in the system.

In this work, we consider magnetic reconnection in collisionless
pair plasmas comprised of electrons and positrons, relevant to as-
trophysical magnetically dominated systems such as Pulsar Wind
Nebulae, relativistic jets in Active Galactic Nuclei, or Gamma Ray
Bursts [27]. The simulation focuses on spontaneous development
of magnetic reconnection in an isolated, initially stationary, 3D cur-
rent sheet. The initial conditions and parameters of the simulation
are detailed in Section 4. DBSCAN is used to identify high-density
clusters, which are shown to be associated with high-energy parti-
cles and thus related to acceleration sites.

3. BD-CATS SYSTEM
BD-CATS is an end-to-end system for performing clustering anal-

ysis on large scale scientific data, consisting of a number of steps.
BD-CATS internally uses DBSCAN, a density based clustering al-
gorithm. Such clustering algorithms often require "pre-processing"
steps (including geometrically partitioning the data and gathering
ghost particles around partitions) as well as "post-processing" steps,
such as computing cluster ids, file I/O etc that are not usually con-
sidered as part of the runtime of the clustering algorithm itself.
However, such steps pose serious bottlenecks in the context of an
end-to-end system that aims at analyzing large scientific data. Since
our aim is to run BD-CATS to cluster a trillion particles on thou-
sands of nodes, each step of the system has to be scalable for the
overall system to scale. Moreover, at such large scales, it is also
critical to make efficient use of memory, avoiding redundant copies
of data wherever possible. In this section, we describe the algorith-
mic and implementation techniques with optimizations involved in
making each step of our system scalable and efficient. The various
steps involved in the end-to-end pipeline are shown in Algorithm 1.
We describe these steps below:

Algorithm 1 Steps in the BD-CATS system. Input: A file I con-
taining particles to cluster, a distance threshold ε, and the minimum
number of points required to form a cluster,minpts. Output: A set
of clusters C written to output file O.
1: procedure BD-CATS(I, ε,minpts,O)
2: X ← READINPUTFILE(I)
3: Y ← PARTITION(X)
4: Y ′ ← GATHER(Y , ε)
5: K ← CONSTRUCTKDTREE(Y ′)
6: T ← DBSCAN(Y ′, K, ε, minpts) . Includes local

computation and merging, T is the union find tree
7: C ← COMPUTECLUSTERID(T)
8: WRITEOUTPUTFILE(C, O)

3.1 Reading Data
The system begins by reading an input file containing the data

to be clustered. We consider that the data files store properties of
particles in arrays. For instance, the two trillion particle data files
we analyzed in this study use HDF5 file format, where each prop-
erty is stored as a HDF5 Dataset. Each property encodes particle
attributes in one of the dimensions in which it resides. These prop-
erties are stored in a structure of arrays (SOA) format, where the
first property for all particles are stored contiguously, followed by
data for the second property and so on. This is in contrast to previ-
ous work [40], where data is read from an array of structure (AOS)
format, and later converted to SOA format in memory for efficient

vectorization in distance computations. Here, we avoid this expen-
sive in-memory conversion and directly store data in SOA format.

We use parallel I/O for reading the datasets into memory. As-
suming that P MPI processes were used to read the data related to
N particles, each HDF5 dataset is logically split into P equal par-
titions. Each process p reads a subset of particles starting from p
* N /P to (p + 1) * N /P . The last MPI process in addition reads
data related to the remainder of N /P .

To make use of parallelism at file system level, we have stored
the data files on a Lustre parallel file system with striping across
maximum available storage targets. We used HDF5 dataset read
calls with MPI-IO in collective buffering mode to limit the number
of MPI processes requesting the storage targets [46]. In this mode,
MPI processes use two-phase I/O, where the first phase reads data
from storage to aggregator nodes and the second phase distributes
the data to MPI processes. The number of aggregators is equal to
a multiple of the number of storage targets on Lustre file system.
Based on our previous observations, using this mode of parallel
I/O on peta-scale supercomputers achieves high I/O rates with large
number of MPI processes [7]. Since the large systems are typically
shared by hundreds of users, when running with large number of
MPI processes, the I/O performance is better when using a signifi-
cant fraction of the system.

3.2 Geometric Partitioning
After file reads, the nodes now exchange particles among them in

such a way that each node owns a geometrically partitioned section
of the data. The idea behind geometric partitioning is to improve
locality of processing and avoid repeated inter-node communica-
tion in later steps. At the end of partitioning, each node owns a
subset of data that could be completely different from what it read.
Apart from locality, another important consideration during geo-
metric partitioning is to ensure load balance by ensuring that each
node receives roughly same amount of data after partitioning.

Geometric partitioning has been previously studied in the con-
text of clustering algorithms [39, 40], with the main idea being to
recursively divide particles among nodes based on (typically) axis-
aligned splits of data. The choice of split dimension is fairly stan-
dard (the one with the largest spread of attributes), but the choice
of split location along that dimension varies between implementa-
tions and has high impact on load balance. Ideally, one would com-
pute an exact median which ensures perfect load balance; however
computing this is expensive and is not commonly done in practice.
Previous implementations of DBSCAN have used a simple average
(mean) of attribute values along the split dimension as the split lo-
cation [39, 40]. This is easy to compute with low overhead, but
this results in severe load imbalance – in some real world datasets
(cosmo_small in Table 1 on 32 nodes), one node gets 10 Million
particles while another gets 91 Million particles, with an average of
33.5M particles per node (Section 5).

In contrast, we use a sampling based median computation tech-
nique, typically used in other application domains such as sort-
ing [28], to compute the split location. The idea here is to com-
pute a median based on a randomly selected subset of the data. As
more such samples are selected, the median computed more pre-
cisely matches the real median. This scheme results in much better
load balance – for the same example above, we see variations only
between 33 M and 34 M particles per node.

Figure 2 shows the basic idea. We first randomly select a small
set of data (samples) from each node. The location of each of these
samples is a potential split location. Each node broadcasts its se-
lection to all other nodes, and nodes sort this small set of collected
samples to construct the median. Then each node partitions its data

a

x

b

y x

a x

a b
(1) p0 p1

y b

(2)

b

(3)

(4)x

a b

y

ay

y

x

Figure 2: Partitioning using sampling based median compu-
tation. There are 2 nodes with the particles owned shown in
different colors (blue and red). In Step (1), each node selects
a random sample of its particles. These samples are merged
and the median of the combined samples is found in Step (2).
In Step (3), each node perform a local partitioning of the data
according to the median. In Step 4, the two nodes exchange
one of their partitions created above – node p0 sends all parti-
cles greater than the median to node p1; while node p1 sends
particles less than the median to node p0.

into two sets, one set each for particles on each side of the me-
dian. In the 2 node case shown in the figure, all particles on the
left of the chosen partition (assuming partition dimension is along
the x-axis) are communicated to node p0 and all particles on the
right to node p1. This then completes the partitioning step for the
2-node case. In the more general case, where P > 2, this step is
extended to have multiple pairs of nodes exchange particles. This
works as follows: nodes p0 and pP/2 exchange particles as in the
figure, as do nodes p1 and pP/2+1 and so on. These exchanges are
independent. The results distribution of particles will be such that
nodes between p0 to pbP/2c will get particles to the left of the me-
dian, and nodes pdP/2e to pP−1 will get particles to the right of the
median. Hence there is no overlap in the bounding boxes of these
two sets of nodes. Each of these two sets of nodes then repeats
(O(log(P)) times) this process of computing a split and partition-
ing until each node gets one geometric partition of the data. At this
point, the bounding boxes of the particles in different nodes will
not overlap, and geometric partitioning is complete.

