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Abstract—
Parallel I/O performance depends highly on the interac-

tions among multiple layers of the parallel I/O stack. The
most common layers include high-level I/O libraries, MPI-
IO middleware, and parallel file system. Each of these layers
offers various tunable parameters to control intermediary data
transfer points and the final data layout. Due to the interdepen-
dencies and the number of combinations of parameters, finding
a good set of parameter values for a specific application’s I/O
pattern is challenging. Recent efforts, such as autotuning with
genetic algorithms (GAs) and analytical models, have several
limitations. For instance, analytical models fail to capture the
dynamic nature of shared supercomputing systems and are
application-specific. GA-based tuning requires running many
time-consuming experiments for each input size.

In this paper, we present a strategy to generate automatically
an empirical model for a given application pattern. Using a set
of real measurements from running an I/O kernel as training
set, we generate a nonlinear regression model. We use this
model to predict the top-20 tunable parameter values that
give efficient I/O performance and rerun the I/O kernel to
select the best set of parameter under the current conditions
as tunable parameters for future runs of the same I/O kernel.
Using this approach, we demonstrate 6X - 94X speedup over
default I/O time for different I/O kernels running on multiple
HPC systems. We also evaluate performance by identifying
interdependencies among different sets of tunable parameters.

Keywords-Parallel I/O, Parallel I/O Tuning, Performance
Optimization, Performance Modeling

I. INTRODUCTION

Large-scale simulations are increasingly used to study

complex scientific phenomena across many science domains.

For instance, studying plasma behavior in solar weather,

understanding particle interactions in accelerator physics,

computational fluid dynamics, atmospheric modeling, and

combustion all require high-resolution, large-scale simula-

tions. Due to advances in computing capabilities, many

large-scale simulations produce massive amounts of data that

need to be stored on file systems for further analysis. It is

typical for the simulations using hundreds of thousands of

CPU cores to generate tens to hundreds of Terabytes (TB).

Since simulations often wait idly while writing the data,

it is imperative that parallel I/O performance be efficient.

However, achieving such performance for high-performance

computing (HPC) applications is nontrivial because of com-

plex interdependencies among layers of the parallel I/O

software and hardware stacks. The most common parallel

I/O stack contains high-level I/O libraries such as HDF5

and PNetCDF, parallel I/O middleware such as MPI-IO,

and parallel file systems such as Lustre and GPFS. The

data transferred among these layers must align properly to

achieve efficient performance. Each of these layers offers

application-level tunable parameters to select how data is

moved across intermediary nodes and how it is stored on

disks. For instance, for MPI-IO, applications can specify

the number of intermediary nodes (aggregators) and the

distribution of data to those nodes. Parallel file systems,

especially Lustre, provide parameters to select the number

of storage targets to write the data to and the amount of

contiguous data chunks to be written to a storage target.

Selecting a set of tunable parameters for the entire stack

that would result in efficient performance is challenging.

Because of the large number of discrete options for various

parameters, the search space is enormous and running an

application with all possible combinations of configurations

is impractical. We have recently explored an autotuning

approach using genetic algorithms (GA) to traverse the

search space systematically [3]. The GA approach initializes

this traversal with random sets of parameters and produces

new generations of parameter sets by applying mutation

and crossover operations. The GA eventually determines

parameter values that give near-optimal I/O performance.

While GA approach reduces the number of configurations

significantly, it is still time consuming as the number of

experiments required to converge could be prohibitively

large. Another limitation is that parameter values are specific

to each application and its input size.

To overcome the limitations of the GA-based traversal, in

this paper, we present a statistical approach for automatic

generation of an empirical performance prediction model

that is used for pruning the search space significantly.
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There have been a few research efforts targeting prediction

of parallel I/O performance accurately (see, e.g. [18], [15],

[17], [13], [22], [19], [9]). Many of these models are rela-

tively complex and their applicability is limited to specific

systems or I/O workloads. We use a statistical approach to

train an empirical base model that can be used to prune the

search space. The base model then can be tuned further by

running on the reduced sample space in order to capture the

dynamic runtime conditions of a system. The advantages of

our proposed method include fast reduction of the search

space compared to a GA approach and consideration of

dynamic conditions of a parallel I/O subsystem.

The contributions of this paper are as follows:

• We propose a statistical approach for generating empir-

ical prediction models for parallel I/O performance.

