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Abstract. Climate Change is one of the most pressing challenges fac-
ing humanity in the 21st century. Climate simulations provide us with a
unique opportunity to examine effects of anthropogenic emissions. High-
resolution climate simulations produce “Big Data”: contemporary cli-
mate archives are ≈ 5PB in size and we expect future archives to mea-
sure on the order of Exa-Bytes. In this work, we present the successful
application of TECA (Toolkit for Extreme Climate Analysis) framework,
for extracting extreme weather patterns such as Tropical Cyclones, At-
mospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation
datasets. TECA has been run at full-scale on Cray XE6 and IBM BG/Q
systems, and has reduced the runtime for pattern detection tasks from
years to hours. TECA has been utilized to evaluate the performance of
various computational models in reproducing the statistics of extreme
weather events, and for characterizing the change in frequency of storm
systems in the future.
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1 Introduction

Climate simulations provide us with an unprecedented view of the state of earth’s
present, and potential future climate under global warming. Contemporary cli-
mate codes, such as CAM5 [2], when run in 25-km spatial resolution with 6-hour
data multi-variate dumps, produce over 100TB from a 25-year integration pe-
riod. The current CMIP-5 archive [3], consisting of international contributions
from a number of climate modeling groups consists of over 5PB of data; this
dataset was mined extensively for the IPCC AR5 report [5]. It is anticipated
that CMIP-6 dataset [7] will cross the exabyte threshold with 25-km model runs
being the norm. Faced with this massive deluge of multi-variate, spatio-temporal
data, sophisticated and scalable “pattern detection” tools are critical for extract-
ing meaningful scientific insights.
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Fig. 1. Examples of extreme weather phenomena observed through satellite and radar.
Clockwise from bottom-left: Extra-Tropical Cyclone, Atmospheric River, Derecho and
Tropical Cyclone events.

One example of the types of climate data analytics of societal relevance is
the identification and tracking of extreme weather. Figure1 illustrates the types
of extreme weather observed in the natural climate system. Phenomena such as
cyclones and atmospheric rivers can have widespread and long-lasting impact on
national economies. Understanding how extreme weather events will change in
the future climate is an important open question.

In order to address this important challenge, we have developed the Toolkit
for Extreme Climate Analysis (TECA)[10] to identify storms in high-frequency
climate model output. To date, we have applied our technique to identify three
different classes of storms: tropical cyclones, atmospheric rivers and extra-tropical
cyclones. Due to the high-frequency nature of the data required to identify and
track individual storms in a climate model simulation, the raw input datasets
that we have analyzed range from 0.5TB to 13TB. As the next generation of
climate models moves into tropical cyclone permitting horizontal resolutions,
we expect the publicly available datasets necessary for this type of analyses
to exceed 10PB. By extracting the relevant storm trajectory information by
“Big Data” analytics methods, we can dramatically reduce the volume of data
needed to quantify the human -induced changes in storm behavior. Furthermore,
the techniques we have developed are amenable to parallel execution, and are
demonstrated to scale up to full size of the largest machines available to us,
including a 150,00 core Cray XE6 and 750,000 core IBM BG/Q platform.
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2 Methods

2.1 TECA (Toolkit for Extreme Climate Analytics)

TECA [10] is a climate-specific, high-performance pattern detection toolkit that
is designed for efficient execution on HPC systems. We have developed the code
in C/C++, and utilize MPI for intercommunication traffic. We utilize NetCDF-4
for parallel reads, and MPI-IO for producing output.

The design and implementation of TECA is guided by our observations of
pattern detection problems in climate science. After analyzing the climate pat-
tern detection literature for a number of event types, we discovered the following
recurring theme. The detection process can be typically broken down into two
steps:

1. Detection of candidate points that satisfy multi-variate constraints
2. Stitching of candidate points into a trajectory that satisfies spatio-temporal

constraints

Step 1 tends to be data-intensive, involving loading anywhere between 10GB-
10TB of data. The algorithm has to scan through all of the relevant fields to
select candidate points. However, this step can be executed in parallel across
timesteps. The degree of parallelism can be as high as the number of timesteps
in the processed dataset (typically 102-105); hence a dramatic speedup in overall
runtime is feasible Step 2 involves pairwise analysis on potential storm matches
across consecutive time slices in order to stitch trajectories. However, a small
amount of data (typically 10MB-1GB) is required for this analysis, and this can
be easily loaded on memory on a single node and executed in serial.

Conceptually, Steps 1 and 2 can be directly translated to the MapReduce
computational paradigm powering much of the commercial Big Data Analyt-
ics workloads. TECA implements a custom framework for processing scientific
datasets, with an eye towards high performance. We utilize the MPI interface for
optimizing job launch and communication traffic. We stripe the NetCDF data
across multiple low-level storage targets to optimize read performance. Writ-
ing (relatively small) partial results in Step 2 can create metadata bottlenecks,
especially at concurrencies in excess of 50,000 cores. We implement a 2-phase
collective I/O mechanism to aggregate writes on a smaller number of nodes
(O(1000)) and perform file-per-node writes using MPI-IO.