At large scales, the process of partitioning data can be compu-
tationally demanding and heavy in terms of memory usage. It is
hence important to develop a hybrid implementation with multi-
ple threads inside each node cooperatively working to create par-
titions. The main challenge for large scale data is to perform in-
place exchange of data for efficient use of memory. Maintaining a
contiguous set of data before and after data exchange can require
compaction of "holes" that can be created when data is sent out
and appending data received from other nodes. In order to do this
efficiently, we divide the original data among threads, and have
each thread first perform an in-place partition into left and right
halves with the median as pivot (similar to quicksort). Then threads
merely cooperatively concatenate the local partitions they want to
send out into a contiguous buffer. The rest of the data, together
with the received data are concatenated and form the partitioned
data. The concatenation steps are done efficiently in large blocks
using atomics. By using in-place per-thread partition and reusing
the communication buffers across each of the log(P) partitioning
steps, we achieve good scalability while ensuring we do not repli-
cate the dataset by more than a factor of 2.

3.3 Gathering
Once the data is geometrically partitioned, the bounding boxes

of the data stored at each node do not intersect. While this im-
proves locality in nearest neighbor computations during cluster-
ing, it is however possible for neighbors to cross over the geo-
metric partitions obtained. In order to avoid costly communication
steps for nearest neighbor computations, we gather particles from a
ghost region from neighboring nodes for use in the clustering step.
DBSCAN specifies an ε radius for use in the neighbor computations,
and it suffices to gather all particles that are in an extended bound-
ing box with an extension of ε around the extent of the geometric
partition. This step is fairly straightforward, with the idea being
that all nodes exchange their extended bounding box coordinates
with other nodes. Each node then iterates through the local dataset
and checks it against each extended bounding box, which requires
P point-box comparisons for each particle. To make this step ef-
ficient, we first check if there is any overlap of the current node’s
(say n) bounding box with the extended box of other nodes. If there
is no overlap between node n and say node k, then we skip all in-
tersection comparisons with points in n with the bounding box of
k. This step can be multithreaded in a straightforward way.

For datasets in the cosmology domain, we have an additional
step in that the boundaries are periodic and hence wrap around.
For such cases, we have to perform additional intersection tests for
each particle moved by +L and -L in each dimension, where L is
the length of the global bounding box in that dimension. This can
be computationally demanding for large datasets, and we see the
effect of this in the cosmology trillion particle dataset in Section 5.

3.4 Clustering
Once particles in the ghost regions are gathered, the actual pro-

cess of clustering is achieved by first running a clustering algo-
rithm, here DBSCAN, on the local data gathered to each node, fol-
lowed by a process of merging the local clusters so obtained into a
set of global clusters.

A scalable version of DBSCAN has been described in previous
work [40]. This work however has two assumptions: one, it uses
Kdtrees for nearest neighbor computations but does not discuss
how to construct these trees in a scalable manner that also achieves
good load balance in neighbor computations. Second, the imple-
mentation in [40] uses a union-find algorithm to represent clusters;
however, in most cases a cluster id has to be assigned to each par-
ticle of the union-find trees. [40] uses a sequential algorithm to
do this last phase and in fact gathers all points to one node to per-
form this step. In this work, we develop scalable implementations
of these steps – this is required for an end-to-end scalable solution.

3.4.1 Kd-tree construction
Kd-trees are constructed as an efficient data structure in order

to effectively find nearest neighbors of points for local clustering
within the node. Instead of computing distances from a source par-
ticle to all other particles in order to find the nearest neighbors,
a kd-tree traversal allows for many regions of space to be pruned
away and only a few distance computations to be performed.

Kd-tree construction follows a similar spatial partitioning of par-
ticles, and in fact can be viewed as the analog of the partitioning
phase described previously, but done at a scale local to a node. Just
like the partitioning phase, load balancing is again a concern – dif-
ferent threads will perform simultaneous nearest neighbor lookups
that may go through different paths in the tree. Developing kd-
trees that are relatively balanced in the number of particles at dif-
ferent leaf nodes will help reduce such issues. Previous state of the
art [39, 40] uses the average (mean) of particle coordinates to find

kd-tree splits, which can lead to high load imbalance (higher depth
of the tree) in following steps. In this work, we use a sampling
based median computation (as in the geometric partitioning step)
to obtain good load balance. We noticed that in some real datasets
(cosmo_small in Table 1), the maximum depth reduces by 20%
using our technique.

Our second aim is to perform the kd-tree construction in a scal-
able fashion and we develop a multithreaded algorithm to achieve
this. This is a two stage algorithm – (i) For creating the first few
levels of the kd-tree, threads cooperate to perform median compu-
tation and swap particles - this is similar to the way the partitioning
phase is done. This scheme works well as long as there are enough
particles to process at each step. However, as we go down the tree,
each kd-tree node has a small number of particles, and hence paral-
lelization overheads can be high. Hence we stop cooperatively par-
titioning kd-tree nodes once we reach a fixed number of leaf nodes
and switch parallelism modes. (ii) Once we have constructed at
least as many leaf kd-tree nodes using step (i) as there are threads,
we can switch to an independent scheme where each thread takes
up responsibility for constructing the sub-tree (containing the re-
maining levels) that is rooted at one of the leaf nodes above. For
load balancing reasons, we perform this step only when there are
about 2-4 times as many sub-trees to construct as threads. Each
thread stops partitioning when a subtree contains ≤ 32 particles.

In order to avoid high memory bandwidth overheads, we don’t
move the entire data when constructing each level of the kd-tree.
Instead, we use an additional index array to keep track of the id’s of
the particles and we only reorder that array. In the end, we order the
data according to the index array order. We use in-place memory
operations wherever possible. Overall, our scheme scales well and
generates balanced trees.

3.4.2 Local computation and merging
In this step, we call the DBSCAN algorithm (the core kernel in

clustering) to compute clusters. DBSCAN has two user-defined pa-
rameters, ε and minpts. The key idea of DBSCAN is that, for each
data point in a cluster, the neighborhood in a given radius, ε has to
contain at least a minimum number of points (minpts).