• We demonstrate the use of our models for selecting

tunable parameters that achieve efficient I/O perfor-

mance on multiple platforms, for multiple I/O kernels

extracted from real scientific simulations running at

different problem sizes and scales.

• We evaluate interdependencies among various parallel

I/O tunable parameters.

The remainder of the paper is organized as follows.

In Section II, we present the background on the parallel

I/O subsystem. In Section III, we discuss the experimental

setup and characteristics of I/O kernels of applications. We

propose our approach of generating empirical performance

models and their dynamic tuning in Section IV. We demon-

strate the use of our model generation for selecting tunable

parameters and evaluate interdependencies of the parameters

in Section IV-A1. In Section VI, we discuss our work in the

context of existing research efforts and compare this work

with the other state-of-the-art I/O autotuning approaches.

Section VII concludes the paper with a brief discussion of

future work.

II. PARALLEL I/O

A parallel I/O subsystem typically consists of various lay-

ers of middleware libraries and hardware. The most common

parallel I/O stack in current HPC machines has high-level

I/O libraries and file formats (e.g., HDF5, NetCDF, and

ADIOS), I/O middleware (e.g., MPI-IO and POSIX), parallel

file systems (e.g., Lustre, GPFS, and PVFS), and storage

and I/O hardware. When parallel applications perform I/O

operations, the data moves from individual processors to the

storage hardware through the multiple layers of the stack.

To achieve good I/O performance, each of the layers

offers optimization strategies. For instance, MPI-IO provides

two modes of writing data to disks: independent I/O and

collective I/O [21]. With independent I/O, each MPI process

writes the data to storage independent of other processes of

the application. In collective I/O mode, the data is collected

at a few aggregator processes and the aggregators write

the data to storage. The collective I/O mode is preferable

when the number of MPI processes is large because too

many requests to the file system degrade I/O performance.

Throughout this paper, we focus on the write operations that

originate from large simulations using collective I/O.

A typical implementation of a collective I/O write op-

eration includes two phases: the data collection phase at

aggregators and the I/O phase [7]. Each MPI process first

analyzes its request to the file and calculates the start offset
and end offset. These two variables identify the segment of

the file accessed by the processor. After calculating these

variables, each process sends their values to all the other pro-

cesses. The aggregators then compute the partitions, called

file domains, of the file they are responsible for writing. In

ROMIO [20], the basis for many MPI-IO implementations,

the aggregators split the range of the file being updated

equally in a block-cyclic distribution.

Note that, we define write time as a higher-level library

write operation, consisting of all the communication and I/O

time needed for this operation.

III. EXPERIMENTAL SETUP

A. HPC Platforms

We conducted all the experiments presented in this paper

on three platforms, named Edison, Hopper, and Stampede,

located at two supercomputing centers.

1) Edison: Edison is a supercomputer at the National

Energy Research Scientific Computing Center (NERSC).

It is a Cray XC30 system comprising 5, 576 twenty-four

core nodes with 64GB of memory per node. It has Cray

Aries with Dragonfly topology and three Lustre file systems

with aggregate bandwidth of 168 GB/s. For the experiments

conducted in this study, we used the scratch2 file system

in these experiments with a maximum of 96 OSTs and 48

GB/s peak I/O bandwidth.

2) Hopper: Hopper is another supercomputing system

located at NERSC. It is a Cray XE6 system containing 6, 384
twenty-four core nodes with 32GB of memory per node. It

employs the Gemini interconnect with a 3D torus topology.

We used a Lustre file system with 156 OSTs and a peak

bandwidth of about 35GB/s for storing data.

3) Stampede: Stampede is a Dell PowerEdge C8220

cluster at the Texas Advanced Computing Center. It has

6, 400 sixteen core nodes with 32GB of memory per node. It

uses Mellanox FDR InfiniBand technology with a two-level

fat-tree topology. Stampede’s Lustre file system with 160

OSTs (in the testing experiments for consistent comparisons

we use 156 OSTs as the maximum stripe count for Stampede

as well) has shown a peak of 159 GB/s I/O bandwidth.

B. I/O kernels

We used three I/O kernels in this study: VPIC-IO,

VORPAL-IO, and GCRM-IO. These kernels are extracted
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from a particle physics simulation (VPIC [5], [6]), a com-

putational plasma framework (VORPAL [14]), and a global

atmospheric circulation model framework (GCRM [16]).