2.2 TECA for detecting Tropical Cyclones

We have implemented the Tropical Cyclone detection procedure outlined in [?].
The detection step consists of finding co-located vorticity maxima, pressure min-
ima (within a radius of 5◦) and temperature warm-core centers. The stitching
step involves linking storms across subsequent 6-hr time windows. Candidate
storms should travel lt 400km in 6-h, persist for at least 2 days, and have a wind
velocity (gt 17m/s) during at least 2 days within their lifetime.



4

Fig. 2. TECA utilizes the Map Reduce computational paradigm for exploiting parallel
computing resources.

2.3 TECA for detecting Extra-Tropical Cyclones

We implement the Extra-Tropical Cyclone detection and tracking procedure
utilized in [12]. We detect a local minima in the pressure field within a 100x100
km radius. Ties between adjacent low-pressure storm centers are resolved based
on strength of the local laplacian (i.e. storm centers with largest laplacian are
declared to be candidates). Potential candidates are stitched into trajectories
by performing a nearest neighbor analysis with distance constraints on storms
(i.e. storms are constrained to travel lt 1000km in a 6-hr window, and lt 700
km in a 6-hr window in the North, South, and Westward directions. We only
retain storms that persist for more than 24 hours, and travel gt 500km over their
lifetime. Storms over high elevation areas (gt1500km) are excluded.

2.4 TECA for detecting Atmospheric Rivers

Atmospheric Rivers (ARs) are large, spatially coherent weather systems with
high concentrations of elevated water vapor. These systems often cause severe
downpours and flooding over the western coastal United States and western Eu-
rope. We have implemented an algorithm to detect ARs in the TECA framework
[8]. We first compute a 2D Integrated Water Vapor (IWV) by performing a ver-
tical integral on the specific humidity field. Following the definition of physical
features of an AR [11]; we perform a thresholding operation for identifying all
grid points with IWV ¿ 2cm. We then use a connected component labeling al-
gorithm to find all the connected regions of grid points. We test if a candidate
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originates in the tropics, and makes landfall on the US coast. For all the polygons
satisfying the origin and the landfall conditions, we compute a medial axis, and
check if the length of the AR gt 2000km and if the width of the AR lt 1000km.
If a polygon satises all of these geometric constraints, we declare it to be an
atmospheric river “pattern”.

All of these detection and stitching criteria can be easily accommodated
within the design of TECA; thereby utilizing parallel job launch, execution
and parallel I/O capabilities. Apart from returning summary statistics on storm
counts and location, we are also able to pull out valuable detailed information
on precipitation patterns and velocity profiles of storm during the course of their
lifetime.

3 Experimental Setup

3.1 Data

We utilized multi-model output from the community produced CMIP-5 archive
[3], and a high-resolution version of the Community Atmospheric Model (CAM5)[2]
simulations conducted by our group at NERSC. The CMIP-5 datasets are freely
and publicly accessible via a number of international Earth System Grid Feder-
ation web portals and are the basis of most climate model results presented in
the IPCC AR5 WG1 report [4]. The observational SSM/I datasets are available
via a web portal [6].

3.2 Platforms

We utilized the Hopper system at NERSC, and the Mira system at ALCF for all
results reported in this paper. Hopper is a 1.28 PF, Cray XE6 system featuring
153,216 compute cores, 212TB of memory and 2PB of disk available via a 35
GB/s Lustre filesystem. Mira is a 10PF, IBM BG/Q system featuring 786,432
cores, 768 TB of memory with 384 I/O nodes accessible via GPFS.

4 Results

We now report on both the scaling performance obtained by TECA on various
HPC platforms, as well as the scientific results facilitated by these runs.

4.1 Scaling Performance

Table1 summarizes the performance of TECA on a range of pattern detection
problems. We have analyzed CAM5 model output (0.5-13 TB), CMIP-5 multi-
model output (6 TB), and SSMI (a 35 GB satellite data product). We have run
TECA at full scale on Hopper and Mira platforms, facilitating pattern detection
on these massive datasets. Needless to say, such pattern detection problems
cannot be tackled on individual workstations.
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Table 1. Scaling results obtained with TECA on various supercomputing platforms

Climate Pattern Dataset Dataset Serial runtime Parallel runtime Concurrency Platform
Size (Estimated)

Tropical Cyclones CAM5 1◦ 0.5 TB ≈ 8 years 30 min 149,680 cores Hopper
Tropical Cyclones CAM5 0.25◦ 13 TB ≈ 9 years 60 min 80,000 cores Hopper
Atmospheric Rivers SSM/I 35 GB ≈ 11 hours 5 sec 10,000 cores Hopper
Extra-Tropical Cyclones CMIP-5 6 TB ≈ 10 years 90 min 750,000 cores Mira

4.2 Science Results

We applied the TECA Atmospheric River detection capabilities to character-
ize ARs simulated by four CMIP-5 models (GFDL-ESM2M, HadGEM2-CC,
MIROC5, CCSM4). We analyzed data for the RCP8.5, with the historical sce-
nario as a baseline. We will now present and discuss both of these results.

