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Abstract—In the era of data-intensive scientific discovery,
data analysis is critical for scientists to identify essential infor-
mation from the mountains of data generated by large-scale
simulations or experiments. A generic operation in scientific
data analysis is to combine information from multiple data
sets, which are stored in heterogeneous file formats. This
operation is typically known as a Join in database management
field. Currently, a join operation involving multiple data sets
in different file formats is time-consuming because of the
need to prepare data (i.e., to convert data into a uniform
format or to ingest into a database) and to run the join algo-
rithms. Furthermore, data processing languages, such as SQL
(Structured Query Language), can not easily express typical
scientific analysis tasks such as interpolation. In this paper, we
propose three techniques to address these challenges: a two-
level data model to process data from different file formats
without converting to a uniform format, a data organization
structure known as Multi-Dimensional Binning (MDBin), and
a join processing algorithm known as Spatially Clustered Join
(SCJoin). Together, these techniques allow scientific data files to
be used for query processing with less I/O cost and fast query
response time without the extra cost to perform file format
conversion and data ingestion. Evaluation of our proposed
techniques in joining and interpolating data sets generated by a
plasma physics simulation studying space weather phenomenon
showed up to 8X improvement over FastQuery. Querying
with our solution outperforms SciDB, a popular array data
management system for scientific data, by 43X-143X. We also
demonstrate that our methods scale to 64K CPU cores in
analyzing 32TB data on a large-scale supercomputing system.

I. INTRODUCTION

Scientific data analysis operations often need to combine
multiple data sets to extract knowledge. For example, in
climate science, the atmospheric carbon dioxide (CO2) and
the surface radiative forcing of the earth are used together
to study the effects of greenhouse gases [10]; in biological
sciences, images from different mass spectrometers are com-
pared to develop new technologies for molecular imaging
[20]. Moreover, many of the scientific data sets are massive.
In this study, we aim to develop efficient techniques to
support complex join operations that extract information
from combining large heterogeneous scientific data sets.

Traditional relational database management systems, such
as Oracle, PostgreSQL, and array-based data management
systems such as SciDB can answer join queries [19], [3].
However, scientific data is often stored in files with formats
such as HDF5, NetCDF, ROOT, etc. Using the database
management systems need a time-consuming process of

preparing and loading massive amounts of data into formats
defined by these systems. Furthermore, the languages/inter-
faces used by these systems to perform data analysis are
inefficient to support the operations such as interpolation
that are frequently used in scientific data analysis. There
are some efforts on answering queries directly using the
scientific data files, such as FastQuery [5]. However, these
systems either do not support joins or require all data files
to be in the same format.

To address the above shortcomings, we present SDS-
MD (a Scientific Data Service for Multiple Data sets) as
set of new features of the Scientific Data Services (SDS)
framework [26], [7]. In our previous work, we have demon-
strated various data management services of SDS such as
transparent data reorganization [6] and parallel range query
processing [2], [8] on a single file. Here we develop new
methods for efficient joins on multiple data sets in different
formats. The key features of SDS-MD are the following:

• We design a lightweight two-level data model to enable
querying directly on scientific data files without requiring
format conversion or data ingestion. In this two-level data
model, the top level abstraction captures a view of multi-
dimensional array and the lower level abstraction contains
the information of file format.

• We introduce a multi-dimensional binning structure named
MDBin to organize the user data. The 1-D version of
MDBin has inherited advantages of the clustered indexing
technique we studied earlier [27], [1], but MDBin does
not rely on any index and works with arbitrary number
of variables. Our clustered data organization allows query
processing to be performed on relatively large data blocks
stored in large-scale parallel file systems.

• We develop a parallel query processing algorithm named
spatially clustered join (SCJoin), to answer join queries
efficiently. SCJoin uses the MDBin data structure to
reduce I/O costs on parallel file systems. At the same
time, SCJoin can use the abundant parallelism available
on high performance computing (HPC) systems. Fur-
thermore, SCJoin supports a convenient way to express
common operations such as the multi-dimensional inter-
polation, avoiding the need for complex SQL statements.

We evaluate SDS-MD using the queries derived from
analysis tasks from a plasma physics application that studies
the behavior of plasma in space [4]. The queries involving



linear, bilinear, and trilinear interpolations that are precursors
to more advanced analysis operations. We compare the
performance of SDS-MD with FastQuery that is currently
used for analyzing the plasma data [4], and with SciDB, an
array-based data management system developed for large-
scale scientific data analysis. From the experimental results,
we observed that SDS-MD significantly outperforms both
FastQuery and SciDB.

The rest of the paper is organized as follows. In Section II,
we provide various research efforts and the background
for scientific data analysis using SciDB, FastQuery, and
SDS. In Section III, we present the technical details of
our two-level data model, MDBin, and SC-Join. Section IV
describes our experimental setup. In Section V, we evaluate
the performance of SDS-MD. We conclude the paper with
a discussion of future work in Section VI.