The kernels perform I/O operations representative of real

problem configurations. We now summarize the I/O kernels:

1) VPIC-IO: VPIC-IO uses the H5Part library [4] to

initiate and write data pertaining to particles. The code is

run in a weak-scaling mode, where each MPI process writes

eight million particles. Each particle has eight (six floating

point and two integer) variables. All processes issue one

write call per variable (i.e., eight write calls) in order to

write the data into a single shared HDF5 file.

2) VORPAL-IO: VORPAL-IO leverages the H5Block

library [4], which uses the HDF5 library to handle block

structured data. VORPAL-IO partitions a 3D grid of points

into a 3D grid of processes. Each process writes a sub-

block of points in its partition. For example, in a 128-

process run with a block of size 300 × 100 × 60 and a

decomposition of (8, 4, 4), the size of the total block is going

to be 2400 × 400 × 240. This kernel is also configured to

run in a weak-scaling mode.

3) GCRM-IO: GCRM-IO also leverages the H5Block

library [4], but has a less complex pattern than VORPAL-

IO. GCRM-IO partitions a semi-structured geodesic mesh

between processes. Each process writes a sub-block of the

mesh in its partition. The grid and sub-domain resolution are

controlled by the user. Unlike the other two, this kernel is

configured to run in a strong-scaling mode, where the total

data size does not increase with the number of processes.

IV. DYNAMIC MODEL-DRIVEN I/O TUNING

In Figure 1, we show a high-level workflow of our

proposed dynamic model-driven I/O tuning process. We

extract the I/O kernel of an application using tracing tools

such as I/O Tracer [2] or Skel [10] and run the kernel with

a preselected training set of tunable parameters. We define

the training set based on the parameters for different levels

of the I/O stack and for multiple problem sizes. Using the

measured I/O performance of the kernel, we develop an

empirical performance model (described in detail in Section

IV-A).

We use the developed performance model to predict I/O

performance for an exhaustive set of all combinations of

tuning parameters. We then select the best performing tuning

parameter sets by sorting the predicted performance for

further exploration. The number of best parameter sets for

exploring the current conditions of a HPC system is a

configurable option. Based on the measured I/O performance

of the top k parameter sets, we select the set that has the best

I/O performance as the tuned I/O configuration for the I/O

kernel for a given scale. One can fine tune the I/O model

further by evaluating the performance results of the top k
configurations iteratively, which is optional. In this paper, we
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Figure 1: Overview of our proposed dynamic model-driven

I/O tuning process.

select the best performing I/O parameter set from running

the top k = 20 configurations. In the following subsection,

we explain model development and configuration selection

process with more details.

A. Development of Empirical Performance Models

We now examine nonlinear regression models in the

context of modeling I/O write times for a given application.

As discussed previously, the main I/O parameters on a

Lustre file system are Lustre stripe settings (e.g., stripe count

and stripe size) and MPI-IO collective buffering settings

(e.g., number of collective buffering nodes and collective

buffering size). In order to identify potential challenges and

illustrate our approach, we first vary only the stripe settings.

In subsequent tests, we also vary the collective buffering

settings and consider multiple file sizes.

1) Model for a single node writes: We begin by examin-

ing the problem of building a single model for write times

as Lustre settings are modified. In order to isolate Lustre

settings, we developed a micro-benchmark that uses POSIX

I/O from a single node to write a single file on the Lustre file

system on Hopper. We fixed the file size to about 20 GB (20

* 1024 = 20480 MB). Since we have a single node using

POSIX I/O, the number of I/O aggregators is also fixed.

Table I shows the different stripe settings that comprised the

set of training configurations in this first set of experiments.

# of
Parameter Tested Values Values

c, stripe count 1,2,4,8,16,32,64,96,128,156 10
s, stripe size (MB) 1,2,4,8,16,32,64,96,128 9

Table I: Training configurations (90 in total) tested as part

of the single-node experiment.
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One of our goals in this initial analysis was to inspect

write time variability in simple settings (in this case, using

a single node). Therefore, we evaluated all the 90 training

configurations (from Table I) in four different experiments

(each taking place on different days of a week) in order

to increase our chances of encountering different levels of

interference from the I/O activity of other jobs running on

a shared system, such as Hopper.

Figure 2 shows the 360 write times recorded as part of

these four experiments. Here, the 90 training configurations

are sorted by the minimum write time across the four

experiments. Variability within a particular configuration is

illustrated by a vertical line connecting the four write times

for that experiment. It can be seen that, even in this single-

node setting, interference/noise, possibly from other jobs

sharing the Lustre file system can have a significant impact

on the I/O performance.

