
A Multiplatform Study of I/O Behavior on Petascale
Supercomputers

H. Luu, M. Winslett, W. Gropp
Univ. of Illinois at Urbana-Champaign

 R. Ross, P. Carns, K. Harms
Argonne National Laboratory

 Prabhat, S. Byna, Y. Yao
Lawrence Berkeley Nat’l Laboratory

ABSTRACT
We examine the I/O behavior of thousands of supercomputing
applications “in the wild,” by analyzing the Darshan logs of over a
million jobs representing a combined total of six years of I/O
behavior across three leading high-performance computing
platforms. We mined these logs to analyze the I/O behavior of
applications across all their runs on a platform; the evolution of an
application’s I/O behavior across time, and across platforms; and
the I/O behavior of a platform’s entire workload. Our analysis
techniques can help developers and platform owners improve I/O
performance and I/O system utilization, by quickly identifying
underperforming applications and offering early intervention to
save system resources. We summarize our observations regarding
how jobs perform I/O and the throughput they attain in practice.

Categories and Subject Descriptors
C.4 [Performance of systems]: Performance attributes,
Measurement techniques

Keywords
Input/Output; Performance Analysis; HPC; Parallel I/O

1. INTRODUCTION
The 2014 TOP500 list includes over 40 deployed petascale
systems, and the high-performance computing (HPC) community
is working toward developing the first exaflop system by 2023.
Scientific applications on such large-scale computers often read
and write a lot of data. For example, an earth science code on an
IBM Blue Gene/P system at Argonne National Laboratory read
~3.5 PB during two months in 2010 [1]. With such rapid growth
in computing power and data intensity, I/O remains a challenging
factor in determining the overall performance of HPC codes.

Analyzing I/O behavior of applications (apps) can help improve
their performance and increase the utilization of supercomputing
systems. By analyzing the runtime behavior of an individual job,
we can identify its I/O bottlenecks and potential implementation
inefficiencies and suggest improvements to its owner and users.
By analyzing the I/O behavior of an app (i.e., the set of all its
jobs), we can identify patterns in its behavior. By analyzing the
I/O behavior of the workload of a platform (i.e., a supercomputer
instance), we can give the platform owners insights into the usage
of their storage systems and identify apps that consume I/O
resources inefficiently, so that improvements to these apps may
free up resources for other apps. By analyzing the changes in I/O
behavior when apps migrate to similar or radically different

platforms, we can help scientists avoid unexpected performance
degradation. I/O behavior analysis can even show us how the
behavior of individual apps evolves over time. To accomplish all
these purposes, we need a systematic approach to app-specific,
platform-wide, and cross-platform analysis of I/O behavior.

In this paper, we show how automated collection and analysis of
I/O logs across multiple platforms can help accomplish these
purposes. We used Darshan [1], a lightweight instrumentation
tool, to capture application-level I/O behavior at production scale.
Because Darshan’s overhead is low, a number of platform
owners1 have deployed it as the default option for all apps, thus
enabling workload-wide and cross-platform analysis.

This paper presents insights we gleaned by analyzing Darshan
logs from three large-scale supercomputers: Intrepid and Mira at
the Argonne Leadership Computing Facility (ALCF) and Edison
at the National Energy Research Scientific Computing Center
(NERSC). The logs span a substantial period of time—4 years on
Intrepid, 18 months on Mira and 9 months on Edison—and
capture the I/O behavior “in the wild” of about 1M jobs,
representing thousands of apps and roughly a third of the
workload on these platforms. This is the first study that has been
able to compare and contrast the I/O behavior and evolution of
many different apps at production scale across platforms.

Our contributions fall into two categories:

• The logs provide a broad portrait of the state of HPC I/O usage
on three modern platforms. For example, among Darshan-
instrumented jobs:

o Every widely used I/O paradigm (file per process, global
shared file, or subsetting I/O) is represented in the set of best-
performing and worst-performing apps, in terms of
aggregate I/O throughput. Thus, use of a particular paradigm
does not in itself guarantee good or bad performance.

o Roughly a third of jobs have aggregate average I/O
throughput no more than that of a single contemporary USB
flash memory thumb drive (~256 MB/s [2]). Three-quarters
of apps never exceed the throughput of four thumb drives in
any of their jobs. Over a third of jobs spend more time in I/O
metadata functions than in transfer of actual data.

1 In this paper, a job or run is a particular execution of an app.

Unless otherwise noted, we consider two jobs to belong to the
same app if and only if their executables have the same name.
Someone who submits a job is a user; users may have to
configure an app before they submit a job. Someone responsible
for developing the source code of an app is its owner, or rather
one of its owners. A widely used app may have a small set of
owners and a much bigger set of users. A platform is a
particular installation of a supercomputer. Someone responsible
for configuring or administering a platform or for helping its
users is an owner of that platform.

© 2015 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.

HPDC'15, June 15 - 19, 2015, Portland, OR, USA Copyright 2015 ACM
978-1-4503-3550-8/15/06...$15.00
http://dx.doi.org/10.1145/2749246.2749269

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

o Roughly half of apps have low throughput because none of
their jobs access more than 1 GB of data, so that file startup
costs cannot be amortized across much data transfer; or
because they rely on text files instead of binary files. Even on
the most data-intensive platform we studied, half of apps
wrote less than 10 GB of data in 99% or more of their jobs.
On one platform we studied, roughly one-fifth of apps relied
exclusively on text files, which almost certainly guarantee
poor performance at scale.

o Three-quarters of jobs use only POSIX to perform I/O. This
does not condemn a job to poor I/O throughput, but it does
suggest a need to investigate why higher-level parallel I/O
libraries are not more widely used.

• We discuss ways to address these problems, including a simple
and effective analysis and visualization procedure for quickly
identifying apps’ I/O bottlenecks; criteria for system owners to
identify potentially underperforming apps; and an I/O boot
camp for users/owners of underperforming apps. The resulting
performance improvements could raise the level of satisfaction
of users, app owners, and platform owners. Two subtle points:

o The I/O performance of an app may satisfy its owners but not
necessarily the platform owners, and vice versa. Thus
analysis of I/O logs must address the needs of both
populations.

o 90% of a platform’s I/O usage comes from less than 10% of
its apps, but some of these apps do not have many large jobs.
The greatest potential resource savings for platform owners
lies in identifying and correcting an app’s I/O issues before it
becomes a top consumer of I/O time. Automated analysis can
be particularly helpful here, as smaller jobs are less likely to
attract expert human scrutiny.

The remainder of this paper is organized as follows. Section 2
provides background on Darshan and summarizes related work.
Section 3 describes the target platforms and collected data.
Section 4 presents a three-dimensional analysis of the collected
logs: app-specific, platform-wide, and cross-platform. Section 5
summarizes our findings and outlines future work.