II. BACKGROUND AND RELATED WORK

A large class of methods to support scientific data analysis
are based on relational database systems [19]. Realizing that
most scientific data are stored in multi-dimensional arrays,
array-based database systems have been recently developed
[3]. The best known example of such a system is SciDB
[3], which is designed for shared-nothing architectures. In
addition, there are also tools and libraries that directly
work on the data files without a database system [25], [5],
[14], [15]. The example we plan to use from this group
is FastQuery [25], [5], which is known to be efficient for
processing range conditions on a single data set, but does
not support joins on multiple data sets.

Scientific data is typically stored in files using one of the
handful of common file formats such as HDF5 [11], NetCD-
F/PNetCDF [13], FITS[24], etc. Many scientific applications
also use custom binary formats defined by application devel-
opers. Therefore, it is common for the data sets needed for
a join operation are in different formats. For example, in the
plasma physics application mentioned earlier [4], the particle
data is in HDF5 files, while the magnetic field data is in a
custom binary format. To establish a baseline for our work,
we developed a program to convert the magnetic data into
HDF5 so that queries could be processed with FastQuery
[5]. For a second comparison with SciDB, we need to go
through an extensive data preparation or loading processes,
which are known to be time-consuming [2]. The metadata
catalog systems like XMC cat and AMGA [12], provide
efficient way to manage metadata but lack specific support
for data querying.

Data management systems typically use auxiliary data
structures to accelerate query processing. For example,
to accelerate range queries of the form “0<T<2” and
“10<P<20”, database systems utilize data structures known
as indexes, the most popular example is the B+tree. Besides,
space filling curves and EDO [22] are also explored. It
is much more important to use an index to process joins

[23] because processing a join without any auxiliary data
structure could be extremely time-consuming. Often it is
also beneficial to reorder the data records following the index
structure using a strategy known as clustered indexes [27].
Our work on MDBin takes inspiration from the clustered
indexes. Given “0<T<2” is a bin for T and “10<P<20”
is a bin for P, then the MDBin for T and P would include
the bin “0<T<2 and 10<P<20”. The values in the same
bin are physically laid out together in the data file. This
organization allows data records with similar values to be
together, which captures the essence of Multi-Dimensional
Clustering (MDC) [18], Order-preserving Bin-based Clus-
tering (OrBiC) [27], and Bin-Hash Indexing [1]. We note
that MDC uses the original values, while MDBin uses bins;
and OrBiC and Bin-Hash Indexing are for one variable at
a time and it also relies on the bitmap index for the same
variable, while our proposed MDBin works for any number
of variables and does not require a bitmap index.

A. SciDB

SciDB is an array database designed for shared-nothing
architectures [3]. When the original file format and data
organization are not recognized by SciDB, users need to
prepare their data sets by converting them into one of the
recognized formats. During the initialization, SciDB creates
its system files and allocates disk space. Once all SciDB
instances start to run, users can use the tools of SciDB to
load data into the space of SciDB. The data preparation,
system initialization, and data loading may happen only once
in data analysis. Since large-scale HPC systems at centers
such as NERSC1 operate using batch submission systems,
SciDB needs to run as a batch job. This requires starting
the SciDB job before each data analysis run. To ensure
the reuse of SciDB controlled data, it is also necessary to
shutdown the SciDB batch job properly after each run. Inside
SciDB, multiple data sets are often organized according
to different attributes. When answering a query involving
multiple attributes, SciDB reads each attribute separately.
SciDB support SQL and AFL for users to perform their
data analyses [3]

B. FastQuery

FastQuery [5], based on FastBit[25], is an open-source
data processing library to build bitmap indexes and to query
data with the bitmap indexes. Unlike FastBit, FastQuery
works in parallel using multiple nodes and multiple cores
within a processor. FastQuery also provides I/O drivers to
work with different file formats, such as HDF5, PNetCDF,
and ADIOS [17]. However, to work with queries on data in
different file formats, FastQuery needs to convert data into
a single file format and to merge the content of these files

1The National Energy Research Scientific Computing Center
http://www.nersc.gov/



SDS Admin Tools

One Dedicated Service Node

Computing Nodes

Login Nodes

write and read
Small metadata

Parallel File Systems

Berkeley DB
File

High Throughout I/O

MDBin of datasets
D1, D2, and D3*

Client Communication Manager

Reorganizer: MDBin*, Sort, etc
Batch Job Manager
Data Format Identifier*
Access Pattern Analyzer
Periodic System Monitor

Server Communication Manger

Metadata (Two−level data model*) Manager

SDS Server

SDS−register

SDS Client
Access Pattern Detector

Query Executor (SCJoin*, etc.)

Multiple Format Reader

SDS Query API

D1 D2 D3

Figure 1. An overview of the SDS framework. Items marked with “*”
are the new features developed for SDS-MD.

into one file. Data preparation step for FastQuery includes
file format conversion, file content merging, and bitmap
index building. To evaluate a query, FastQuery first uses
bitmap indexes to find the locations of the interesting data
and then reads these data from the original file. Thus, there
are no load data and initialize/start/stop steps for using
FastQuery in data analysis. In the file formats supported
by FastQuery, multiple data sets are organized as differ-
ent multiple-dimensional arrays and are stored separately.
Hence, populating the selected data might results in a
significant number of non-contiguous disk reads.