Figure 2: Performance variability and effect of interference

on a single-node writing to a file.

This variability can significantly complicate the modeling

process since it necessitates a more careful definition of the

modeling objectives prior to performing experiments. For

example, if one wishes to model “average” I/O performance,

the experimental setup would need to sufficiently sample

across different system states/sources of the variability. Fur-

thermore, since variability differs among different configu-

rations, modeling it over the entire tunable parameter space

would be a challenging task.

In our context, we are interested in identifying sets of

high-performing configurations (that are not already in the

training set) for subsequent evaluation. While prediction

of I/O performance may not be accurate in an absolute

sense, obtaining high-performing configuration has been our

goal. In Figure 2, we observe that the highest-performing

configurations tend to be less sensitive to noise; reordering

the configurations based on the mean or median of the

Figure 3: Raw data and nonlinear model of Equation (2) for

VPIC-IO write times as the number of aggregators is varied.

four experiments has little effect on the constituents of the

highest-performing quartile. Consequently, we have decided

to use the minimum time of each of the experiments in

building our models dynamically.

To form nonlinear regression based prediction model, we

use all possible low polynomials (-1, 0, and 1) of all given

parameters. Given the two Lustre file system parameters,

c (the stripe count) and s (the stripe size), there are 9
possible terms in the basis set of our nonlinear regression

model. Using a forward-selection approach [1], we select

{1, c, s, 1
c ,

1
s ,

s
c} as basis functions. Using these nonlinear

basis functions and all the 90 data points (from Table I),

we obtain the following model for predicting the data write

time, where βi are constants.

m(c, s) = β1 + β2c+ β3s+ β4
1
c + β5

1
s + β6

s
c . (1)

2) Write time models for multiple nodes: Having ob-

served that nonlinear regression models can predict the trend

of I/O performance when one node is writing to one file,

we show how such a model can be used when writing to a

shared file from multiple nodes.

To this end, we use the VPIC-IO benchmark with 128

cores and a file size of 32 GB.

For training, we consider the same 90 combinations of

the stripe size, s, and stripe count, c, shown in Table I, but

we enrich the configuration space to include aggregators,

a. In particular, we consider one, two, and four collective

buffering nodes, for a total of 270 (c, s, a) configurations.

We performed two different runs of the 270 configurations,

with the training data again taken as the minimum write time

over these two runs.

The data, shown in Figure 3, reveal that, for small stripe

count values (c ≤ 2), the write behavior is difficult to predict

with the simple models considered here. Consequently, we
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Figure 4: Summary of the best I/O performance obtained in the top-20 configurations for each I/O benchmark running on

(a) 4K cores, (b) 8K cores, and (c) 16K cores. Note that (a) and (b) are log-scale plots.

formed our model on the basis of the remaining 216 con-

figurations. As illustrated in Figure 3, the five-term model

is as follows:

m(c, s, a) = β1 + β2
c

a
+ β3

s

a
+ β4

1

a
+ β5

a

cs
. (2)

We observed this model reproducing the training data

well. The accuracy is assessed by having acceptable sta-

tistical measures (e.g. R-squared of 0.95 for VPIC on Stam-

pede). Furthermore, even though the models we consider in

this paper do not directly account for the variability, we

observe that our realized predictions tend to yield more

accurate predictions for those configurations where little

variability is seen as can be seen in Figure 2.

Thus far, we have only considered a single file size

when building nonlinear regression models. This modeling

approach reflects the typical workflow in automatic empir-

ical performance tuning, where one wishes to determine

parameter values for actionable decisions. One of the main

benefits of our models is that their simple, parameterized,

algebraic form allows us to very quickly solve optimization

problems involving them.

B. Training the Performance Models

We now consider models for multiple different file sizes.

The four independent variables, i.e., x = (c, s, a, f), form a

total of 81 possible terms in the basis set.

We conducted experiments for all the three I/O kernels

mentioned in Section III-B and different file sizes on all the

three platforms, i.e., Hopper, Edison, and Stampede. The

training set size on 512 cores was 336 configurations, on

1028 cores it was 180 and on 2048 cores it was 96. The size

of the training set is decreased as the core counts and file

sizes increase due to the increase in the required resources.