2. BACKGROUND AND RELATED WORK
For over 20 years, researchers have sought to understand HPC I/O
workloads. As the size, composition, and complexity of platforms
and their workloads grow continuously, the topic must be
revisited in each generation of platforms (see, e.g., [3][4] from the
1990s, [5][6] from the 2000s, and [7][8] from the 2010s). Many
workload studies (e.g., [5][6][8], among more recent works) use
popular scientific codes such as FLASH [11], GCRM [12],
Nek5000 [13], CESM [14], and their associated benchmarks as
representative of the entire I/O workload. Such benchmarks are
widely used to tune and refine I/O libraries and storage systems.
Since these apps are widely used in their fields, any improvements
made to them can benefit many users. As important as they are,
however, these well-studied apps and benchmarks are not
necessarily representative of the long tail of apps that constitute
the majority of submitted jobs. By considering a platform’s entire
workload, we can gain additional insights into its I/O system
usage. By considering multiple platforms and many apps, we can
gain general insights into I/O performance portability.

I/O tracing is very helpful in capturing details of individual I/O
functions and allowing in-depth analysis of application
performance. Researchers have created many tools for generating

app I/O traces, such as RIOT I/O [15], ScalaIOTrace [16],
//TRACE [17], IPM [18], LANL-Trace [19], TraceFS [20], and
Recorder [21]. After the traces have been generated, they can be
used for app debugging, performance tuning, creating
benchmarks, system analysis, or cross-platform studies. For
example, the RIOT I/O tracing toolkit has been used to assess the
performance of three I/O benchmarks on three platforms with
GPFS and Lustre file systems. ScalaIOTrace, //TRACE and
Recorder traces can be replayed to create app-specific
benchmarks. I/O tracing provides very detailed information about
app executions, which can be extremely useful in improving I/O
performance. Such I/O tracing tools are ideal for investigating
individual runs in full detail, but are too expensive to be used to
find broader patterns at the scale of thousands of jobs and apps.

Kim et al. [7] characterized platform workloads by instrumenting
the storage system. This approach does not provide app-specific
information for analysis. In this paper, we rely on data captured
for a general production workload, which can be used to
characterize I/O behavior at both the app and workload levels.

Darshan [1] instruments I/O functions at multiple levels, primarily
MPI-IO and POSIX I/O. Darshan collects about 30 pieces of
summary data for each job, as well as 162 additional parameters
for each file opened by a process of the job. Example job-level
data include the numbers of processes, files accessed, and bytes
read/written; aggregate I/O throughput; and total run time and I/O
time [9]. After a run, users can employ Darshan’s tools to parse
their job’s logs and summarize its I/O behavior.

Darshan’s minimal collection of data (1-2% overhead, depending
on the app [10][23]) allows it to be enabled for all jobs by default.
This allows us to observe a platform at workload scale and to
identify its jobs and apps that can most benefit from follow-up
analyses with I/O tracing and other performance analysis tools.
As Darshan captures all runs of the apps it observes, we can see
the patterns of I/O behavior at scale and across platforms, rather
than only for selected jobs.

Darshan logs have already been used for system-wide analysis.
Carns et al. used two months of Darshan logs on Intrepid [1] and
four months on Hopper [10] to explore how such logs can be used
to improve storage system utilization and identify candidate apps
for additional I/O tuning. We extend this approach to cover three
platforms over a much longer period of time. To the best of our
knowledge, this is the first study that compares and contrasts
application I/O behavior across platforms at full scale.

3. TARGET PLATFORMS AND LOGS
Darshan is deployed and enabled by default for all users of ALCF
and NERSC platforms, and Edison users automatically see
Darshan’s I/O summary report on a web page for their completed
job. But Darshan does not see every job running on a platform.
Apps are not logged if they do not call MPI_Init()and
MPI_Finalize(), use nondefault build scripts, or run legacy
executables that are not already linked to Darshan. Further, an
issue in the F90 MPI wrapper on Mira prevents Darshan from
observing F90 codes (a fix has been requested from IBM). Users
can also choose to disable Darshan but do not normally do so.

On average, Darshan logs on Intrepid, Mira and Edison cover
roughly a third of jobs. In the remainder of this paper we consider
only those jobs and apps observed by Darshan, and we use the
term workload to refer to the platform workload as observed by
Darshan. We do not know whether Darshan’s observations are
typical of the I/O behavior of the unobserved part of the

workload; but the observed fraction of the workload is large
enough to interest platform owners in its own right.

Table 1 describes Intrepid, Mira, Edison, and their Darshan logs.
Intrepid is an IBM Blue Gene/P computer at ALCF with 40,960
quad-core nodes, 557 TFlops peak performance, and 88 GB/s
peak I/O throughput to its GPFS file system. Each set of 64
compute nodes has one of 640 dedicated I/O forwarding nodes
(IONs). From Jan. 2010 to Dec. 2013, Darshan captured 239K
jobs representing over 1K apps, 1405M core-hours, and up to
163K processes and moving as much as 218TB of data in one job.

Table 1. Target platforms and their Darshan logs

Platform Intrepid Mira Edison
Architecture BG/P BG/Q Cray XC30
Peak Flops 0.557 PF 10 PF 2.57 PF
Memory 80 TB 768 TB 357 TB
Cores per node 4 16 24
of cores 160 K 768 K 130 K
Storage 6 PB 24 PB 7.6 PB
Peak I/O 88 GB/s 240 GB/s 168 GB/s
File system GPFS GPFS Lustre

Period logged Jan’10 –
Dec’13

Apr’13 –
Oct’14

Jan’14 –
Sep’14

Jobs logged 239,304 137,311 703,647
Intrepid’s successor at ALCF is Mira, an IBM Blue Gene/Q
running GPFS. Mira has 48K 16-core nodes, a peak computing
performance 20x faster than Intrepid, and peak I/O throughput 3x
faster than Intrepid. Mira has 384 IONs, each serving 128
compute nodes. Mira entered production mode in April 2013, with
Darshan enabled. The 137K jobs Darshan observed there used
1456M core-hours and up to 1.04M processes and 570 TB per job.

Edison is the newest supercomputer at NERSC, a Cray XC-30 of
size and performance roughly halfway between Intrepid and Mira.
Edison has 5,576 24-core nodes and a peak I/O bandwidth of 168
GB/s to its Lustre file system. Edison’s cores are several times
more powerful than Mira’s, making up for their smaller number.
Darshan observed 703K jobs consuming 75M core-hours, using
up to 131K processes and moving up to 426 TB of data in one job.