C. SDS

The Scientific Data Service (SDS) framework [7] provides
data management optimizations as services. We present its
overall architecture in Fig. 1. SDS has two main components,
server and client. SDS server runs on a dedicated computer
as a multi-threaded daemon, supporting metadata manage-
ment, data reorganization, batch job management, and access
pattern analysis services. SDS Client is a lightweight library
linked with the user code to be run on compute nodes. SDS
Query API is provided for applications to express SQL-like
queries. When SDS Client receives a query, it sends a request
to the Server to identify relevant metadata on reorganized
data or indexes. If any reorganized data or indexes could
benefit data access performance over reading the full data
and scanning through it, the Server sends that information
to the Client. The administrative tool also have the functions
to provide hints of read patterns, to reorganize data and to
build indexes. Since SDS uses a persistent server, there is
no overhead to start and stop the system. As SDS directly
works with the files in their original location, there is no
data loading step.

The metadata from SDS Server to SDS Client is small
in size and workload of SDS metadata server is lightweight.
There is no metadata write/update requests from SDS Clients
to SDS Server. The metadata is generated by services such as
index building. SDS Server currently stores the file name of

an reorganized file or bitmap index in Berkeley DB. To avoid
having too many clients reading the metadata at the same
time, the SDS Client library designates a single process for
communication with the server, and that process broadcasts
any information received from the server to all other MPI
processes. As shown in our previous study [7], a single SDS
server is sufficient to support the workload of Edison2, a
Cray XC30 peta-scale supercomputer at NERSC.

SDS Server runs a periodic service to identify potential
(most recently used) files for reorganization or building
indexes. Users can also start their reorganization after going
through the performance evaluation component of SDS
Server [7], [6], [16]. Based on data access patterns, SDS
Server can also choose to read the subset of a big file and
build index for the subset.

As the existing join methods in SDS has poor I/O per-
formance in reading data from disk non-contiguously [2],
we have developed a reorganization capability to organize
multiple data sets into multi-dimensional bins (MDBin) and
an algorithm named SCJoin to merge multiple data sets.
Since current SDS only permits join on a single file format
[2], a two-level data model and a data format identifier
are designed to support data analysis directly on different
formats.

III. SDS-MD: SDS FOR MULTIPLE DATA SETS

The SDS-MD extension of the SDS framework enables
efficient analyses on multiple data sets in different file
formats. It employs three novel components: a two-level
data model, a data structure named MDBin, and a spatially
clustered join algorithm (SCJoin).

A. Two-Level Data Model

In supporting data analysis directly on different file for-
mats without format conversion, the main challenge is to
design a uniform data model to describe heterogeneous
scientific file formats. This uniform data model should
be easily constructed and should have a low overhead to
serve a query. To this end, we propose a two-level data
abstraction as shown in Figure 2. The top level of the
abstraction is a multi-dimensional array, which is commonly
used by many scientific applications. For example, climate
data maps the globe as a 2D array corresponding to a mesh
of latitude and longitude and stores different properties, such
as temperature, pressure, at the nodes of each cell. The
lower level of the abstraction refers to file formats, such
as HDF5, user-defined binary format, NetCDF, PNetCDF,
FITS, ADIOS, and so on.

Based on this two-level format, we use a small amount
of metadata (SDS-MD metadata) on the SDS server to map
between these two levels. SDS-MD metadata contains the
dimensions of a multi-dimensional array, basic data type,

2https://www.nersc.gov/users/computational-systems/edison/



Multidimensional Array

Level
Lower

01100010  01101001  ...

dataset1

Metadata

size, mapping strategy, etc.)
(dimension, type

Top

Level

SDS−MD Metadata

"/" root

dataset1 "/group"

HDF5 Format Binary Format Othter Formats
Data

− NetCDF/PNetCDF

− FITS

− ADIOS
− etc.

Figure 2. Two-level data model of SDS-MD

file format, and file layout strategy. Take a binary file as an
example, where SDS-MD metadata would contain [(file id,
(3, (3,4,5)), (binary format id, float type id, row-major))],
where (3, (3,4,5)) indicates that it is a 3-D array with size
(3 × 4 × 5). The row-major and float type id are used to
find the location of data on disk and then read with the
driver specified by binary format id. For data sets stored
is self-describing format like HDF5, we keep most SDS-
MD metadata in the original file to reduce communication
overhead to read it from SDS Server. SDS-MD metadata
only records its file format id at server to choose I/O driver
at runtime.

Consistency between the top and the lower levels in the
two-level data model is supported by comparing the last
modified time of the files. When a new file is added into
SDS, its last modification time is recorded at the SDS Server.
In serving a query, the recorded modification time and real
modification time are compared. When a file modification
is detected during a periodical scan, the SDS server updates
its SDS-MD metadata accordingly. As most scientific data is
write-once-read-many[21], updating metadata is infrequent.
User can also update the top level metadata through SDS
Register-tool.