Different algorithms for DBSCAN follow different parallelization
schemes. The classical DBSCAN algorithm [16] adopts a breadth-
first order of processing points but is inherently sequential and not
suited to high performance implementations. The authors of [39]
develop a massively parallel approach using a union-find data struc-
ture, which maintains a dynamic collection of clusters and supports
fast UNION and FIND operations [38] to combine clusters or to
identify the cluster to which a point belongs. This scheme was
further modified in [40], where the authors combined the cache lo-
cality of the breadth-first algorithm while still allowing for parallel
updates using union and find operations. We adopt this last ap-
proach in this work. The end result of the clustering phase is a
set of union-find trees, where particles belonging to a single cluster
are placed in the same tree. However, these trees can span across
nodes, and even finding the root of the union-find trees can be time-
consuming. The operations of local clustering, thread-level and
node-level merging have been previously optimized and we follow
the scalable implementation of [40] (exact version).

3.4.3 Computing cluster IDs
The result of clustering is a set of union-find trees where each

tree contains all particles belonging to a single cluster. However,
many science applications require per-particle cluster id to be com-
puted and written to disk. Computing cluster ids from union-find
trees is conceptually simple - one simply traverses the tree up-

wards starting from a particle until it reaches the root, at which
point the cluster id of the root is assigned to that particle. How-
ever, the challenge comes from the fact that each tree (cluster) can
span across multiple nodes, and hence traversing trees can involve
several rounds of heavy communication. For this reason, previous
implementations [39, 40] often gather points to a single node and
perform this computation there. However, this is clearly not scal-
able and is not applicable to large datasets. In this work, we paral-
lelize the process of computing cluster ids from the tree structures
both across nodes and threads.

Only the points belonging to a cluster need the cluster ids. So,
the key step is to traverse the union-find tree globally for all such
points. The idea is that each point tries to find if the root is local to
the node it belongs to. In that case, no communication is required
and it gets the cluster id from the root immediately. Otherwise,
a find root request is initiated. The request might traverse multiple
nodes before reaching the root node. The root then sends the cluster
id directly to the request initiator. The algorithm continues until
there are no more requests to be forwarded.

The number of nodes that requests get forwarded to reflect the
span of the final clusters. For some datasets that have very large
clusters like the plasma physics dataset, we have found that some
clusters can span as many as 68 nodes, which means requests can
be forwarded 68 times. This makes this step highly communication
limited. Moreover, in the last few rounds, only a few nodes may be
active leading to reduced scalability.

3.5 Storing Results
Finally, the assigned cluster id at the end of the previous step

needs to be written to disk. By the time the cluster ids are assigned,
they are partitioned and geometrically distributed across nodes and
are not in the original order of increasing global ids. One option
could be to write the entire data with cluster IDs out of order, which
leads to writing more data than the original file. Instead, we append
the cluster IDs as a separate field to the original HDF5 file. How-
ever, this means that each particle will want to write to a different
region of the file, leading to very inefficient I/O patterns. Hence we
do the following.

3.5.1 Parallel sorting
In this step, we redistribute the particles (only cluster id and

global particle id, not the data) among the nodes to match the ini-
tial order in which particles were read in. We use the global ids
of the particles as a sorting key, and the cluster ids as the value,
and perform a distributed in-memory (key,value) sort. This can be
achieved in a simple manner since all keys are unique – we evenly
assign particles to nodes according to their keys (global ids), and
bucket particles into which node they should end up in. An all-to-
all communication step then brings particles to the right destination
nodes. Each node then performs a local sort of all particles they re-
ceive; this will then be in sorted order. We arrange particles such
that the first few particles end up in node 0, the next few in node 1
and so on. This allows consecutive writes.

3.5.2 File writes
We have used H5Part [25], a veneer API on top of HDF5, to write

the cluster IDs into a HDF5 file. H5Part files are valid HDF5 files
and are compatible with other HDF5-based interfaces and tools.
By constraining the usage scenario to particle-based data, H5Part is
capable of encapsulating much of the complexity of implementing
effective parallel I/O in HDF5. In writing the cluster IDs, we have
striped the output files on Lustre file system to use all available
storage targets. Identical to reading, we use MPI-IO in collective

I/O mode to use a small number of aggregators to interact with the
file system and hence achieve similar behavior.

3.6 Summary of Optimizations
We now summarize the various kinds of optimizations we per-

formed. Overall, we parallelized all steps using hybrid MPI +
OpenMP. We modified various data structures to enable vectoriza-
tion and to improve the locality of cache accesses.

We also perform various optimizations to reduce memory over-
head such as in-place local partitioning and avoid replicating data
more than twice during this process. We use bit-vectors during the
local computation phase to ensure that we do not insert the same
particle more than once into the local processing queues. Finally,
as a note, for large datasets, we frequently run into MPI limitations
regarding the size of messages that can be sent in a single MPI
call. Hence we need to block these to match MPI limitations. This
happens in partitioning, gathering and computing cluster id steps.

4. EXPERIMENTAL CONFIGURATION
We now describe the experimental setup including the cluster

configuration, datasets and software tools used for benchmarking
the end-to-end BD-CATS pipeline.

4.1 Hardware Platform
We performed all the experiments on Edison, a Cray XC30 su-

percomputing system, at the National Energy Research Scientific
Computing Center (NERSC). Edison’s compute partition consists
of 5576 compute nodes. Each compute node of Edison is config-
ured with two 12-core Intel R© Xeon R© 1 E5-2695 v2 processors at
2.4 GHz and 64 GB of 1866-DDR3 memory. Compute nodes com-
municate using a Cray Aries interconnect that supports injection
rates of 10 GB/s bi-directional bandwidth per node. Edison has a
total of 7.4 PB of “scratch” storage provided by a Cray Sonexion
1600 Lustre appliance. This aggregate storage is divided into three
partitions. We have used the partition with 3.2 PB capacity that is
configured with 36 Lustre Object Storage Servers (OSSs) and 144
Object Storage Targets (OSTs). This partition has a peak band-
width of 72 GB/s. Depending on the size of the datasets, we varied
the striping of files used in this study on the Lustre file system.

Table 1: Structural properties of the testbed (cosmology,
cosmo∗ and plasma physics, plasma∗ datasets) with the input
parameters and the taken time in seconds using p cores. K, B,
and T stands for thousand, billion and trillion, respectively.

Name Particles Bounding Box (ε,minpts) Time(s) Cores(p)
cosmo_small 1.07 B 500× 500× 500 0.09766, 1 227 96
cosmo_medium 8.60 B 1K × 1K × 1K 0.09766, 1 249 768
cosmo_large 68.72 B 2K × 2K × 2K 0.09766, 1 364 6144
cosmo_xlarge 1.07 T 8K × 8K × 8K 0.15625, 1 1146 98304
plasma_large 188.84 B 330× 330× 132 0.1, 240 689 24576
plasma_xlarge 1.40 T 330× 330× 132 0.1, 600 1869 98304

4.2 Datasets
A summary of all the datasets used is presented in Table 1. We

give more details about the datasets below.