Figure 1 shows that average Darshan coverage is 20% to 40%
(Edison graph omitted here). For these three platforms, Figure 2
compares the number of processes per job and the bytes each job
read or wrote, showing quartiles and outliers in log scale. On all
platforms, some jobs run at full system scale and/or transfer over
100 TB. However, most jobs transfer relatively little data and use
few processes compared with the available number of cores. On
Edison, 75% of jobs use under 100 processes and/or transfer no
more than 3 GB of data. On Intrepid and Mira, 50% of jobs
transfer less than 4 GB and/or use no more than 2K processes.
Figure 3 shows that few apps ever use more than 4K processes or
transfer more than a few gigabytes of data.

We imported Darshan’s log files into a MySQL database and used
SQL scripts to analyze the data. Script details are important for
ensuring meaningful and reproducible results on other platforms,
but due to space constraints, we only discuss the critical issue of
computing the aggregate I/O throughput of a job. For each process
of the job, we consider the total time spent in Darshan-tracked
POSIX IO or MPI-IO data and metadata function calls for all the
files the process opened. We set the job’s I/O time to be the
largest I/O time among all its processes. We computed the job’s
(aggregate) I/O throughput as its total bytes moved in Darshan-
tracked POSIX IO or MPI-IO calls, divided by its I/O time.

App-level I/O throughput could be computed in other ways, e.g.,
sum/median/average across processes, but we find the slowest
process’s viewpoint best for comparing throughput across many
jobs/apps. Usually computation does not resume until the slowest
process has finished its I/O, due to an explicit barrier or the need
to exchange data with neighbors. Thus from the app’s point of
view, our formula approximates its I/O throughput, and avoids
misleading statistics when I/O loads are skewed across processes.

Figure 1: Darshan coverage in core hours on Intrepid (top)

and Mira (bottom).

Figure 2: Cross-platform comparison of each job’s number of
processes (left) and number of bytes read/written (right).

Figure 3: Cross-platform comparison of each app’s maximum

number of processes and maximum bytes read/written.
Darshan records the number of processes that a job runs on, but
not the number of cores or nodes. The default Darshan
configuration tracks most of the key POSIX IO or MPI-IO
functions; condensing the wrapped functions’ names, they are
[l][f]seek[64], [ncmpi_][H5f]creat[e][64], [aio_][p][f]read[v][64],
lio_listio[64], [aio_][p][f]write[v][64], [ncmpi_][[H5]f]open[64],
mmap[64], aio_return[64], __[l][f]xstat[64], f[data]sync, and
[ncmpi_][[H5]f]close. Darshan’s default configuration does not
track character-oriented functions such as getc and putc and their
higher-level analogs scanf and printf, all intended for text data
transfer. (Such functions may choose to call read or write for data
access, but POSIX IO does not require them to do so, and we have
not observed them doing so on our platforms.) The Darshan

Edison Intrepid Mira

N
um

be
r o

f p
ro

ce
ss

es

1

64

4K

256K
1M

Edison Intrepid Mira

N
um

be
r o

f b
yt

es
 tr

an
sf

er
re

d

1B

1KB

1MB

1GB

1TB

1PB

developers did this to reduce overhead, assuming users would not
spend much time performing character-oriented I/O.

4. ANALYSIS OF DARSHAN LOGS

4.1 Application-specific analysis
In this section, we present an analysis and visualization procedure
that app users and owners can use to identify I/O bottlenecks and
inefficiencies across all runs of their apps. Platform owners can
use the same techniques to examine the apps that are their top
users of I/O time (as identified by another set of scripts we wrote).
The analysis consists of the following steps.

STEP 1. Identify where the job/app spends most of its I/O time,
out of four possibilities:
a) Global metadata. All metadata functions for global files

(i.e., files accessed by all processes), such as file open,
close, stat, and seek functions.

b) Nonglobal metadata. Metadata functions for files that are
not global (i.e., files accessed by a proper subset of the
job’s processes). These files may be local, that is, accessed
by a single process; or subset, i.e., accessed by multiple
processes, such as under a subsetting I/O paradigm.

c) Global data I/O. Data transfer functions for global files.
These include the read, write, and sync functions.

d) Non-global data I/O. Data transfer for nonglobal files.
STEP 2. Identify which file(s) consume most of that time. We

categorize the files along three dimensions: global, local or
subset; MPI or POSIX; read-only, write-only, or read/write.

STEP 3. Examine Darshan’s performance data for those files.

Figure 4: Breakdown of total run time for each Earth1 job.
As a case study, consider the app that consumed the most I/O time
on Mira, an Earth science code we’ll call “Earth1”. Earth1 ran
~18K times in 4400 wall-clock hours and 36M core-hours. With
Earth1’s jobs ordered by their percentage of run time that is not
I/O time (light blue), Figure 4 divides each job’s remaining run
time into the four categories in Step 1. Earth1 spent over half its
time in I/O, most of which was for global file metadata.

To begin Step 2, we examined a randomly-selected Earth1 run.
This job had 35 global shared files, including 24 using MPI for
write-only files, 5 using POSIX for read-only files, and 6 using
POSIX for write-only files. The total I/O time of the job was ~700
seconds, of which 567 seconds were spent on 6 POSIX write-only
global files. Returning to the set of all Earth1 jobs, Figure 5 shows
how Earth1’s I/O time relates to the number of POSIX write-only
global files its jobs use, as computed by our scripts. Global data
I/O time increases gracefully with the number of files, while
global metadata time increases much faster – even though graphs
not included here show that the amount of global data transferred
differs by a factor of 3 across runs with the same number of
POSIX write-only global files. In other words, I/O throughput

tracks the changes in file count. This result indicates that the app
owner should take a closer look at those files.

In Step 3, an I/O expert would quickly notice that according to the
per-file Darshan data, each process writes the POSIX global files
in relatively small pieces (<256 KB) that do not align with file
block boundaries, making I/O costs high. Common issues of this
nature could be included in a checklist for users or automatically
recognized.

Figure 5: Earth1’s I/O time and number of POSIX write-only
global files (red line).
Job- and app-specific analysis can be done immediately after a run
or a series of runs to help the app owner or user quickly locate an
I/O bottleneck, avoiding a long-lasting inefficient implementation.
Darshan’s data is relatively high level, so it can give owners/users
an idea about where their I/O problems may lie; owners/users may
want to follow up with a tracing or debugging tool.

4.2 Platform-wide analysis
An app’s inefficient use of shared system resources may impact
other apps’ ability to perform useful work. Platform owners can
use platform-wide analyses to assess job performance, identify
large underperforming apps, and offer early intervention to save
system resources. In this section, we assess the performance of
I/O workloads on Edison, Intrepid, and Mira and propose criteria
for platform owners to quickly identify underperforming apps that
consume lots of system resources.

4.2.1 Very low I/O performance is the norm for most
apps on these platforms.
Even though these platforms’ file systems have a peak throughput
of hundreds of GB/s, few apps experience high I/O throughput.