Automatic and manual file format identification. When
a new file is added, SDS-MD reads its format magic numbers
to identify the type automatically. For example, HDF5 stores
(89 48 44 46 0d 0a 1a 0a) at known offsets (e.g., 1024) as
its magic number. SDS Register-tool also accepts the format
information through its command-line parameters for users
to specify by manually or when the file (e.g., binary file)
does not contain format magic number.

B. Multi-dimensional Array Binning

To improve I/O performance of data analysis, multiple
data sets required by a single query should be organized on
disk correlatively. However, existing data layout strategies of
file format such as HDF5 or array database such as SciDB do
not provide a way to capture this correlation. Concurrently
retrieving data from multiple data sets may translate into
a large number of small sized read operations at scattered
locations, which are typically much more time-consuming
than a few number of sequential and large read operations.
Many data organizations have been designed to turn these
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Figure 3. An example of applying MDBin to data set X and data set
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corresponding data locally without exchanging the data cross processes.
Details on Process 1 are presented here.

scattered read operations into sequential reads. For example,
sorting a single data set reduces the time to access the values
between a lower and an upper bound because all values in
that range would be contiguous after sorting. To improve
the accesses to multiple data sets, we introduce a parallel
binning strategy, called Multi-dimensional Array Binning
(MDBin).

The first step of MDBin is partitioning the data among
available CPU cores evenly. Each core reads its correspond-
ing data into memory, and then each core finds the minimum
and the maximum values, denoted (min, max). Then, global
(min, max) values of all cores are obtained with a call to
the MPI Reduce function. In the example of Figure 3, the
(min, max) values for X and Y on Process 1 are (1.00, 3.00)
and (2.00, 10.00) respectively. Here, X and Y are two 1D
arrays. We assume the (min, max) values on Process 1 are
global for simplicity. Based on a Bin Size, the value space
between (min, max) of each data set is equally partitioned
among processors into 1D bins. We discuss the selection of
Bin size in the later part of this subsection. In the example
shown in Figure 3, the Bin size for X and Y are 1.0 and 6.0,
respectively. Starting from zero, 1D Bin Number for each
row is computed. For example, the 1D Bin Number for the
first row of X is 1 and for the second row of Y is 0. Then,
the data is scanned for the second time to compute MDBin
Number. We use the row-major mapping formula to compute
the MDBin Number. In general, for an n-dimensional bins
represented as C1 × C2 × . . . Cn, a given MDBin Number
is specified with 1D Bin Number (i.e., (c1, c2, . . . , cn)) of
each data set. The MDBin Number is computed with below
equation.

MDBin Number = cn + Cn(cn−1 + Cn−1(. . .+ C2c1)).

In the example, the 1D Bin Number for the first row is (1, 0).
The dimension size of the final results is 2× 2. Hence, the
MDBin Number for the first row is 0 + 2× 1 = 2.

While scanning the data to compute the MDBin Number,



we compute an offset table for all bins as well. This offset
table is used to organize the resulting files and to serve query
as index. Then, the rows with the same MDBin Number are
gathered through the third scan to create an abstract multiple
dimensional clustering table. In Figure 3, we use two 1D
data sets and the values of those two data sets forms a two-
dimensional clustering table. In the clustering table, the rows
r2, r8, and r10 of X and Y have same MDBin Number, and
are written into bin zero of corresponding result data set. All
rows within the MDBin bin zero fall into the range query that
can be expressed with 1.0 < X < 2.0 and 2.0 < Y < 6.0
and two contiguous disk reads (one for X and one for Y)
are needed to access data satisfying the query.

Finally, based on the clustering table, the gathered data
from a data set are contiguously written to another result
data set by each core. In Figure 3, the value from data
set X is written to X ′ and the value from data set Y is
written to Y ′. This design ensures the query performance on
a single data set because MDBin on a single data set could
be regarded as sorting. As discussed in Section II-C, SDS
manages the size of the replicated data through identifying
most frequently accessed files and indexes. For the MDBin
replication in this example, the original data sets X and
Y could be replaced with X ′ and Y ′ as they contain the
same values. Hence, no extra storage space are needed.
MDBin performs binning independently on each core and
stores the resulting bin based on process rank. This avoids
expensive communication among the cores to exchange
partially binned data to create a global set of bins. When data
is written to the file system, the offset table is also stored as
a separate file. The (min, max) values and the MDBin size
are stored on the SDS Server as metadata, which is used to
answer queries.

Bin Size is determined based on the (min, max) val-
ues and the number of cores. In general, Bin Size =
(max −min)/number of cores. This method maximizes
the parallel processing on a single data set when the value
distribution follows uniform distribution. On the other hand,
when the value distribution between (min, max) is skewed,
some bins could be assigned more values than others. To
deal with this imbalance efficiently, we use the Balanced
Reader component of SDS [6] to re-balance the load of
reading the bins. In other words, SDS is optimized to
use parallelism embedded in parallel file systems. Another
method to determine the Bin Size is to find it from the access
pattern history. As we described in Section II-C, SDS runs
a service to monitor the access patterns of all files. Based
on the observed access patterns, SDS could choose more
suitable Bin Size for each data set. We assume that the data
and queries come into our system the first time and we
compute the Bin Size from (min, max) values in this study.