The selection of training set can be automatic with simple

heuristics of limits on the allowable value ranges in order to

cover the parameter space well. For example, the maximum

number of aggregators are limited by the number of MPI

processes of the application. Additionally, commands such

as “lfs osts” obtains the number of OSTs available on a

Lustre file system, which can be stored in a configuration

file. Once the limits are known, to establish a training set

one can use all discrete integer values as possible tunable

parameter values. Another strategy is to use powers-of-

two or halves-of-max-allowable values. An expert can set

these values more judiciously. Since the training is done

infrequently, this can be decided based on the training set

exploration time budget.

Following the forward-selection approach on the entire

training data set, as we defined in [1], we obtain one model

for each application on each platform. Due to lack of space,

we only provide the model for VPIC-IO on Edison:

m(x) = β1+β2
1

s
+β3

1

a
+β4

c

s
+β5

f

c
+β6

f

s
+β7

cf

a
, (3)

with a fit to the data yielding

β̂ = [10.59, 68.99, 59.83, −1.23, 2.26, 0.18, 0.01] .
The terms in (3) are interpretable from the parallel I/O

point of view. For instance, write time would have an inverse

relationship with number of aggregators and stripe count,

because as we increase those the I/O performance tend to

increase; It should have a linear relationship with file size as

increasing the file size causes an increase in the write time.

We describe the detailed validation of this model to section

V-B. Additionally, in the next section we will analyze in

detail this model’s ability to perform space reduction and

optimization for a variety of I/O tuning tasks.

C. Refitting the Performance Models

After training the model for the search space pruning

step, the process of choosing the top k configurations only

involves evaluating the model, a task whose computational

expense is negligible (relative to evaluation of a configu-

ration) for our simple choice of models. Therefore, using

such an approach will only require an evaluation of a few

configurations on the platform, decreasing the optimization

time significantly. In our experiments, the top twenty config-

urations always resulted in high I/O bandwidth. As opposed

to our existing GA-based approach, our approach does not
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(a) 512 cores (b) 1K cores (c) 2K cores

Figure 5: Effect of Lustre’s stripe count at three different scales of VPIC-IO on Stampede with (a) 512 cores, (b) 1K cores,

and (c) 2K cores

spend excessive time in evaluating configurations that have

low performance.

In case our approach is not able to achieve I/O rates

competitive with those in the training set, it is possible to

simply refit the model using the new results gathered at the

exploration step. We note that the choice for the number of

top performing configurations is a variable parameter that

one can choose.

V. EXPERIMENTAL RESULTS

In this section, we first present the I/O performance results

for the three I/O kernels at different scales on the three

platforms. We compare the achieved I/O bandwidth and the

overall improvement compared to the default I/O settings.

We then analyze the interdependencies of the I/O parameters

by taking a closer look at these results.

A. Overall Performance Improvement

The best I/O bandwidth results we have obtained for each

of the applications on different platforms are summarized

below. For each experiment, this is the best performing

configuration among the top-20 configurations predicted by

the model. Figure 4 shows the I/O bandwidth grouped by the

number of cores from 4K to 16K. For all these experiments

we used the training phase experiments without a refitting

phase. As can be observed, the I/O bandwidths of the kernels

are in the range of 5-30 GB/s, which is efficient performance

for writing to one shared file on these platforms at their

respective scales. We also show the default I/O performance

of the applications for their respective concurrencies at 4K

and 8K on the Hopper platform. Compared to the default

performance, which is in the range of 0.3-0.4 GB/s, our

tuned configurations perform 6X-94X better. As the number

of Lustre OSTs on Edison and on Stampede are similar to

that of Hopper, we expect the default performance and our

speedup to be at the same level. Note that for the Stampede

platform, we have scaled our runs only up to 4K cores due

to queue policies in running large-scale tests.

Table II summarizes the achieved I/O bandwidths for the

three I/O kernels running at different concurrencies on the

three platforms. The table also shows the size of the data

written to the file system. The time to traverse the search

space after training less than three hours. In most cases,

exploring the top twenty configurations took less than one

hour, resulting in significant improvements to overall parallel

I/O performance.