Figure 6: Maximum I/O throughput of each app across all its
jobs on a platform, and platform peak I/O throughput.
For each app and platform, Figure 6 shows the maximum
aggregate I/O throughput observed by Darshan, among all of the
app’s jobs on that platform. Horizontal lines show the platform’s
peak I/O bandwidth. (Apps exceed the platform peak when their
data fits in the file system cache and reads/writes do not have to
access the disk before I/O functions return.) Aggregate throughput

1 KB/s

1 MB/s

1 GB/s

1 TB/s

0 25% 50% 75% 100%
Applications

I/O
 Th

rou
gh

pu
t

platform Edison Intrepid Mira

Applications' Max Throughput

for three-quarters of apps never exceeds 1 GB/s, roughly 1% of
average peak platform bandwidth. As noted earlier, most apps are
relatively small; and no one should expect a job running on a few
nodes to approach peak platform I/O bandwidth. For example, the
Mira owners told us that a 1K-node job cannot expect more than
~20 GB/s I/O throughput, less than 10% of the platform peak.
Looking at the situation another way, however, three-quarters of
apps never exceed the aggregate throughput of four modern USB
thumb drives (writes average 239 MB/s and reads average 265
MB/s on the 64 GB Lexar P10 USB3.0 [2]).

Figure 7: Number of jobs with a given I/O throughput and
total number of bytes, on Mira (l) and Edison (r).
In Figure 7, each tile represents one or more jobs, with the tile
color indicating the number of jobs. The figure shows that on
Mira and Edison, a job’s I/O throughput increases roughly linearly
with its data size. Jobs that write very little data will not have high
I/O throughput, because the fixed costs for accessing a file cannot
be amortized across significant data transfer. Still, a third of jobs
never reach the I/O throughput of a single modern thumb drive,
and the vast majority of jobs never exceed the I/O bandwidth of
10 modern thumb drives. Intrepid (not shown) is similar.

Each vertical bar in Figure 8 represents all the jobs of one app on
a platform. A bar’s color indicates the total bytes accessed by its
jobs. For example, a half-red, half-orange bar means that half the
app’s jobs accessed over 100 GB, and the other half accessed 10-
100 GB (with perhaps a few smaller jobs not visible without
magnification). Maximum and average I/O throughput for each
app are indicated by squares and crosses, respectively, using the
log-scale right-hand axis. The apps are sorted in decreasing order
of importance for the storage system, as measured by the total
bytes transferred across all the jobs of the app. Note that roughly
half of apps do not transfer more than 1 GB of data in their jobs.

Darshan does not track text-oriented I/O functions, so apps that
rely entirely on text files will register as having made metadata
calls but transferring zero bytes, even if they access a lot of data
and therefore are important to the storage system. Along with the
apps that perform no I/O (e.g., a hello-world test), these text-only
apps can be found at the far right-hand side of each graph, where
there is a visible knee in the cloud of throughput dots. As the
results indicate, 105 out of 1507, 201 out of 1032, and 42 out of
1183 apps open files but perform no binary I/O in any of their
jobs on Intrepid, Mira, and Edison, respectively. Some of these
apps are small by any measure, but others are not. For example, a
third of the Mira text-only apps had an average job size of at least
1K processes, and a quarter of them averaged 16K or more
processes per run. Some apps that heavily rely on text files also
access binary files, so the counts listed above understate the extent
of the usage of text files. Since we do not know how many bytes
of text an app accesses, Figure 8 also understates the importance
and impact on the storage system of text-based I/O. Since text-

based I/O generally does not scale up well, we conclude that text-
based I/O is a more widespread practice than previously
observed and deserves further investigation.

I/O throughput for small jobs does not matter, in the sense that
users and owners will be happy when a job’s I/O time is only a
second or so. But small jobs may be test runs for large jobs, such
as the many Mira jobs in Figure 7 that transfer a terabyte of data
and spend 10–20 minutes in I/O. Thus, small jobs may allow us to
identify poor I/O practices before significant amounts of platform
and user time have been wasted. Further, an app consisting
entirely of relatively small jobs can still be a top user of I/O time
on a platform. We consider these two points in the following
discussions, which focus on apps that are heavy users of I/O time.

Figure 8: Breakdown of each app’s jobs, by bytes written in
each job, and average and maximum I/O throughput of each
app’s jobs. Intrepid is at the top, Mira in the middle, Edison
at the bottom.

4.2.2 Platform I/O resource usage is dominated by a
small number of jobs and apps.
On Edison, Intrepid, and Mira, the total I/O time consumed by all
jobs observed by Darshan is 5,920 hours, 13,052 hours, and 5,335

System peak - 240 GB/s

10 USB

1 USB

1 B/s

1 KB/s

1 MB/s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB
Number of bytes transferred

I/O
 T

hr
ou

gh
pu

t

Jobs Count

1 - 10

11 - 100

101 - 500

501 - 1k

1k1 - 5k

5k1 - 10k

System peak - 240 GB/s

10 USB

1 USB

1 B/s

1 KB/s

1 MB/s

1 GB/s

1TB/s

1 B 1 KB 1 MB 1 GB 1 TB 1 PB
Number of bytes transferred

Jobs Count

1 - 10
11 - 100
101 - 500
501 - 1k
1k1 - 5k
5k1 - 10k
10k1 - 80k

hours, respectively. With jobs sorted by their total I/O time,
Figure 9 shows the cumulative portion of platform I/O time that
they use. On Edison, the top 10% of jobs consume 90% of the I/O
time. On Intrepid and Mira, the top 25% of jobs consume 90% of
the I/O time. The curve is even steeper for apps (not shown): 90%
of I/O time goes to under 4% of apps on Intrepid, 3% on Mira,
and 6% on Edison; each platform has approximately 1K–1.5K
apps. These results echo the findings of [1], in which a single app
dominated I/O time usage in a two-month study.

Figure 9: Cumulative percentage of platform I/O time
consumed by jobs.
Let us look at these apps more closely. Table 2 and Table 3 show
the 15 biggest apps on Mira and Edison, in terms of total I/O time
across all their jobs. In what follows, we refer to these as the big-
time apps. (Materials1, Turbulent1, and Molecular1 each merge
two apps with near-identical executable names. We consider apps
to be the same across platforms if their executables’ names differ
at most in version numbers). Apps whose names are in bold are on
the big-time list for multiple platforms. Since Darshan is not
configured to observe data accesses using character-oriented I/O,
the I/O time for text-file-based apps is undercounted when picking
out the big-time apps. To save space, we omit Intrepid’s table,
which includes Mira’s Earth1, Physics2, Turbulence2, and Molec-
ular2 at ranks 5, 7, 13, and 15, respectively, and Edison’s
Weather1 at rank 3. The top 15 big-time apps account for 83% of
I/O time on Mira, 70% on Edison, and 73% on Intrepid. The total
data read/written across all their jobs varies from a high of 10 PB
for Earth1 and Materials3 to a low of 1 TB for PDE1.