Frequency to rebuild MDBin and its transparent
accesses. Since scientific data typically follows “write once
and read many” [21], MDBin is built once and used many

function SCJoin(B, PB , I , PI , PB,I , r, s)
B : a set of n data sets // n < m for general case
I : a set of m data sets //m = 2n + 1 for interpolation
PB : conditional restriction on B
PI : conditional restriction on I
PB,I : join predicate on B and I
r : process rank in MPI group
s : MPI process group size

1. VAR dI , dB , dr=NULL //Buffer for I , B and result
2. VAR i=0, j=0//Pointer to next block of I and B
3. VAR bB , bI // MDBin number
4. VAR A // Total number of Bin(s)
5. VAR To //Pointer to offset table
6. Read MDBin Metadata for B and I
7. Extract (max, min)s from MDBin Metadata
8. Compute bB using PB , (max, min)s, and Eq. III-B
9. Compute bI using PI , (max, min)s, and Eq. III-B
10.Compute A using s and (max, min)s
11.To = Read offset table specified by MDBin Metadata
12.dI=MDBin next(I , bI , r, s, i, To, A)
13.dB=MDBin next(B, bB , r, s, j, To, A)
14.WHILE dI is not empty DO
15. WHILE dB is not empty DO
16. dr = dr∪ Join (e.g, interpolation) of dB and dI with PB,I

17. j = j + 1
18. dB=MDBin next(B, bB , r, s, j, To, A)
19. END WHILE
20. i = i + 1 // dI is empty for interpolation when i = 1
21. dI=MDBin next(I , bI , r, s, i++, To, A)
22.END WHILE
23.RETURN dr

function MDBin-next(F , b, r, s, i, To, A)
F : a set of n data sets
b : MDBin number
r : process rank
s : process group size
i : next data block as bins of MDBin
To : pointer to MDBin offset table
A: total number of Bin(s)

1. VAR start = 0, end = 0 //file offset
2. VAR d //result buffer
3. start = To[(r + s× i) ∗A+ b]
4. end = To[(r + s× i) ∗A+ b+ 1]
5. d = Read MDBin data of F between (start, end)
6. RETURN d

Figure 4. Algorithm of SCJoin.

times. Hence, (min, max) values do not vary in the bins of
MDBin indexes. Even though, SDS tracks the modification
time of the files which it has built MDBin indexes for,
when the file data changes, SDS Server merges new data or
build new indexes, and then updates metadata. Transparent
accesses to MDBin data is supported by the batch job man-
agement and read redirection capability of SDS framework.
SDS Server is able to start batch jobs for creating MDBin
for a proper file when the system load is low. Once the
MDBin job finishes, the file name of offset table and global
(min, max) values is stored in SDS Server as metadata. After
receiving a query from the application, SDS Client read the
metadata from SDS server and use it to find the bins to read.

C. Spatially Clustered Join Algorithm

A Join algorithm is a typical method used for combining
multiple data sets (tables) into a single one based on the
matched value of a certain key [2]. In a HPC environment,



data exchange (also named as data shuffles) across network
are usually required by join algorithms to match the keys
located on different processes. The data exchange might
hinder query processing as it usually involves expensive
all-to-all communication. One method to avoid the data
exchange is to let each process to retrieve its wanted data
from parallel file system rather than from remote memory.
To this end, the value distribution inside all data sets must
be known by the join algorithm and at the same time, the
join algorithm must have comparative I/O performance.

As discussed in previous sections, the value space clus-
tering of MDBin can describe the value distribution not
only inside a single data set but also across different data
sets. In MDBin, each process locally builds the MDBin
bins for its assigned data and writes the final bins to result
files based on the process rank. In that sense, we design
SCJoin algorithm (shown in Figure 4) to support efficient
combination of data sets. SDS Server builds MDBin for its
input data sets without SCJoin involvement. SCJoin looks
up the MDBin metadata to read only the necessary MDBin
bins in large and contiguous disk blocks for joining and
therefore avoids the expensive data shuffle. When MDBin
file does not exist, hash or nested loop join could be used.
Also, to improve the usability for scientists, the scientific
operation, i.e., interpolation, is supported by the SCJoin.

As the inputs of SCJoin, the data set groups B and I
contain the name of data sets to be joined. Without losing
generality, B has smaller number of data sets than I (n¡m).
In an interpolation, m is equal to 2n+1. SCJoin also accepts
the conditional restrictions PF and PI . Usually, users can
use the conditional restriction to filter the data set in advance
and therefore reduce the data size for join. For example, in
two data sets A and B, the conditional restriction could be
“19<A<83 and 2<B<17”. It also accepts join predicate
PB,I such as B.X=I.Y, where X and Y are data sets of B
and I respectively.