4.2.1 Cosmology Data
To test the accuracy and efficiency of BD-CATS, we have pro-

duced a set of 3 cosmological N-body simulations using Gadget
code [45]. We have run flat ΛCDM cosmological model with pa-
rameters: Hubble constant h = 0.72, total matter content Ωm =

1Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

0.25, baryonic matter content Ωb = 0.0432, normalization of lin-
ear power spectrum of density fluctuations σ8 = 0.8, and primor-
dial spectral index ns = 0.97. Simulations are started at redshift
z = 200, and evolved till today when z = 0, which is the out-
put we analyze in this paper. Above parameters are cited purely
for completeness; in no way our choice of cosmological parame-
ters affect any of the conclusions we present here, nor the scaling
properties of BD-CATS. This simulation set is excellent for explor-
ing weak-scaling properties of BD-CATS – each simulation has the
same gravitational softening parameter ε = 10h−1kpc, and the
same particle mass, mp = 1.12 × 1010M� (solar mass; 1 M� ≈
2×1030kg). The volume of simulations and the number of particles
are increasing synchronously, the 3 runs have 10243, 20483, and
40963 particles in a cubic box with 500h−1Mpc, 1000h−1Mpc,
and 2000h−1Mpc side, respectively. Note that we do not com-
pletely maintain the same amount of work per MPI rank as we
scale the problem up. The initial conditions in cosmological simu-
lations are Gaussian random field of density fluctuations, therefore
in larger volume we better sample the tail of distribution, meaning
we initially produce very rare density peaks, which will result in
very massive halos at z = 0. This is nevertheless as close as we
can get to ideal weak-scaling requirements, while still analyzing
realistic cosmological simulations.

In addition to these 3 runs, we also use the biggest cosmological
N-body simulation run to date, with 10,2403 particles [44]. This
simulation was produced with a different code, using a set of dif-
ferent cosmological and numerical parameters, thus it is not just the
“bigger” version of other runs in this paper. We analyze this simu-
lation to demonstrate that BD-CATS can successfully be applied to
one of the largest datasets in cosmology. Cosmological simulations
use periodic boundaries in all 3 dimensions. Particle properties in
all the cosmology datasets include spatial location (x,y,and z), and
particle velocities (vx, vy, and vz). The biggest dataset is stored
in a single HDF5 file with a size of 24 TB, where each particle
property organized into a HDF5 dataset. The smaller datasets, i.e.,
10243, 20483, 40963 data, also follow the same file organization
and are of size ∼24 GB, ∼192 GB, and ∼1.6 TB, respectively.

4.2.2 Plasma Physics Data
The 3D simulation of magnetic reconnection in electron-positron

plasma was performed using high-performance fully relativistic PIC
code VPIC [5]. The initial conditions correspond to Harris current
sheet equilibrium [22] Bx = B0 tanh(z/δ) with a guide magnetic
field of equal strength to the reconnecting component By = B0,
such that the rotation angle of the magnetic field through the layer
is 90◦. The initial current sheet thickness is δ = 1c/ωpe, where
c is the speed of light and ωpe is the plasma frequency. The back-
ground plasma density nb = 0.3n0, where n0 is the peak density
of the Harris current sheet. The ratio of electron to positron tem-
perature is Te/Tp = 1, and the ratio of electron plasma frequency
to the electron cylotron frequency is ωpe/ωce = 3. The simulation
is performed in a 3D domain with open boundary conditions [12]
of size (330×330×132)c/ωpe with 2000×2000×800 cells. The
average initial particle density is 320 particles per species per cell,
so that the simulation started tracking roughly two trillion particles
(one trillion electrons and one trillion ions) and as it progressed
more particles were added due to the open boundaries.

Particle properties of interest in this simulation include spatial
location (x,y,z), kinetic energy E = mec

2(γ − 1), and individual
components of particle velocity Ux, Uy , and Uz . The electron data
we used was written in the ∼23,000 time step that contained the
properties of∼1.4 trillion particles. The particle data was stored in
a single HDF5 file of ∼36 TB, with each property of the particles

was organized as a HDF5 dataset. For a smaller scale run, we have
used a subset of the large file when we extracted all the data related
to particles with E > 1.1mec

2. The resulting sizes of the subset
file is ∼5 TB, where the number of particles is ∼188.8 billion.

4.3 Design of Scaling Experiments
All code was implemented in C/C++ and was compiled using

Intel R© C++ compiler v.15.0.12. The code was parallelized using
OpenMP and MPI. We used Intel R© MPI library v.5.0.2.

We demonstrate strong scaling on the large cosmology and plasma
physics datasets (see Table 1) in Section 5.3.2. We cluster using
the 3 spatial coordinates with Euclidean distance metric computa-
tion (with periodic boundaries for cosmology). We show detailed
performance and runtime breakdown for the xlarge (trillion+ point)
datasets in Section 5.4. We use the small, medium and large cos-
mology datasets to demonstrate weak scaling using 96 to 6144
cores. For these datasets, the corresponding DBSCAN input pa-
rameters (ε, minpts) are shown in Table 1.

For cosmology datasets, a very common value for FOF search
radius is 1/5th of the mean interparticle spacing, which roughly
corresponds to the iso-density surface of ∼82× the mean matter
density in a simulation (see, e.g. [35]). We use this as ε; in addi-
tion, we focus here on minpts = 1, as this choice of parameters
eases validation against known FOF results. We show results for
minpts = 3 in Section 5.5.1. For plasma physics data, the struc-
tures arising in reconnection layers are known to have a certain
characteristic scale length. Therefore, the value of ε was chosen to
be reasonably close to that scale. For a given ε, the value ofminpts
was estimated from local values of plasma density.

5. RESULTS

5.1 Improvement in end-to-end performance
We compare our end-to-end clustering time to previous work,

Pardicle [40] (exact version) on cosmo_small dataset using 32
nodes. The results of the comparison are tabulated in Table 2. Al-
though Pardicle is not an end-to-end optimized system (focused
only on improvements to the DBSCAN kernel), it was recently shown
to be the best performing DBSCAN implementation to date [40].
We present this comparison to show how the other steps impact the
performance of DBSCAN kernel. Due to a combination of better
load balancing and other code optimizations, the performance of
the DBSCAN kernel itself improves by a factor of 5.1×. Consider-
ing all steps, BD-CATS shows an end-to-end speedup of 7.7× over
an end-to-end Pardicle run.