Table 2: Mira’s 15 Apps with Biggest Total I/O Time

App

Total
I/O
time
(h)

Total
run
time
(wall h)

of
jobs

Total
bytes
(TB)

Median
job
GB/s

Run
time
I/O %

1 Earth1 2,480 4,406 17,649 10,037 1.205 56%
2 Materials1 577 22,912 4,579 196 .103 3%
3 Turbulence1 428 4,121 972 153 .123 10%
4 Physics1 150 3,387 762 1,051 .475 4%
5 Physics2 133 6,262 1,966 1,115 .467 2%
6 Climate1 95 2,039 1,520 112 .291 5%
7 Molecular1 89 27,826 19,622 156 .571 0%
8 Turbulence2 83 671 335 251 .212 12%
9 Turbulence3 74 96 323 1,961 1.700 77%
10 Physics3 67 202 66 51 3.274 33%
11 Molecular2 67 1,686 2,480 34 .167 4%
12 PDE1 62 120 298 1 .098 52%
13 Plasma1 48 934 58 3,052 18.32 5%
14 Physics4 42 202 309 90 .186 21%
15 Aero1 41 61 151 359 2.505 67%

Improvements in big-time apps’ throughput may free up resources
for others to use and improve the satisfaction of all users. This
principle drives the attention given to important apps and their I/O
benchmarks; and indeed, the I/O behavior of at least five of the
apps in Table 2 and three in Table 3 is well studied and carefully
tuned. However, apps with I/O bugs and with I/O paradigms that

are suboptimal for their situation also appear in the tables. For
example, as we discuss elsewhere, PDE1 used global text files
with many processes, and Earth1 used relatively small POSIX
writes to global files. Indeed, the apps in these tables are top in
usage of I/O time, not top in terms of I/O throughput. Apps that
are extremely successful in extracting I/O performance will not be
listed in the tables unless their total data size is incredibly high.

Table 3: Edison’s 15 Apps with Biggest Total I/O Time

App

Total
I/O
time
(h)

Total
run
time
(wall h)

of
jobs

Total
bytes
(TB)

Median
job
GB/s

Run
time
I/O %

1 Materials2 1,109 3,397 847 60 .016 33%
2 Materials3 505 7,329 78,302 10,351 .475 7%
3 Physics5 395 2,698 2,171 6 .005 15%
4 Physics6 322 3,353 6,687 15 .010 10%
5 Materials4 263 8,252 1,231 17 .038 3%
6 Molecular3 249 7,392 2,194 51 .036 3%
7 Materials1 219 11,671 16,221 44 .109 2%
8 Materials5 215 21,439 34,213 27 .061 1%
9 Materials6 213 983 926 16 .070 22%
10 Chem1 145 18,909 5,412 4 .013 1%
11 Materials7 129 453 5,769 18 .039 29%
12 Weather1 110 686 299 1,189 .660 16%
13 Materials8 103 1,011 1,383 2,477 7.993 10%
14 Materials9 93 175 12,344 266 .860 53%
15 Plasma2 89 102 41 246 2.265 87%

In the tables, the percentage of run time that big-time apps devote
to I/O rises from ~0% for Molecular1 on Mira to 87% for Plasma2
on Edison. Owners and users of apps at the low end of this range
are likely to be happy with their I/O throughput, even if platform
owners are not. Boosting the minimum aggregate throughput
for all big-time apps to 1 GB/s would save platform owners
42% of total I/O time on Intrepid (3758 hours out of 8920),
41% on Mira (1803 hours out of 4435), and 85% on Edison
(3542 hours out of 4158). Jobs running concurrently with big-time
apps might also benefit from increased I/O resource availability.

Figure 10: Big-time apps’ throughput on Mira and Edison.
According to the tables, less than a quarter of Edison’s and Mira’s
big-time apps get over 1 GB/s I/O throughput in their median job;
only one gets over 10 GB/s in its median job (Plasma1, 18 GB/s
on Mira). Figure 10 shows the quartiles and outliers for the I/O
throughput of the big-time apps’ jobs on Mira and Edison. As was
true for the set of all jobs, big-time apps’ jobs get better I/O
throughput when they have more data. Figure 11 shows this with a
four-category breakdown of the big-time apps’ performance,
based on whether they have small data (read/write under 10 GB)
and/or few processes (under 2K). Figure 11 shows that most big-
time apps’ jobs with big data and processes get 1-16 GB/s of
throughput on Mira. As we will see, each platform has apps with
much higher median throughput than the big-time apps.

Mira Edison

1 B/s

1 KB/s

1 MB/s

1 GB/s

1 TB/s

01
.E
ar
th
1

02
.M
at
er
ia
ls
1

03
.T
ur
bu
le
nc
e1

04
.P
hy
si
cs
1

05
.P
hy
si
cs
2

06
.M
ol
ec
ul
ar
1

07
.C
lim
at
e1

08
.T
ur
bu
le
nc
e2

09
.T
ur
bu
le
nc
e3

10
.P
hy
si
cs
3

11
.M
ol
ec
ul
ar
2

12
.P
D
E
1

13
.P
la
sm
a1

14
.P
hy
si
cs
4

15
.A
er
o1

01
.M
at
er
ia
ls
2

02
.M
at
er
ia
ls
3

03
.P
hy
si
cs
5

04
.P
hy
si
cs
6

05
.M
at
er
ia
ls
4

06
.M
ol
ec
ul
ar
3

07
.M
at
er
ia
ls
1

08
.M
at
er
ia
ls
5

09
.M
at
er
ia
ls
6

10
.C
he
m
1

11
.M
at
er
ia
ls
7

12
.W
ea
th
er
1

13
.M
at
er
ia
ls
8

14
.M
at
er
ia
ls
9

15
.P
la
sm
a2

I/O
 T

hr
ou

gh
pu

t

Figure 11: Average I/O throughput of Mira’s (squares) and
Edison’s (circles) big-time apps’ jobs, by job size.

4.2.3 Early intervention by platform owners can
identify apps with I/O problems, save I/O resources,
and improve user satisfaction.
Table 2 and Table 3 show that most of the big-time apps on Mira
and Edison ran over a thousand times, and all but three ran over a
hundred times. Clearly, early intervention where needed could
have saved a huge amount of system resources. As Figure 12
shows, almost all big-time apps have small jobs, especially on
Edison, which is the newest platform; early smaller jobs are the
ideal point for recognizing and addressing problems.

Figure 12: Job sizes for Mira (l) and Edison (r) big-time apps.