From line 6 to line 11, SCJoin obtains the MDBin
metadata, including (min, max) values and offset table file
name for B and I, respectively. Then, SCJoin reads them
into corresponding variable memory spaces. By employing
the same method used to build MDBin file in Figure 3,
SCJoin (line 12 and line 13) computes the MDBin Number
(bB and bI ) and the total number of bins (A) for the F and
I separately. In the two WHILE loops (line 16 to line 22),
SCJoin combines the data block dB from B and the data
block dI from I iteratively. Function MDBin next is used
to read the next data block (specified by i and j) from the
corresponding MDBin files. Inside MDBin next, the start
and end address of the MDBin file are obtained though
looking up the offset table. The next data block is related
to the process rank r and the size of MPI process group s
because MDBin is built and stored locally by each process.
When the number of processes for analysis is smaller than
the number of the processes used for building MDBin, a

process might need to read multiple MDBin blocks.
Additionally, in the two WHILE loops, we choose data set

group with smaller size (not the group with small number of
data sets) as outer loop to keep most of its data in memory.
For example, the file for interpolation usually has small size
and we can set the i = 0. In the actually SCJoin operation
(line 16), the join operation (e.g., interpolation) on two data
blocks is evaluated. Other scientific operation like linear
regression on two files can also be supported through the
same method. The merged results are return at the end.
Assume the number of binning block for B and I are PB

and PI separately. In the worst case, SCJoin will run using
O(Pb + PI) I/O operations.

IV. EXPERIMENTAL SETUP

We ran all our experiments reported in this paper on
Edison, a Cray XC30 system located at NERSC. Edison has
133,824 compute cores and is able to deliver a peak perfor-
mance of 2.57 petaflops/sec. We used a Lustre file system
that has 144 object storage targets (OSTs) and a 72GB/s
peak bandwidth. We stored the data for all experiments on
Lustre with the default 1 MB stripe size [9] using all the
OSTs. We used a monitoring node, known as MOM node3

to run the SDS Server. For running SciDB on Edison, we
have created a directory on the Lustre file system to store
its system files and the loaded data. To use SciDB, users
need to submit jobs to initialize, start, and stop the SciDB
system, to load data, and to evaluate queries.

V. RESULTS

In this section, we first compare the performance of a
typical scientific data analysis using SDS-MD, FastQuery
and SciDB. We then evaluate the scalability and the config-
uration of SDS-MD.

Representative 1D and 3D arrays from real scientific
applications are used in our tests. Specifically, the data
sets are generated by a plasma physics simulation [4]. This
simulation produces particle data (named P) of a trillion
electrons stored in the HDF5 format and their corresponding
magnetic field data (named FX,FY, and FZ) stored in three
user-defined binary files. The HDF5 file consists of seven
1D data sets, named Energy, X , Y , Z, Ux, Uy , and Uz ,
where X , Y , and Z are 3D spatial locations of particles,
and Ux, Uy , and Uz are the three components of the particle
velocities. A 2TB subset of P is used to evaluate analysis
performance and a full size of P file (32TB) is used for
scalability tests. The magnetic field value is sampled on a
regular 3D mesh grid of size 10003. At each mesh point,
magnetic field value is recorded as three components in three
separate files named FX, FY, and FZ. Each of them actually
contain a 3D data array with 12GB size.

We have used conditional selection and join queries that
represent two types of popular analysis operations used by

3http://www.nersc.gov/systems/edison-cray-xc30/



Table I
THE QUERIES TO EVALUATE SDS-MD. P.X MEANS DATA SET X IN

HDF5 FILE P. OTHER NOTIONS HAVE THE SAME NAMING PATTERN.

ID Query Description SQL
Semantic

Q1 Filtering particles on (P.Energy, P.X, P.Y, Conditional
P.Z) Select

Q2 Linear interpolation on (P.X, P.Ux) and FX 3-way Join

Q3 Bilinear interpolation on (P.X, P.Y, P.Ux, 5-way Join
P.Uy) and (FX, FY)

Q4 Trilinear interpolation on (P.X, P.Y, P.Z, 9-way Join
P.Ux, P.Uy , P.UZ ) and (FX, FY, FZ)
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Figure 5. Time to execute query Q1 with SciDB, FastQuery, and SDS-MD.
(The y-axis is in log-scale).

scientists. We list the four queries used in this study in Table
I. These queries come from real data analysis of plasma
physics data [4]. Query Q1 filters the particle file P with
value range conditions on its spatial and energy attributes.
We use Q1 to compare the performance of querying data
sets organized by the MDBin of SDS-MD, FastQuery, and,
SciDB. We use Q2, Q3 and Q4, with multi-file SQL joins,
to test the performance of SCJoin directly on multiple files
in different formats. Domain scientists use these queries
to explore the magnetic reconnection phenomenon, where
particle data is combined with magnetic field values based
on the location of the particles in X, Y, and Z directions.
Since magnetic field value is sampled at regular mesh points,
a trilinear interpolation is required to find the magnetic field
value at the location of the particle.