#
cores

I/O
Kernel

File
Size
(GB)

Edison
(GB/s)

Hopper
(GB/s)

Stampede
(GB/s)

Hopper
De-
fault

(GB/s)

512
VPIC 128 8.19 3.00 9.30 0.39

VORPAL 140.625 3.24 2.67 7.76 0.44

GCRM 166.4 9.78 5.27 11.62 -

1K
VPIC 256 14.24 5.09 14.71 0.32

VORPAL 281.25 9.91 2.34 9.10 0.41

GCRM 166.4 14.63 6.70 13.28 -

2K
VPIC 512 19.72 8.18 14.75 0.40

VORPAL 562.5 17.81 4.63 12.67 0.36

GCRM 665.6 23.96 6.82 21.05 0.24

4K
VPIC 1024 20.57 12.57 29.20 0.34

VORPAL 1197 10.26 4.50 15.35 0.31

GCRM 2600 16.64 10.59 26.99 0.41

8K
VPIC 2048 24.32 18.93 - 0.20

VORPAL 2250 12.77 7.26 - 0.33

GCRM 10400 28.60 22.09 - -

16K
VPIC 512 23.21 21.96 - -

VORPAL 4394 15.20 9.45 - -

GCRM 10400 24.58 19.73 - -

Table II: Highest bandwidth achieved for the three ap-

plications by selecting the best-performing configuration

suggested by our proposed framework.
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(a) VPIC-IO (b) VORPAL-IO (c) GCRM-IO

Figure 6: Ratio of MPI-IO’s aggregators and Lustre’s stripe count on three different applications on 2K cores of Hopper

B. Analysis of Interdependencies Among I/O Layers

In this subsection, we analyze some of the interdepen-

dencies of the parallel I/O tunable parameters by looking

at the results of the experiments we conducted. All the

data gathered for all the applications on the platforms is

not possible to put in this paper due to space restrictions;

therefore we try to have each analysis on different appli-

cations and on different platforms. We first analyze the

impact of individual tuning parameters (stripe count, number

of aggregators, and stripe size) on performance, and then

discuss the combined impact of stripe count and aggregators,

stripe size and aggregators.

In order to analyze the effect of Lustre’s stripe count

parameter on I/O performance of an application we look

at the three different scales for which we ran VPIC-IO

on Stampede. Figure 5 shows the box plots for these

experiments, where each of the plots contains all the training

set configurations for corresponding concurrency (i.e., 512

cores, 1024 cores, and 2048 cores). We can observe that

as the stripe count increases the I/O performance improves

(especially at higher concurrencies of) VPIC-IO application

since the amount of data to be written is large. This behavior

is exactly reflected in the model since it tries to use all

available OSTs for VPIC-IO.

Figure 7 shows the variation of the number of aggregators

on VPIC-IO’s training set on Stampede. Similar to Lustre’s

stripe count, increasing the number of aggregators helps in

improving the I/O performance for VPIC-IO. Therefore, the

model has taken this into account and tries to maximize the

number of aggregators for the larger-scale testing sets.

Figure 8 shows the same box plots for the stripe size of

VPIC-IO on Stampede. As illustrated the plot, Lustre’s stripe

size does not have the same behavior as the stripe count and

each of the values chosen in the training set for the stripe size

has shown both good and bad I/O performance, depending

on the values of other I/O parameters. As we show next, the

model’s behavior for this value is interesting.

Now that the variations and the performance of individ-

ual parameters are observed, we analyze the top twenty

Figure 7: Effect of MPI-IO aggregators using the training

set of VPIC-IO on Stampede.

Figure 8: Effect of Lustre’s stripe size using the training set

of VPIC-IO on Stampede..

configurations predicted by the model for a larger-scale

VPIC-IO experiment on Stampede. Table III contains the

configurations proposed by the model as the top performing

configurations for VPIC-IO using 4K cores of Stampede,

which leads to an output file of size 1024 GB. As noted

before, the number of aggregators is chosen to be the

maximum of 1024 and the stripe counts are varying from 156

(maximum in the testing set) to 64. Since there is no strong
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correlation in stripe size and I/O performance in the training

sets, all the stripe sizes in the testing sets are chosen by the

model to be tested. Looking at this table, we can observe

that for experiment (exp id) 6, the highest I/O bandwidth of

roughly 30 GB/s is achieved with a stripe size of 64MB.

exp id c s a f (GB) time (s)
bandwidth

(GB/s)