Figure 13: Evolution of PDE1’s I/O paradigms. Red dots show
the number of processes of each job (right-hand y-axis).
For example, PDE1 in Table 2 used ~13M core-hours on Mira and
spent 52% of its run time in I/O. When PDE1 ran at scale (64K–
128K processes) in its first implementation, I/O consumed almost
all of its run time. For example, one job with 512K processes took
7 hours and over 3.5 million core-hours. Figure 13 includes a
stacked bar for each successive PDE1 job, breaking down its total
run time; the 7-hour run is excluded because it is off the chart.
The clump of blue bars in Figure 13 shows that in its early runs at

scale, PDE1’s I/O time was devoted to metadata functions; in fact,
the data transfer time for most files was zero. This tells us that the
files are being read/written with functions not tracked by Darshan,
namely, character-oriented functions for text files.

Conversations with PDE1’s owner confirmed that the initial
implementation used fprintf to write the output file accessed by all
processes. After PDE1’s owner attended Mira performance boot
camp, the owner created an MPI-IO–based implementation that
runs in 11 seconds with 512K processes. PDE1’s owner would
have benefited from automated analysis of the Darshan logs from
its early jobs in Figure 13. Without extending Darshan to track
character-oriented I/O functions, a script can still find apps that
make heavy use of text files, by searching the logs for instances of
files with high metadata time and zero data read/write time.

The logs also show how app I/O behavior evolves over time.
PDE1’s earliest runs used few processes, so its I/O paradigm was
inexpensive relative to computation. As the number of processes
went up, I/O dominated (purple bars). The purple bars disappear
with the change to MPI-IO.

Figure 14: Earth2 read hundreds of thousands of text files.
As another example, consider “Earth2”, an Earth science code that
ran for 60 hours wall time on Mira and consumed about 100K
core hours. It read from hundreds of thousands to over a million
files and spent the vast majority of its time in I/O, as shown in
Figure 14. Its I/O time breakdown reveals the tell-tale pattern of
text files: high metadata time and zero data access time. Later, its
owners identified a bug that put their read operations inside an
unrelated nested loop, rather than outside. This costly bug
persisted for a long time before it was noticed. The situation is
another argument for automated early intervention.

We suggest the following four criteria to help platform owners
identify apps whose I/O behavior makes them candidates for
further investigation. The criteria are not absolute indicators of
I/O problems, but rather help to narrow down the number of
applications to consider.

• Apps using a text file I/O approach, such as PDE1 and Earth2.
A query for jobs that use only text files finds 2121 jobs from 59
apps on Edison, 5561 jobs from 237 apps on Mira and 4725
jobs from 171 apps on Intrepid.

• Apps with many files and high metadata costs. For example, a
query for Mira jobs with over 100k files and metadata time that
is more than one third of run time finds 111 jobs from 11 apps,
including Physics4 (discussed in Section 4.2.6).

• Apps with little data but large I/O time. For example, on
Edison, a query for jobs with under 4 GB of data that spend
over 5 minutes in I/O finds 4020 jobs from 79 apps. One of the
apps has more than 500 jobs that match this criterion.

• Big time apps, such as the Top 15 discussed earlier.

The filtering capability further emphasizes the importance of
having a central database about system workload that will enable
early intervention from platform owners to save system resources
and improve system utilization.

4.2.4 POSIX I/O is far more widely used than
parallel I/O libraries.
The HPC community has worked hard to create a stack of parallel
I/O libraries, including MPI-IO, HDF5, and NetCDF. But Figure
15 shows that users tend to stick with the POSIX I/O library
(open, read, write). Nearly 95% of jobs visible to Darshan on
Edison use POSIX exclusively. On Intrepid and Mira, the
percentages are 80% and 50%, respectively. The remaining jobs
use MPI-IO directly or use the libraries built atop MPI-IO (e.g.,
HDF5), for at least one of their files. MPI-IO is used most often
among mid-sized jobs, in terms of their number of processes.

The POSIX-only approach does not necessarily mean low I/O
performance; with care, POSIX apps can have high throughput.
However, using MPI-IO offers more chances for decent I/O
performance. As shown in Figure 16, on Mira and Intrepid, about
45% of jobs that used the MPI-IO library achieve more than 1
GB/s of aggregate I/O throughput, while less than 20% of POSIX-
only jobs reach 1 GB/s. On Edison, most apps that used MPI-IO
do not do so efficiently, although some have excellent throughput.
We return to this point in our cross-platform analysis.

Carns et al. [1] analyzed the usage of different I/O interfaces and
found that most jobs with few processors used POSIX I/O, while
jobs with many processors used POSIX primarily for reads, if at
all. MPI-IO prevailed among jobs with many processors and apps
that wrote more data than they read. We found that, in addition,
POSIX is popular among many-processor jobs. This result agrees
with another study in [26].

Figure 15: Number of jobs using POSIX IO only (teal) and
using MPI-IO directly or indirectly for at least one file (red).

Figure 16: I/O throughput for apps that use only POSIX-IO
and those that use MPI-IO for at least one file.

4.2.5 Metadata costs often exceed data I/O costs.
Metadata costs are a major factor in the I/O throughput of apps
[10]. Averaging across the platforms in Figure 17, roughly 40% of
jobs spend more time in metadata functions than in reading and
writing data. We have already touched on a variety of reasons for
this problem: the prevalence of small-data jobs and apps, which
Figure 17 highlights; the hidden problem of overreliance on text
files; and small data request sizes.

Figure 17: Breakdown of jobs by total data size, for jobs that
spend more time in metadata functions than in data transfer.

4.2.6 No major I/O paradigm is always good or bad.
Text files almost guarantee poor throughput at scale; we do not
consider apps using this minor I/O paradigm in this section.

As mentioned earlier, nonglobal files can be broken down into
local files (i.e., accessed by one process) and subset files (i.e.,
accessed by more than one process but not all processes). An app
uses the subset paradigm because it makes sense for the scientific
problem and computational method—for example, adaptive mesh
refinement—or because the owners want to put a subset of the
processes (e.g., one process per node) in charge of all I/O. We call
the latter subsetting I/O. Subsetting I/O can reduce contention and
the number of files, but requires care for a good implementation.
Taken to the extreme, subsetting turns into serial I/O, where one
process does all the I/O, which never scales. In interpreting logs,
we must distinguish between these three kinds of subset files.

Local files, often called file-per-process, are easy for users to
implement, with no coordination between processes. But as the
number of processes goes up, metadata costs can be high, and
post-run data analysis and file management become painful. The
use of global files, each accessed by all processes, can keep the
job’s input/result data tidy. But global files can have high
metadata costs at scale, and contention can be an issue. Good

0

100,000

200,000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processesN

u
m

b
e

r
o

f
jo

b
s interface MPI POSIX

Edison

0

20000

40000

1 4 16 64 256 1K 4K 16K 64K 256K
Number of processes

N
u

m
b

e
r

o
f
jo

b
s Intrepid

0

10000

20000

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Number of processes

N
u

m
b

e
r

o
f
jo

b
s Mira

implementations of this paradigm tend to require expertise, and
the resulting parallel I/O libraries have a learning curve for users.