Tropical Cyclones

One of the primary scientific utilities of the TECA software is to evaluate
how well models perform in reproducing extreme event statistics, compared to
observational records. If we assess models to perform well for the historical pe-
riod, we can have greater confidence in the trends projected by the same models
for future runs. We have applied TECA to the CAM5 0.25-degree output, over a
simulated time period spanning 1979-2005 [13]. For this time period, the hand-
curated iBTrACS dataset reports 87 (+/- 8) storms every year. TECA reports
84 (+/-9) storms, which is rather accurate. Figures 3 and 4 highlight the spatial
distribution of the storms, as well as the seasonal distribution. We note that
CAM5 does a good job of reproducing the spatial pattern, with perhaps too
many storms in the central pacific. The model also does a good job of reproduc-
ing the seasonal pattern in various ocean basins (North Atlantic, Indian Ocean,
Northwest Pacific), but the storms counts are off in the Pacific.

After validating the TECA output for the historical period, w decided to
apply the capabilities for climate change experiments conducted by various US
and international efforts. We processed a climate change experiment specified
by the CliVAR Working Group [1]. We used the CAM5 model to simulated the
earth’s climate under a baseline (climo), a scenario consisting of 2xCO2, SSTs
increased uniformly by 2-celsius, and the conjunction of both CO2 and SST
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Fig. 3. Application of TECA to CAM5 0.25-degree output. Tropical Cyclones (Cate-
gory 1 through 5) are illustrated in the bottom figure. TC tracks from the iBTraACS
observational product at plotted for an identical time period.

Fig. 4. TECA can produce detailed diagnostics for storm tracks. In this case, seasonal
TC activity is plotted by major oceanic basins
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Fig. 5. Number of annual Tropical Cyclones under the CliVAR scenarios

conditions. Fig5 shows the average number of tropical storms, tropical cyclones
and intense tropical cyclones per year simulated by the high-resolution version
(0.23ox0.31o) of CAM5.1 for the four idealized configurations. Error bars repre-
sent 5%-95% confidence intervals based on interannual variability. The baseline
(1990) climatology is in blue. A two degree warmer simulation with elevated
atmospheric carbon dioxide levels (660ppm) is shown in red. While the total
number of tropical storms over all intensities is reduced in a warmer world, the
number of intense tropical cyclones (category 4 and 5) is increased.

Atmospheric Rivers

Fig. 6. Sample AR events detected by TECA implementation on the SSM/I dataset
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Fig. 7. Number of Atmospheric River events in the CMIP-3 (red) and CMIP-5 (blue)
archives compared to observations (green)

We applied the TECA AR detection capability to the SSM/I satellite prod-
uct. Fig8 shows a range of diverse AR features returned by our implementation.
We note that the implementation is reasonably robust to various shapes and
sizes of AR events. In order to validate the procedure, we compared the events
returned by TECA to a hand-curated database of known AR events maintained
by [9]. We note that TECA was able to detect 93% of all events reported in
the database. We furthermore applied the TECA toolkit to various CMIP-3 and
CMIP-5 models over the historical period. Fig7 shows that several models match
reasonably well with the observed record, however, some models do exhibit hy-
peractivity with regards to generation of ARs.

Extra-Tropical Cyclones

In ongoing work, we have successfully applied TECA to detect Extra-Tropical
Cyclones in climate data. In perhaps the leading example of Scientific Big Data
analytics, we scaled TECA to process the entire CMIP-5 archive (historical and
RCP8.5 runs, all ensemble members, 6-hourly data) in one shot on 750,000 cores



10

Fig. 8. Summary of Annual Extra-Tropical Cyclone activity in all of CMIP-5. A clear
decrease is observed is observed from the blue (historical) to the future rcp8.5 (red)
periods

of the Mira IBM BG/Q system. Preliminary results in Figure8indicate that the
extra-tropical cyclone count will decrease in a warming world, and that this
trend is consistent across the entire CMIP-5 multi-model archive.

5 Conclusions

Pattern Recognition problems are increasingly common in the scientific world.
As a leading example, Climate science requires sophisticated pattern recognition
on TB-PB sized datasets. We have developed and successfully applied TECA to
the problem of finding extreme weather phenomena (such as tropical cyclones,
atmospheric rivers and extra-tropical cyclones) across the most contemporary
climate models (CAM5), data archives (CMIP-5) and observational products
(SSMI). We have scaled TECA on DOE’s leading HPC platforms at NERSC
and ALCF, and obtained important scientific insights on the potential change
in extreme weather phenomena in future climate regimes.
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