Table 2: End-to-end performance comparison of BD-CATS with
the exact version of Pardicle [40]

Reading Parti Gath Kd-tree DBSCAN Cluster Storing Total
tioning ering _ids

Pardicle 18.4 33.4 14.4 78.5 91.1 8.6 27.4 271.7
BD-CATS 6.7 3.1 0.2 2.5 17.7 1.2 4.1 35.5
Speedup 2.7 10.8 62.1 31.6 5.1 7.3 6.7 7.7

We explain the component speedups below. Reading and writing
2Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These op-
timizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any opti-
mization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel micro-architecture are reserved for Intel micropro-
cessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revi-
sion #20110804

1 2 3 4 5 6
log(np)

100

101

102

103

104

105

106

N
um

be
r

of
 c

lu
st

er
s

FoF
BD-CATS

Figure 3: Histogram of cluster masses in 10243 cosmological
simulation using FOF and DBSCAN halo finder.

times improved due to the use of HDF5 formats and better use of
parallel I/O through striping as explained in Section 3. Partitioning
and gathering time improved because of multithreading. We used a
sampling-based median computation for partitioning (as discussed
in Section 3.2), which improves load balancing for downstream
tasks. Most of the overall performance gain was achieved due to
much better load balancing in the most compute-expensive portions
of the code (Kd-tree construction and DBSCAN). The range of par-
ticles per node was [10M, 91M] for Pardicle, whereas BD-CATS
produces partitions in the range of [33M, 34M]. This improves the
skew (max/mean) from 2.7 to 1.0. We also found that within a
node Kd-tree construction is more balanced due to use of better me-
dian in our case. While Pardicle’s Kd-trees have 21-25 levels, we
found that BD-CATS consistently produces Kd-trees with 20 levels
(cosmo_small dataset). These improvements in load balancing
improved the runtime of DBSCAN kernel even when no code op-
timizations were done here. We observed a speedup of 2.6x over
Pardicle due to this factor alone. In addition, code optimizations
such as improved parallelizations and cache utilization gave an ad-
ditional 1.9x speedup. Kd-tree construction itself was also opti-
mized as explained in Section 3.4.1. Final clustering stage was
serialized in Pardicle i.e. one node gathered all points to compute
the cluster ids. This step is fully distributed in BD-CATS (Section
3.4.3). We saw similar speedups for other datasets as well.

5.2 Accuracy
To validate BD-CATS, we have compared results of DBSCAN

with minpts parameter set to 1 with a parallel FOF halo (cluster)
finder originally developed in Los Alamos [21], and tested against
many other halo finder codes in use within the cosmology commu-
nity [29] (see “LANL finder”). While in principle the two codes
could produce identical results, in practice that will not happen as
both algorithms rely on a floating-point comparison, i.e. they test
if a neighboring particle is inside a search radius or not. The most
straightforward comparison is to go on a halo by halo basis and
check the level of agreement; in practice that is unnecessarily cum-
bersome, as cosmological simulations produce very large number
of small halos (Figure 3). We have conducted one-to-one mapping
for a random subset of 20 halos with 100,000 or more particles. We
observed a 0.001% difference in the number of points between the
two algorithms. Information about the three largest clusters is pre-
sented in Table 3. The level of agreement between DBSCAN and
FOF is great as expected, generally within few particles. Compar-
ing BD-CATS with Pardicle, both systems use the same DBSCAN
clustering algorithm, and hence produce results of identical quality.

5.3 Scalability
We showcase strong and weak scaling of BD-CATS on cosmol-

ogy and plasma physics datasets below.

Table 3: Comparison of number of particles in top 3 biggest
clusters with FOF[21]

BD-CATS FOF Difference
362,885 362,889 4
288,333 288,336 3
243,590 243,589 1

5.3.1 Strong scaling
In order to demonstrate strong scaling, we ran BD-CATS on vary-

ing number of cores using two large datasets, cosmo_large and
plasma_largewith 69B and 189B particles, respectively. cosmo_
large dataset was run on five scales with core counts ranging from
6,144 to 98,304, whereas the plasma_large dataset was run on
three scales from 24,576 to 98,304 cores. Since the plasma physics
dataset is much larger than the cosmology dataset, hence it requires
more memory and could not be run on fewer than 24,576 cores.
Figure 4 shows the results of our strong scaling experiments.

1

2

4

8

16

6144 12288 24576 49152 98304
Sp
ee
du

p
no

rm
al
ize

d
to

61
44

 co
re
s

Cores

Including I/O
Without I/O
Ideal

(a) Cosmology

1

2

4

24576 49152 98304

Sp
ee
du

p
co
m
pa

re
d
to

24
57

6
co
re
s

Cores

Including I/O
Without I/O
Ideal

(b) Plasma physics

Figure 4: Strong scaling on cosmo_large (69B particles) and
plasma_large (189B particles) normalized to the time taken
on 6,144 and 24,576 cores respectively.

We observe a speedup of 9.7× excluding I/O and 8.7× including
I/O while running the cosmology dataset on 98,304 cores compared
to running on 6,144 cores (16× cores). For the plasma physics
dataset, increasing the core count by 4× improves runtime by 2.0×
and 2.2×when excluding and including I/O runtimes, respectively.
For the plasma physics dataset, we achieved relatively low speedups
due to high communication overheads for large scale runs in the
find cluster ids step. Specifically, clusters in these datasets are
large and span several nodes, and the span increases with increasing
node count. Hence the number of communication rounds required
to reach the root of the union-find tree increases with node count.
Most of the nodes remain idle during the later rounds, resulting in
low scalability. In contrast, the clusters in cosmology datasets are
not as large and hence performance on these datasets scales well.

5.3.2 Weak scaling
We fix the number of particles per node to be ∼250M and run

weak scaling experiments on the cosmology datasets. Figure 5
shows the result of running the small, medium and large cosmology
datasets on 96, 768 and 6,144 cores, respectively. We see good scal-
ability in end-to-end runtime (1.6× runtime increase when scaled
to 64× more cores and data). Weak scaling was not possible on
plasma physics datasets as the dataset characteristics change when
using different energy filters, so work per node does not remain
constant while scaling down.

5.4 Trillion particle clustering
We demonstrate BD-CATS, the first end-to-end trillion particle

clustering system on both cosmology and plasma physics xlarge
datasets. These datasets are 24TB (1T particles) and 36TB (1.4T
particles) in size, respectively. We used 98,304 cores to perform the
experiment. The complete end-to-end run took 20 and 30 minutes,

0

200

400

96 768 6144

En
d‐
to
‐e
nd

 ti
m
e
(s
ec
on

ds
)

Cores

Including I/O
Without I/O

Figure 5: Weak scaling on small, medium and large cosmology
datasets using 96, 768, and 6,144 cores, respectively.