Some of these categories can be broken down further. For
example, a sophisticated app might use subsetting I/O with files
that are accessed by (and thus “global” to) all the processes
allowed to perform I/O. And an app can use multiple paradigms in
different jobs or inside one job. But the coarser breakdown
suffices for our purposes. Each paradigm—global, local, and
subset—has its pros and cons, and each is found among jobs with
the worst and best I/O throughputs.

Local-file paradigm. If a job has enough data, it may be able to
avoid the pitfall of excessive metadata costs at scale. An excellent
example is the set of all jobs that access at least 1M files, grouped
by app in Figure 18. Each job is represented by one vertical bar,
subdivided into colors based on how it spends its I/O time. Each
job also has a yellow dot indicating its throughput and a black X
indicating its data size. Two apps are very tightly packed:
Physics4 (116 jobs on Mira) and Plasma1 (1 subset-paradigm job
on Intrepid and 41 local-file paradigm jobs on Mira). Figure 18
shows how fast the local file paradigm can be: Mira1 attains over
10 GB/s with ~25 TB of data, and Plasma1 attains about 20 GB/s
for its many jobs with 60–80 TB of data. Plasma1 on Mira shows
that even with millions of local files and metadata costs (red)
exceeding transfer costs (blue), I/O throughput can reliably reach
a level that would be the envy of most apps. But the I/O time of
the vast majority of local-file jobs in the figure is almost totally
dominated by metadata costs, resulting in extremely low
throughput for example Physics4. The throughput closely tracks
the data size, both of which use the same right-hand y-axis. Two
of Plasma1’s data points are off the chart: 174 TB and 100 TB of
data.

Figure 18: I/O throughput and I/O time breakdown for jobs
that access over a million files.
Subset paradigm. In Figure 18, jobs that used the subset
paradigm have pink circles around their yellow throughput dots.
Two apps used the subset paradigm exclusively, and the figure
shows that it can be very effective: Mira2 attained ~30 GB/s and
Edison1 had 10–20 GB/s—far better than most apps. (Mira2’s job
has 165 TB of data, putting that data point off the chart.) But the
third app, Plasma1, is the star, with over 60 GB/s in its lone
subsetting job on Intrepid. The logs show that 1/8 of Plasma1’s
processes performed I/O in that job, and approximately 1/225 of
Mira2’s. Edison1 is using subset files, but not I/O subsetting;
recall that subsetting serves other purposes too, such as AMR I/O.

Subsetting is not a panacea: Intrepid3 has poor I/O throughput,
totally dominated by metadata costs. However, Intrepid3 was not

doing I/O subsetting, as three-quarters of its processes wrote to
the same file. For a better example of ineffective I/O subsetting,
consider Turbulence1, which ran on Intrepid and Mira and is
among Mira’s big-time apps; its I/O time there averages 10% of
run time. Figure 19 shows Turbulence1’s Intrepid jobs, sorted by
non-I/O time; the dark blue blocks are jobs using POSIX IO with
subsetting (ratio 1000:1), and the light green blocks use MPI-IO
with global files. No matter what paradigm is used, the I/O time
has little impact on total run time, so the owners would have little
motivation to try other I/O approaches. (One way to achieve this
insensitivity is to dedicate processes to I/O, so computation can
resume once the output data has been sent to those processes.)
Examining a randomly selected job, however, we see that 90% of
Turbulence1’s I/O requests are of size 8 B, which could be
inefficient for the storage system and could impact other users.
Climate1 also offers I/O subsetting, along with interfaces to a
variety of storage options. Figure 20 shows that users took
advantage of these different options in its many jobs on Intrepid.
Through other channels, we know that Climate1’s owner worked
very hard to tame metadata costs and reach its median job
throughput on Mira, which Table 2 pegs at a low 0.3 GB/s. But
Climate1’s throughput may still be hurt by very small I/O request
sizes. For example, in three randomly selected Mira and Intrepid
jobs including both primarily POSIX and primarily MPI-IO runs,
over half its I/O requests have size ~100 B. A randomly selected
Intrepid job shows subsetting ratios ranging from 4:1 to 1000:1
during different parts of the job; each job subsets differently, with
little visible impact on I/O throughput. With median job I/O time
at just 5% of total run time on Mira, Climate1’s owner has little
incentive to refine its I/O approach further.

Figure 19: Turbulence1's 290 jobs on Intrepid.

Figure 20: Climate1's 3578 Intrepid jobs, sorted by thruput.

Global files. Global files did not perform well for Earth1, which
made small POSIX IO requests, or Climate1, which made small
requests with both MPI-IO and POSIX. But Figure 21 shows that
global MPI-IO files work well for the jobs of the “Physics7” app
on Edison, shown sorted by throughput. The I/O throughput of
Physics7’s median job is 7 GB/s, helped along by its tendency to
access data in 1 MB requests, well aligned with storage block
boundaries. Also, Physics7 might not be using the default Lustre
settings, which are slow for MPI-IO [24]. Physics7’s users
experimented twice with nonglobal files: once when they first
arrived on Edison and then again after about a hundred jobs,
always using a dozen or more processes. Both trials were quickly
abandoned.

Figure 21: Physics7’s 199 Edison jobs, sorted by throughput.

4.3 Cross-platform analysis
Supercomputer lifetimes are short; a new and faster platform is
always on the way. But improved performance does not always
come easily for users, as noted by Anantharaj et al.: “The high
development and maintenance effort required to tune
[applications] to multiple platforms is considered a large burden,
taking time and resources that might otherwise be spent on other
aspects of the projects” [25].
Migration to a new platform normally requires retuning of code
for good performance, and I/O is no exception. Seemingly small
details of the storage system can have a huge impact on a
particular app’s throughput [22]. Further, the general trend toward
packing more cores into each node tends to increase file access
contention for processes in the same node. Thus an app running
with the same number of processes on a new platform might see
throughput fall even if the new storage system is similar to the old
and has higher peak throughput. Therefore, to maintain current
throughput, app I/O may need retuning even when moving to a
similar but faster platform. Case studies and I/O benchmarks have
provided such insights in the past; Darshan can potentially help us
examine the impact of migration at a larger scale.
Using the same naming methodology as in Table 2 and Table 3,
we found the apps that ran on two or more of our platforms: 82
apps on both Intrepid and Mira, 39 on Mira and Edison, 27 on
Intrepid and Edison, and 10 on all three platforms. For each such
app, we compared the median aggregate I/O throughput of its jobs
across platforms. However, most of these median jobs have small
total data, as do most apps; Figure 22 illustrates this with a box
plot of job data size for the ten apps that ran on all three
platforms, with apps separated by vertical black bars. We have
already observed that a small-data job will have well under 1
GB/s aggregate I/O throughput. Thus, the difference in median
aggregate I/O throughput of jobs on different platforms is due
primarily to differences in a job’s total data size. For a fair cross-

platform comparison of these apps, we need to match job sizes
across platforms. With over a hundred apps to match up, we
present just three case studies here.