0 156 1 1024 1024 58.87 17.39

1 156 2 1024 1024 49.84 20.54

2 156 4 1024 1024 47.06 21.75

3 156 8 1024 1024 42.11 24.31

4 156 16 1024 1024 38.99 26.25

5 156 32 1024 1024 40.28 25.41

6 156 64 1024 1024 35.06 29.20
7 156 128 1024 1024 44.96 22.77

8 128 1 1024 1024 61.33 16.69

9 128 2 1024 1024 65.87 15.54

10 128 4 1024 1024 58.94 17.37

11 128 8 1024 1024 54.72 18.71

12 128 16 1024 1024 68.53 14.94

13 128 32 1024 1024 61.76 16.57

14 128 64 1024 1024 49.47 20.69

15 128 128 1024 1024 57.31 17.86

16 64 1 1024 1024 104.13 9.83

17 64 2 1024 1024 95.14 10.76

18 64 4 1024 1024 129.01 7.93

19 64 8 1024 1024 78.20 13.09

Table III: The top-20 configs predicted by the model and

their I/O bandwidth for VPIC-IO on 4K cores of Stampede

(c: stripe count; s: stripe size; a: aggregators; f: file size).

Another interesting behavior we found in the results of

the training sets experiments is a relationship between the

number of aggregators and the stripe count. We analyze this

relationship using the “ratio of the number of aggregators

to the stripe count”. This relationship makes sense from the

parallel I/O perspective as the number of aggregators each

OST handles has an impact on concurrency of Lustre and

the communication between an aggregator and an OST.
Figure 6 shows the impact of the ratio of aggregators to

the stripe count for various I/O kernels running on Hopper at

a concurrency of 2K. We can observe that for both VPIC-IO

and VORPAL-IO, the impact of the ratio is similar, while

GCRM-IO shows a different behavior. It is not surprising to

see that the higher ends of the spectrum is not performing

well for all kernels as they are related to those experiments

with lower stripe count. There is a peak in the middle of

this plot, where we can obtain the best I/O performance for

VPIC-IO and VORPAL-IO. This is where both stripe count

and aggregators are large enough to get the most parallelism,

but not too large so that the overhead causes the performance

to drop. This is different for GCRM because the stripe count

should be large but the number of aggregators should not be

that large.
Analyzing the top twenty results predicted by our model

once we ran them on the platforms provides insight as

well. Here we show some of the insights that we think are

important for the scientific community to achieve efficient

parallel I/O performance.
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Figure 9: Effect of Lustre’s stripe size on performance of

the top-20 VPIC-IO configurations on 4K cores of Edison.

Stripe count is fixed at 96 (maximum # of OSTs on Edison).

The first insight we gained is the role of Lustre’s stripe

size. Figure 9 compares the performance of the top twenty

configurations obtained by the model for VPIC-IO on 4K

cores of Edison. The stripe count for all these configurations

are fixed to 96 thus it is easy to compare the impact of stripe

size in one plot. The three bars in different colors show the

numbers for three different sets of aggregators chosen by the

model and the X-axis shows different values for stripe size in

MB. We can observe the difference between poor performing

and best performing configurations is almost two-fold. This

behavior is similar to what we observed in Table III, which is

the same application at the same concurrency on Stampede;

However, on Edison, the best I/O performance was gained

when stripe size is equal to 16, while on Stampede that is

64. This shows that depending on the platform, the values

of these parameters are different and underscores that the

selection of stripe size has an impact on I/O performance

contrary to a recent study [12] that downplays this impact.

Another insight we gained from the results is that unlike

Lustre’s stripe count, where increasing the number of OSTs

gives better performance, the number of aggregators exhibits

a sweet spot depending on the I/O pattern of an application.

Figure 10 demonstrates this impact for the VORPAL ap-

plication on 16K cores of Edison. Fourteen configurations

out of the top twenty proposed by our model for this

experiment have stripe count equal to 96 and therefore we

can compare the effect of aggregators for each stripe size

value. Based on the plot, one can conclude that having too

many aggregators does not provide good performance (most

likely because of high overhead). On the other hand, having

too few aggregators is suboptimal because nodes are not

able to saturate the I/O bandwidth. We can conclude from
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the plot that the value of stripe size has a role in choosing

the number of aggregators as well proving the existence of

the interdependency among various I/O parameters.

In summary, we list the following findings from our

analysis of I/O performance:

• Irrespective of the platform, as we increase the size

of a file, increasing Lustre’s stripe count, causes more

parallelism and therefore results in an improvement in

the I/O bandwidth.

• Lustre’s stripe size is an important factor in tuning I/O

performance. It can have a dramatic impact on I/O per-

formance and its values depend on the I/O operations

and the other I/O parameters (e.g., aggregators) and the

HPC platform.