A. MDBin with Q1 on multiple data sets

To filter particles with certain Energy and within a spatial
range in X, Y, and Z directions, we evaluate Q1 with
the following highly selective conditions: “1.2<Energy<1.3
and 140<x<150 and 65<y<75 and 4<z<14”. This query
identifies 148K particles (hits) out of the 80 billion particles
stored in the particle data.

In Figure 5, we show the overall performance of running
Q1 with SciDB, FastQuery, and SDS-MD using different
number of CPU cores ranging from 64 to 1024. SDS-MD
outperforms SciDB by 20X and FastQuery by 9X when
using 1024 processes. To evaluate where SDS-MD is gaining
performance, we analyzed the time spent in reading the
data. As shown in Figure 6, ≈95% of the overall query
execution time for all the systems is spent in reading the
data. Since SciDB does not use indexes to query the data, it
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Figure 6. Time for reading the selected data for query Q1 with SciDB,
FastQuery, and SDS-MD. (The y-axis is in log-scale).
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Figure 7. The overheads for preparing SciDB, FastQuery, and SDS-MD
to run query Q1

performs a full scan of the entire data sets, resulting in the
longest reading time. FastQuery first finds the coordinates of
selected values from a bitmap in parallel. FastQuery provides
two options to retrieve selected data, 1) sequential read (by
gathering coordinates on a single thread) and 2) parallel read
(by letting each thread broadcast its coordinates to all other
threads and each thread reads all selected data). Parallel
read has worse performance because of all-to-all coordinates
information exchange and reading data non-contiguously,
which is proved in our previous work [8]. In this experiment,
we choose sequential read and therefore we observe poor
scaling performance with FastQuery in Figure 6.

Both SciDB and FastQuery also spend a significant
portion of time on read because the values select by the
given query conditions are scatter randomly in the HDF5
files. With MDBin of SDS-MD, the four data sets used in
setting the query are reorganized based on their clustering
relationship that is embedded in their value space. In this
test, the Bin size is determined with the number of cores and
the (min,max) values of the four data sets. If we use the
range granularity of the query string, MDBin could deliver
even better performance. Reading the data satisfying the
query only need a few contiguous disk read from MDBin,
giving the observed advantage over FastQuery and SciDB.

We now analyze the overheads of using the three systems.
Figure 7 shows the overheads involved in preparing the
systems for running queries. The index generation time
(110s), as part of data preparation, is the main overhead for
FastQuery. To load the data into SciDB, we first converted
the particle file (from the HDF5 format) into multiple binary



FX.bx=FX0.bx+(P.x−floor(P.x))(FX1.bx−FX0.bx)

(floor(P.x), FX0.bx) (floor(P.x)+1, FX1.bx)(P.x, ?)

Figure 8. An example of linear interpolation.
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Figure 9. Time to run query Q2 with SciDB, FastQuery, and SDS-MD

files. We then loaded the data to SciDB with its load ()
Array Functional Language (AFL) operator. SciDB also has
substantial one-time initialization cost. The overheads of
SciDB, including system initialization and data load times,
are higher than the time to executing query Q1. With SDS-
MD, the main overhead is with reorganizing the data into
multi-dimensional bins using the MDBin approach. This cost
is much less than the data preparation and loading costs of
the other two systems.

B. SCJoin to query multiple data sets

In this section, we evaluate the performance of different
systems running three join queries on multiple data sets.
These queries are used by domain scientists to perform
interpolations on the particle data and the magnetic field
data. The three queries come from linear interpolation with
1D data (named Q2), bilinear interpolation with 2D data
(Q3), and tri-linear interpolation with 3D data (Q4). Figure 8
gives an example of computing linear interpolation with
1D data, where a magnetic field value FX.bx (i.e., value
of variable bx from the file named FX) at point P.x. To
compute FX.bx, two values at locations floor(P.x) and
floor(P.x)+1 are required to read from binary file FX.
Using FX0 and FX1 as two aliases of FX and FX0.bx and
FX1.bx to denote the magnetic field values at floor(P.x)
and floor(P.x)+1, respectively, the FX.bx is computed
as: FX0.bx + (P.x - floor(P.x)) (FX1.bx-FX0.bx). In all, to
perform the linear interpolation for a particle, X needs to be
read from file P in HDF5 format and two bx values need to
read from file FX that is in binary format. This is actually a
3-way join in SQL semantics. Through the same analysis, a
bilinear interpolation requires a 5-way join and a tri-linear
interpolation requires a 9-way join, as shown in Table I. In
queries Q2, Q3 and Q4, a conditional string on Energy, X,
Y, and Z is also applied to filter the particles to a specific
spatial region used in Q1. The query conditions are needed
as the magnetic reconnection occurs in a specific region [4].