0

400

800

1,200

1,600

2,000

cosmo plasma

Ta
ke
n
tim

e
(s
ec
on

ds
) writing (I/O)

sorting

cluster_ids

dbscan

kdtree

gathering

partitioning

reading (I/O)

(a) Actual time (seconds)

0

20

40

60

80

100

cosmo plasma

Ta
ke
n
tim

e
(%

)

writing (I/O)

sorting

cluster_ids

dbscan

kdtree

gathering

partitioning

reading (I/O)

(b) Relative time (%)

Figure 6: Taken time by different steps of BD-CATS on the
largest cosmology (cosmo_xlarge, 1 trillion particles) and
plasma physics (plasma_xlarge, 1.4 trillion particles) datasets
using 98,304 cores.

respectively. The detailed breakdown is shown in Figure 6.
For the trillion particle clustering, I/O is the most dominant com-

ponent of runtime, taking about 50% and 40% of the total run-
time for the cosmology and plasma physics datasets respectively.
DBSCAN is the next largest component taking around 20% and
44% respectively. For the plasma physics dataset, the number of
particles per node is 40% higher than cosmology. The datasets also
have difference characteristics - each particle in plasma physics
dataset has on average∼ 410 neighbors, whereas cosmology dataset
has only ∼ 25 neighbors. These factors show up as increased
DBSCAN runtime for the plasma physics dataset. For the cosmol-
ogy dataset, gathering takes significant time (19%). This is due to
the periodic boundary condition, leading to more intersection tests
(see Section 3.3) and an increased number of points being gathered.
We continue to see that the finding cluster ids step takes more time
on the plasma physics dataset (5% of overall time) as compared to
the cosmology dataset (0.4% of overall time).

5.5 Science interpretations

5.5.1 Cosmology
As discussed previously in Section 2.1, DBSCAN can be thought

of a superset of FOF algorithm. Although prolifically used, FOF
has some known drawbacks, most notably the easy linking of two
different clusters into one via a narrow stream of particles connect-
ing them (see e.g. left panel in Figure 7). This situation is very
common in cosmological applications, as smaller halos are driven
by gravity into merging with bigger halos, and tidal stripping pro-
duces particle “bridges” much before centers of two halos will col-
lide. In Figure 7 we present an example of how theminpts param-
eter in DBSCAN can be used to improve application accuracy via
removing such “bridges”. In this example, changing the minpts
parameter from 1 (equivalent to FOF) to 3 clearly improves the
cluster quality. As middle panel shows, minpts = 3 didn’t affect
the “main” part of a halo in a significant way, but has removed links
to most of smaller, in-falling halos. Thus DBSCAN can not only re-
produce FOF results, but also offers promise of improving them via
optimally chosen minpts parameter. Finding the optimal choice is
beyond the scope of this paper, and is something we will pursue in
the future.

5.5.2 Plasma physics
Theoretical analysis and experimental observations suggest that

magnetic reconnection can efficiently accelerate charged particles
to very high energies. While a variety of competing mechanisms
have been proposed in the literature, a great deal of outstanding
questions remain. Quantifying distribution of accelerated parti-
cles in space and energy is important since those distributions re-
flect basic properties of the acceleration mechanism operating in
a given scenario. As an example, here we discuss analysis of the
E > 1.5mec

2 dataset that contains a high-energy subset of all the
particles in the simulation. To the best of our knowledge, this is the
first application of clustering analysis to the problem of magnetic
reconnection.

Figure 8 shows the spatial distribution of clusters identified by
DBSCAN. The high-density clusters are predominantly localized
within the current sheet and appear as narrow structures elongated
along the direction of local magnetic field. The availability of de-
tailed information on the particles comprising the clusters allowed
us to perform analysis not possible previously. For example, the
left panel in Fig. 9 shows distribution of average particle energy
inside the clusters and compares it with the distribution of all the
particles in the data set. It is apparent that the clusters are associ-
ated with a particular, narrow energy range. Moreover, the particles
within each cluster are characterized by a very narrow distribution
of energies. This is illustrated in the right panel of Fig. 9, which
shows normalized variance of particle energy inside the clusters. A
possible interpretation of these results is that the particles compris-
ing the clusters have been accelerated in a process where they gain
a fixed amount of energy in a relatively narrow region of space.

6. RELATED WORK
Halo finding is an essential analysis steps in N-body cosmologi-

cal simulations, and there are many different approaches to it with
tens of independently written codes. We refer the reader to the re-
cent review on halo finding [30]. The FOF halo finder we use as
benchmark in this paper (listed as “LANL finder” in the mentioned
review) is presently used as in situ halo finder in the state-of-the-
art HACC code [19, 20]. In contrast, clustering analysis of particle
space in plasma physics applications is used rarely, if at all. Exist-

Figure 7: Example of improvement DBSCAN can offer in cosmological halo finding. In the left panel, we show the most massive halo
in our 10243 simulation using FOF halo finder or equivalently DBSCAN withminpts = 1. In the right panel we show particles which
DBSCAN defines as a part of halo when we set minpts = 3. Particles which appear in minpts = 1 halo, but not in minpts = 3 halo
are scatter plotted in the middle panel, and we can clearly see that most significant bridges are removed, while the “main” part of
the object is almost unchanged.

Figure 8: Clusters identified in the plasma physics E >
1.5mec

2 dataset with ε = 0.3 and minpts = 300. The back
panel shows plasma density in the simulations. Clusters are
colored by the ID.

0

0.5

1

1.5 2

P
D
F

E/(mec
2
)

0

0.2

1.5 2

σ
E

E/(mec
2
)

Figure 9: Analysis of energy distribution of clusters identified
in the plasma physics E > 1.5mec

2 dataset with ε = 0.3 and
minpts = 300. Left panel shows probability distribution func-
tion (PDF) of mean particle energy associated with clusters
(bars), 〈Ek. For reference, we also show PDF of all particles
in the datasets (dots) and its power law approximation (solid
line). Right panel shows normalized variance σE of particle
energy inside each cluster.

ing methods typically focus on clustering of grid data, for example
identifying current sheets in fluid turbulence simulations [47].

As mentioned earlier, many existing parallelizations of DBSCAN
adopt the master-slave model [6, 3, 8, 9, 53, 54]. The idea is that the
data is equally partitioned and distributed among the slaves. Each
slave then computes the clusters locally and sends back the results
to the master, which then merges the clusters sequentially to obtain
the final clusters. This strategy incurs high communication over-
head between the master and slaves, and a low parallel efficiency
during the merging process. Since the master has to hold the entire
clustering solution, this does not scale to today’s massive datasets.
Several map-reduce or hadoop-based approach were presented in
[17, 23, 10]. None of these are end-to-end solutions and assumes
several pre-processing or post-processing steps.

Recently, DBSCAN has been re-designed to break the inherent
sequential nature using the concept of using union-find trees. The
authors demonstrated high parallelism (6k speedup using 8k cores)
on datasets of size 100 million particles[39]. This work has later
been extended to an approximate version with high quality [40].
Although these works progressed DBSCAN significantly, they mainly
improved parallelism of the core algorithm, not paying attention to
assumed pre-processing or post-processing steps such as partition-
ing, kd-tree-construction or finding cluster ids. These steps were
partially parallel or even sequential on a single node, hence not
suitable for scientific applications with trillion range datasets.