• The number of MPI-IO aggregators should be specified

carefully and not blindly minimized or maximized.

This parameter also depends on the I/O operations,

other I/O parameters, the platform, and the amount of

communication happening in the application (i.e., the

I/O pattern of the application).

VI. RELATED WORK

Tuning the I/O subsystem has unique challenges. Al-

though the computation kernels run for a few milliseconds,

evaluation of I/O functions can take minutes. Due to the

complexity and interdependency among multiple layers of

the I/O system, searching for tuned parameters is a cumber-

some process. There have been several efforts in predicting

I/O performance of applications and parallel systems and in

tuning I/O performance. In the following, we briefly discuss

the most related work to our exploration.

Our recent work used a heuristic-based search with a

GA in order to tune I/O performance [3]. However, this

heuristic search process has a prohibitive run time and

limited applicability at a different concurrency from the

trained problem size. Our performance modeling approach

filters the number of combinations to a small number and

then searches within the smaller space. Table IV shows a

comparison of these approaches. With default configuration

without any I/O tuning, each application will take more than

3 hours. With Genetic Algorithms, for each application and

scale, a cost of more than 10 hours is paid for tuning.

With current approach, the cost of training is paid once

and then for each application applying the model takes less

than an hour with fast application run time. Howison et al.

studied manually tuning HDF5 applications on Lustre file

systems [8]. Using analytical models, our work automates

the tuning process. McLay et al. study tuning parallel I/O on

a specific system and suggest that maximizing stripe count

has a significant impact on performance [12]. As mentioned

earlier, our study explores the interdependencies of various

parameters and shows the impact of multiple parameters on

the overall performance.

Method
Training

Phase

Applying
the

Model

Per App.
& Scale
Tuning

App.
Runtime
(VPIC-
8192 on
Hopper)

GA N/A N/A
> 10
hours

118
seconds

Model
Fitting

> 10
hours
(can

reuse)

< 1
minute
(auto-
matic)

< 1 hour
100

seconds

Default
Config.

none none none > 3 hours

Table IV: A comparison of GA, modeling and default

configuration.

There have been several efforts in predicting parallel I/O

performance. Shan et al. [17] use the IOR benchmark to

match the I/O patterns of an application and predict I/O

performance. Meswani et al. [13] use a similar strategy by

running the I/O operations of an application on a reference

system and calibrate the performance of the reference system

with a target system. Smirni et al. [18] use a queuing network

model to predict the performance of RAID-3 disks. Song

et al. [19] propose an analytical model to predict the cost

of read operations for accessing data organized in different

layouts on the file system. While many of these efforts seek

to predict I/O performance accurately, our work uses the

models to identify fruitful parameter values and then iterates

in the executing and refitting stages by searching among

this smaller set of parameter values. Using this approach,

we have shown that our technique is fast and effective in

achieving good I/O performance. Herbein et al. [11] use a

statistical model, called surrogate-based modeling to predict

the performance of the I/O operations of HPC applications.

Similar to our work, the modeling is used to reduce the time

to search for the optimal parameters. Although the modeling
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is general, the parameters used in [11] are more specific to

ADIOS library while the parameters we used in this paper

is general and can be applied to any parallel I/O application

using Lustre.

VII. CONCLUSION AND FUTURE WORK

Parallel I/O is an integral part of modern HPC, however it

remains challenging to obtain maximum performance from

I/O subsystems. This is mainly due to interdependencies

among multiple layers of the parallel I/O stack. The values

for the parameters at each layer of this stack are critical

to the I/O performance and they vary across applications,

platforms, and the concurrency of the application.

In this paper, we present a model-driven tuning framework

which exploits nonlinear regression models to find the top

performing values for these parameters in order to decrease

the amount of I/O time in HPC applications. We show that

our approach achieves significant portion of the available

I/O performance of various HPC platforms for a range of

applications.

Another main contribution of this paper is shedding light

on the complex interdependencies of different parallel I/O

tunable parameters and how they vary with different exper-

iments. We show that Lustre’s stripe count and stripe size

along with MPI-IO aggregators are all critical factors for I/O

performance. Our dynamic, model-driven approach makes

the search process for selecting these parameters easier.

As future work, we plan to tie the models we developed in

this paper to the I/O patterns of applications. Additionally,

we will explore isolating interference in storage systems,

mostly due to various jobs sharing the same resources. We

plan on studying the network and storage activity and their

impact on I/O performance.
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