We compare the time to run query Q2 on different
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Figure 10. The overheads for preparing SciDB, FastQuery, and SDS-MD
to run query Q2
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Figure 11. Time to run query Q3 with SciDB, FastQuery, and SDS-MD

systems in Figure 9. This plot does not include the time
to prepare and load the data and to initialize the systems.
These overheads are shown separately in Figure 10. SciDB
takes the longest time to answer this query as it needs
to scan the entire data to evaluate the conditional string,
to exchange data for applying the join, and to read data
from non-contiguous locations in the magnetic field file FX.
Without considering the data preparation time and data load
time shown in Figure 10, SCJoin of SDS-MD performs 69X
faster than SciDB for executing Q2 using 1024 cores. The
value space clustering from MDBin is used by SCJoin to
read only the necessary bins from storage and also in a
contiguous manner. As FastQuery can only work with a
single file, FX0.bx and FX1.bx values for all floor(P.x) and
floor(P.x)+1 points had to be calculated as part of the data
preparation step and stored in the same particle data file (P )
in the HDF5 format. Hence, as shown in Figure 10, the data
preparation time is significantly high. For SDS-MD, the data
preparation involves building MDBin files for P and binary
data FX. Excluding the enormous data preparation cost of
FastQuery, SDS-MD on average performs 1.6X faster than
FastQuery with the cores number from 64 to 1024. SDS-MD
outperforms FastQuery by 45X when the data preparation
costs are included.

We compare the time to run the queries Q3 (bilinear
interpolation) and Q4 (tri-linear interpolation) on all three
systems in Figures 11 and 12, respectively. Similar to the
previous evaluation, these times do not include the data
preparation and the data load times for all three systems. For
Q3, SDS-MD outperforms SciDB by 135X on average and
FastQuery by 1.7X to execute query Q3 with increasing the
number of CPU cores from 64 to 1024. With the overhead
costs included, speedups of SDS-MD are 42X and 26X over
SciDB and FastQuery, respectively. For Q4, SDS-MD is
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Figure 12. Time to run query Q4 with SciDB, FastQuery, and SciDB

Table II
SUMMARY OF THE SDS-MD SPEEDUP OVER SCIDB AND FASTQUERY

Query Running Time Total Time
Query ID SciDB FastQuery SciDB FastQuery
Q1 43X 8X 16X 1.5X
Q2 135X 1.5X 26X 41X
Q3 135X 1.6X 26X 42X
Q4 143X 1.7X 26X 42X

143X faster than SciDB and 1.7X faster than FastQuery.
With the overhead costs included, SDS-MD outperforms
SciDB and FastQuery by 41.8X and 26.4X, respectively.

C. Evaluation of SDS-MD configurations

In this section, we report strong and weak scaling of
building MDBin, and evaluate the impact of Bin Size on the
performance of reorganizing data and on running queries
with SDS-MD. We have executed query Q1 on different
particle files, with their size varying between 2TB and
32TB.

In Figures 13 and 14, we show the performance of
reorganizing the particle data using MDBin strategy as we
increase the number of CPU cores. We conducted weak and
strong scaling tests separately and report the data read time,
binning time, bin write time, and offset table write time. In
all, the read and the write times are dominant factors and
the time for building MDBin. While the cost of building
MDBin (≈ 7% of the total time) scales well from 2,000 to
32,000, the overhead of reading and writing data dominate
the overall cost.

In Figure 15, we show the variability in performance
for running query Q1 with different Bin Sizes. The optimal
performance for running query Q1 is obtained when Bin size
for (Energy, x, y, z) is (0.1, 10, 10, 10) (denoted as Bin Size*
in the X-axis. With this Bin size, the boundary of query Q1
matches well with the bin boundaries. When the Bin Size is
smaller than Bin Size, multiple smaller bins are read from
storage and merged to answer query Q1. When the Bin Size
is greater than Bin Size*, SDS has to read the entire bin and
then filter the data that satisfies the given condition, which
is costly.

In summary, we compare the speedups of SDS-MD over
SciDB and FastQuery in Table II to run various queries with-
out the data preparation time (labeled as “Query Running
Time”) and with the data preparation time included (labeled
as “Total Time”). Once the data is prepared and loaded,
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Figure 13. Strong scaling test of building MDBin with a 2TB particle file
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Figure 14. Weak scaling of building MDBin. Data size for each core is
fixed 534MB. In 64, 000 test case, the total particle file data size is 32TB
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Figure 15. Time to serve query Q1 with different Bin Sizes. Bin Size* is
(0.1, 10, 10, 10) for (Energy, x, y, z). The µ×(0.1, 10, 10, 10) is (µ×0.1,
µ×10, µ×10, µ×10).

SDS-MD performs 43X to 143X faster than SciDB and
1.5X to 8X faster than FastQuery. With the data preparation
time included, SDS-MD performs 26X faster than SciDB
for queries with multiple variables and with joins. SDS-MD
outperforms FastQuery by ≈40X for the same queries with
data preparation included.

VI. CONCLUSIONS AND FUTURE WORK

Diverse data formats, efficient data structures, and algo-
rithm for join operations are nontrivial problems of data
analysis in extreme-scale scientific data era. In this work,
we introduce two-level data model, MDBin, and SCJoin to
provide solutions for scientific data analysis. We demonstrate
the advantages of our methods in answering the join queries
from a real scientific application. We are currently working
on providing a querying interface for making use of the SDS
framework for different data and file formats.
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