To the best of our knowledge, the only available end-to-end sys-
tem is a GPU based DBSCAN implementation [51, 50]. They showed
that 6.5 billion 2D particles can be processed using 8,192 GPU
nodes in 7.5 minutes. Even assuming perfect scalability, their ap-
proach would requires ∼ a million nodes to process a trillion parti-
cles. In contrast, we process 1.4 Trillion 3D particles using 4,096
nodes in 30 minutes.

7. CONCLUSION AND FUTURE WORK
This paper has presented a BD-CATS, a highly scalable, end-

to-end framework for performing clustering on massive simulation
output. We have demonstrated weak and strong scaling for all
stages in the BD-CATS pipeline on up to ∼ 100, 000 cores of a
Cray XC30 system. In the first exercise of its kind, we have suc-
cessfully demonstrated application of BD-CATS to a trillion parti-
cle cosmology simulation, and a 1.4 trillion particle plasma physics
simulation dataset. Both of these applications have facilitated first-
time scientific insights into important scientific questions; an en-

deavor that has been previously intractable due to the sheer size
of datasets. We believe that such highly scalable clustering tools
will be critical for analysis of both simulation and observational
datasets. As future work, we intend to use BD-CATS to gain in-
sights into large bioimaging datasets.

8. ACKNOWLEDGMENT
This work was supported by the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Department of En-
ergy, under contract number DE-AC02-05CH11231. ZL acknowl-
edges support by the Scientific Discovery through Advanced Com-
puting (SciDAC) program funded by U.S. Department of Energy
Office of Advanced Scientific Computing Research and the Of-
fice of High Energy Physics. This research used resources of the
National Energy Research Scientific Computing Center. The au-
thors would like to acknowledge the excellent support extended
by NERSC staff (Tina Declerck, Tine Butler, Zhenji Zhao and Jay
Srinivasan) in facilitating these runs. This work made use of the
NASA Astrophysics Data System and of the astro-ph preprint archive
at arXiv.org.

9. REFERENCES
[1] Magnetospheric multiscale (mms) mission.

http://mms.gsfc.nasa.gov/.
[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.

Optics: ordering points to identify the clustering structure. In
Proceedings of the 1999 ACM SIGMOD, pages 49–60, New
York, NY, USA, 1999. ACM.

[3] D. Arlia and M. Coppola. Experiments in parallel clustering
with DBSCAN. In Euro-Par 2001 Parallel Processing, pages
326–331. Springer, LNCS, 2001.

[4] D. Birant and A. Kut. ST-DBSCAN: An algorithm for
clustering spatial-temporal data. Data & Knowledge
Engineering, 60(1):208–221, 2007.

[5] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T.
Kwan. Ultrahigh performance three-dimensional
electromagnetic relativistic kinetic plasma simulationa).
Physics of Plasmas (1994-present), 15(5):–, 2008.

[6] S. Brecheisen, H. Kriegel, and M. Pfeifle. Parallel
density-based clustering of complex objects. Adv. in Know.
Discovery and Data Mining, pages 179–188, 2006.

[7] S. Byna, A. Uselton, D. K. Prabhat, and Y. He. Trillion
particles, 120,000 cores, and 350 tbs: Lessons learned from a
hero i/o run on hopper. In Cray User Group meeting, 2013.

[8] M. Chen, X. Gao, and H. Li. Parallel DBSCAN with priority
r-tree. In Information Management and Engineering
(ICIME), 2010 The 2nd IEEE International Conference on,
pages 508–511. IEEE, 2010.

[9] M. Coppola and M. Vanneschi. High-performance data
mining with skeleton-based structured parallel programming.
Parallel Computing, 28(5):793–813, 2002.

[10] B.-R. Dai and I. Lin. Efficient map/reduce-based dbscan
algorithm with optimized data partition.

[11] W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. J.
Albright, B. Bergen, and K. J. Bowers. Role of electron
physics in the development of turbulent magnetic
reconnection in collisionless plasmas. Nat Phys,
7(7):539–542, July 2011.

[12] W. Daughton, J. Scudder, and H. Karimabadi. Fully kinetic
simulations of undriven magnetic reconnection with open
boundary conditions. Physics of Plasmas (1994-present),
13(7):072101, 2006.

[13] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White.
The evolution of large-scale structure in a universe
dominated by cold dark matter. Astrophysical Journal,
292:371–394, May 1985.

[14] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. Parallel
sorting on a shared-nothing architecture using probabilistic
splitting. In Parallel and Distributed Information Systems,
1991., Proceedings of the First International Conference on,
pages 280–291. IEEE, 1991.

[15] J. Einasto, A. A. Klypin, E. Saar, and S. F. Shandarin.
Structure of superclusters and supercluster formation. III
Quantitative study of the local supercluster. Monthly Notices
of the Royal Astronomical Society, 206:529–558, Feb. 1984.

[16] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data mining,
volume 1996, pages 226–231. AAAI Press, 1996.

[17] Y. Fu, W. Zhao, and H. Ma. Research on parallel DBSCAN
algorithm design based on mapreduce. Advanced Materials
Research, 301:1133–1138, 2011.

[18] M. T. Goodrich. Communication-efficient parallel sorting.
SIAM Journal on Computing, 29(2):416–432, 1999.

[19] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, T. Peterka, J. Insley, D. Daniel, P. Fasel,
N. Frontiere, and Z. Lukić. The Universe at Extreme Scale:
Multi-Petaflop Sky Simulation on the BG/Q. SC ’12, Nov.
2012.

[20] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann,
D. Daniel, P. Fasel, V. Morozov, G. Zagaris, T. Peterka,
V. Vishwanath, Z. Lukić, S. Sehrish, and W.-k. Liao. HACC:
Simulating Sky Surveys on State-of-the-Art Supercomputing
Architectures. ArXiv e-prints, Oct. 2014.

[21] S. Habib, A. Pope, Z. Lukić, D. Daniel, P. Fasel, N. Desai,
K. Heitmann, C.-H. Hsu, L. Ankeny, G. Mark,
S. Bhattacharya, and J. Ahrens. Hybrid petacomputing meets
cosmology: The Roadrunner Universe project. Journal of
Physics Conference Series, 180(1):012019, July 2009.

[22] E. Harris. On a plasma sheath separating regions of
oppositely directed magnetic field. Il Nuovo Cimento Series
10, 23(1):115–121, 1962.

[23] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan. Mr-dbscan: a
scalable mapreduce-based dbscan algorithm for heavily
skewed data. Frontiers of Computer Science, 8(1):83–99,
2014.

[24] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan.
Mr-dbscan: an efficient parallel density-based clustering
algorithm using mapreduce. In Parallel and Distributed
Systems (ICPADS), 2011 IEEE 17th International
Conference on, pages 473–480. IEEE, 2011.

[25] M. Howison, A. Adelmann, E. W. Bethel, A. Gsell,
B. Oswald, and Prabhat. H5hut: A High-Performance I/O
Library for Particle-Based Simulations. In Proceedings of
2010 Workshop on Interfaces and Abstractions for Scientific
Data Storage (IASDS10), Heraklion, Crete, Greece, Sept.
2010. LBNL-4021E.

[26] S. Huo. Detecting Self-Correlation of Nonlinear, Lognormal,
Time-Series Data via DBSCAN Clustering Method, Using
Stock Price Data as Example. PhD thesis, The Ohio State
University, 2011.

[27] D. Kagan, L. Sironi, B. Cerutti, and D. Giannios. Relativistic
magnetic reconnection in pair plasmas and its astrophysical

applications. Space Science Reviews, pages 1–29, 2015.
[28] C. Kim, J. Park, N. Satish, H. Lee, P. Dubey, and

J. Chhugani. Cloudramsort: Fast and efficient large-scale
distributed ram sort on shared-nothing cluster. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages
841–850, New York, NY, USA, 2012. ACM.

[29] A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce,
M. A. Aragon-Calvo, Y. Ascasibar, P. S. Behroozi,
D. Ceverino, S. Colombi, J. Diemand, K. Dolag, B. L. Falck,
P. Fasel, J. Gardner, S. Gottlöber, C.-H. Hsu, F. Iannuzzi,
A. Klypin, Z. Lukić, M. Maciejewski, C. McBride, M. C.
Neyrinck, S. Planelles, D. Potter, V. Quilis, Y. Rasera, J. I.
Read, P. M. Ricker, F. Roy, V. Springel, J. Stadel, G. Stinson,
P. M. Sutter, V. Turchaninov, D. Tweed, G. Yepes, and
M. Zemp. Haloes gone MAD: The Halo-Finder Comparison
Project. Monthly Notices of the Royal Astronomical Society,
415:2293–2318, Aug. 2011.

[30] A. Knebe, F. R. Pearce, H. Lux, Y. Ascasibar, P. Behroozi,
J. Casado, C. C. Moran, J. Diemand, K. Dolag,
R. Dominguez-Tenreiro, P. Elahi, B. Falck, S. Gottlöber,
J. Han, A. Klypin, Z. Lukić, M. Maciejewski, C. K.
McBride, M. E. Merchán, S. I. Muldrew, M. Neyrinck,
J. Onions, S. Planelles, D. Potter, V. Quilis, Y. Rasera, P. M.
Ricker, F. Roy, A. N. Ruiz, M. A. Sgró, V. Springel,
J. Stadel, P. M. Sutter, D. Tweed, and M. Zemp. Structure
finding in cosmological simulations: the state of affairs.
Monthly Notices of the Royal Astronomical Society,
435:1618–1658, Oct. 2013.

[31] H.-P. Kriegel and M. Pfeifle. Hierarchical density-based
clustering of uncertain data. In Data Mining, Fifth IEEE
International Conference on, pages 4–pp. IEEE, 2005.

[32] Z. Lukić, D. Reed, S. Habib, and K. Heitmann. The structure
of halos: Implications for group and cluster cosmology. The
Astrophysical Journal, 692(1):217, 2009.

[33] J. MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. USA, 1967.

[34] S. Madeira and A. Oliveira. Biclustering algorithms for
biological data analysis: a survey. Computational Biology
and Bioinformatics, IEEE/ACM Transactions on,
1(1):24–45, 2004.

[35] S. More, A. V. Kravtsov, N. Dalal, and S. Gottlöber. The
Overdensity and Masses of the Friends-of-friends Halos and
Universality of Halo Mass Function. Astrophysical Journal
Supplement, 195:4, July 2011.

[36] A. Mukhopadhyay and U. Maulik. Unsupervised satellite
image segmentation by combining SA based fuzzy clustering
with support vector machine. In Proceedings of 7th
ICAPR’09, pages 381–384. IEEE, 2009.

[37] H. Park and C. Jun. A simple and fast algorithm for
K-medoids clustering. Expert Systems with Applications,
36(2):3336–3341, 2009.

[38] M. Patwary, J. Blair, and F. Manne. Experiments on
union-find algorithms for the disjoint-set data structure. In
Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA 2010), pages 411–423.
Springer, LNCS 6049, 2010.

[39] M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao,
F. Manne, and A. Choudhary. A new scalable parallel dbscan
algorithm using the disjoint-set data structure. In

Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 62:1–62:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[40] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne,
S. Habib, and P. Dubey. Pardicle: Parallel approximate
density-based clustering. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 560–571, Piscataway,
NJ, USA, 2014. IEEE Press.

[41] P. J. E. Peebles. The large-scale structure of the universe.
1980.

[42] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud,
M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B.
Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII.
Cosmological parameters. ArXiv e-prints, Feb. 2015.

[43] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
WaveCluster: a wavelet-based clustering approach for spatial
data in very large databases. The VLDB Journal,
8(3):289–304, 2000.

[44] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler,
D. E. Holz, and P. M. Sutter. Dark Sky Simulations: Early
Data Release. ArXiv e-prints, July 2014.

[45] V. Springel. The cosmological simulation code GADGET-2.
Monthly Notices of the Royal Astronomical Society,
364:1105–1134, Dec. 2005.

[46] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the The 7th
Symposium on the Frontiers of Massively Parallel
Computation, FRONTIERS ’99, pages 182–, Washington,
DC, USA, 1999. IEEE Computer Society.

[47] V. M. Uritsky, A. Pouquet, D. Rosenberg, P. D. Mininni, and
E. F. Donovan. Structures in magnetohydrodynamic
turbulence: Detection and scaling. Phys. Rev. E, 82:056326,
Nov 2010.

[48] W. Wang, J. Yang, and R. Muntz. STING: A statistical
information grid approach to spatial data mining. In
Proceedings of the International Conference on Very Large
Data Bases, pages 186–195. IEEE, 1997.

[49] M. S. Warren, K. Abazajian, D. E. Holz, and L. Teodoro.
Precision Determination of the Mass Function of Dark
Matter Halos. Astrophysical Journal, 646:881–885, Aug.
2006.

[50] B. Welton and B. P. Miller. The anatomy of mr. scan: a
dissection of performance of an extreme scale gpu-based
clustering algorithm. In Proceedings of the 5th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale
Systems, pages 54–60. IEEE Press, 2014.

[51] B. Welton and B. P. Miller. Mr. scan: A hybrid/hybrid
extreme scale density based clustering algorithm. 2014.

[52] M. White. The mass of a halo. Astronomy and Astrophysics,
367:27–32, Feb. 2001.

[53] X. Xu, J. Jäger, and H. Kriegel. A fast parallel clustering
algorithm for large spatial databases. High Performance
Data Mining, pages 263–290, 2002.

[54] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu. Approaches for
scaling DBSCAN algorithm to large spatial databases.
Computer science and technology, 15(6):509–526, 2000.