Figure 22: Quartiles and outliers of total bytes accessed by
each job, for the ten apps that ran on all three platforms.
Case study 1: Earth1 is the number 1 big time app on Mira and
number 4 on Intrepid. Figure 23 shows I/O throughput and data
size of all Earth1 jobs on Mira and Intrepid. Median job
throughput drops from 4.5 GB/s on Intrepid to 1.2 GB/s on Mira.
Data size also declines but remains too big to explain the drop.

Figure 23: Earth1’s jobs, broken down by data size and I/O
throughput, on Intrepid (left) and Mira (right).

Figure 24: Earth1 jobs’ I/O time on Intrepid (l) and Mira (r).
As shown in Figure 24, Earth1’s main Mira bottleneck is metadata
activity for global files. As discussed earlier, Earth1 uses POSIX
to write to global shared files. Earth1’s jobs on Mira use more
processes, which are packed more tightly into nodes than on
Intrepid. With more processes and less total data, request sizes
drop. Tighter packing, more processes issuing requests, and
smaller requests all increase contention, and throughput drops.

Case study 2: The “Crossplat1” physics code is the rightmost app
in Figure 22. Figure 25 shows that in general, Crossplat1 scales

1 2 3 4 5 6 7 8 9 10

1B

1KB

1MB

1GB

1TB

1PB

N
um

be
r o

f b
yt

es

platform Intrepid Mira Edison

0

2 GB/s

4 GB/s

6 GB/s

8 GB/s

256GB 1TB 4TB
Number of bytes

I/O
 th

ro
ug

hp
ut Jobs count

0 - 10
10 - 100
100 - 500
500 - 1k

Intrepid

0

2 GB/s

4 GB/s

6 GB/s

8 GB/s

256GB 1TB 4TB
Number of bytes

Mira

well with increasing data on Mira and Edison, and with more
processes on Edison. On Intrepid, Crossplat1 rarely exceeded 1
GB/s throughput.

Figure 25: I/O throughput, data size, and number of processes
for each of Crossplat1’s jobs on three platforms.
We applied the three-step app-specific analysis procedure to
Crossplat1 on Mira and Edison, and found that most I/O time was
spent in non-global I/O of a number of local POSIX read/write
files (#lPrwf for short). Figure 26 depicts this for Mira, with jobs
sorted by #lPrwf. The log-scale right-hand y-axis is for the
overlay variables: I/O throughput, total bytes and #lPrwf. For a
fixed #lPrwf, I/O throughput increases nicely with data size. But
when #lPrwf is 512 or more, metadata costs shoot up (tall red
bars). This suggests that limiting #lPrwf may improve throughput
for Crossplat1 on Mira. Crossplat1’s behavior on Edison was
similar (graph omitted) except that #lPrwf did not exceed 256, so
metadata costs remained modest in almost all jobs on Edison.

Figure 26: I/O time and throughput (green dot), bytes
accessed (black X) and number of local POSIX read/write files
(red diamond) for each of Crossplat1's jobs on Mira.
Case study 3: Weather1 is the ninth app in Figure 22 and a big-
time app on Edison and Intrepid. Weather1 has few Mira runs,
and we do not consider them here. Figure 27 shows that
Weather1's I/O throughput was consistently low on Intrepid, but
as high as 48 GB/s on Edison. The scaling pattern is unclear.

In Figure 28, each Weather1 job on Intrepid is represented by a
vertical bar whose colors give a breakdown of the job’s total I/O
time (left-hand y-axis). The figure also shows each job’s I/O
throughput (black X), number of processes (yellow dot) and data
size (blue plus) on the log-scale right-hand y-axis. The jobs are
sorted by data size. Different I/O paradigms were used by
different users, visible in the figure as four distinct blocks of
colors. Weather1 spent most of its I/O time in MPI global shared
files and never reached 1 GB/s of throughput under any paradigm,
even when accessing over 1 TB of data.

Figure 27: Breakdown of Weather1's jobs by I/O throughput,
number of processes, total data size, and platform.

Figure 28: I/O time breakdown of Weather1 jobs on Intrepid.

Figure 29: I/O time breakdown of Weather1 jobs on Edison.
Weather1 fares better on Edison, where a third of the jobs exceed
1 GB/s throughput, as shown in Figure 29 with jobs sorted by I/O
throughput (black X). The figure also shows each job’s data size
(blue plus), number of POSIX global files (orange dot) and
number of MPI global files (yellow dot) on the log-scale right-
hand y-axis. Here, Weather1 jobs fall into three groups. The first
group uses MPI-IO global shared files and has consistently low
throughput (<0.2 GB/s). The second group uses local files and
more modest data sizes (always under 1 TB) and throughput
closely tracks data size, reaching as high as ~48 GB/s. The third
group of jobs has extremely large data (over 10 TB), and uses
POSIX global files; these jobs attain 3-6 GB/s. Darshan does not
observe whether jobs tune Lustre parameter settings, but it is
worth noting that these results are in line with others’ observations
that the default settings on Lustre lead to low MPI-IO
performance [24], and that the local file I/O paradigm tends to
perform relatively well on Edison.

Intrepid Mira Edison

1

32

1K

32K

1MB 1GB 1TB 1MB 1GB 1TB 1MB 1GB 1TB
Number of bytes transferred

N
um

be
r o

f p
ro

ce
ss

es

128 KB/s

1 MB/s

1 GB/s

16 GB/s
I/O Thruput

Intrepid Edison

16

64

256

1K

4K

32 MB 1 GB 32 GB 1 TB 32 TB 32 MB 1 GB 32 GB 1 TB 32 TB
Number of bytes

N
um

be
r o

f p
ro

ce
ss

es

32 MB/s 1 GB/s 4 GB/s 32 GB/s
I/O Thruput

5. CONCLUSIONS AND FUTURE WORK
Efficient I/O performance is a critical part of modern
supercomputing. Lightweight tools such as Darshan can augment
traditional benchmarking and tracing tools, and provide an overall
understanding of the I/O behavior of apps, workloads, and
platforms. This paper used Darshan I/O logs to provide a broad
view of I/O behavior on three leading HPC platforms. Our results
lead us to believe that while tremendous progress has been made
in hardware and software research for HPC I/O, gaps remain in
the adoption of best practices by scientific application developers.
For instance, strategies such as usage of text files and raw, low-
level POSIX I/O calls will be untenable on future platforms;
adoption of higher-level I/O libraries can help increase the
longevity of codes on future generations of supercomputers. HPC
I/O specialists need to ensure that app developers understand the
tradeoffs in different ways of performing I/O, perhaps through I/O
boot camps and tutorials offered in cooperation with platform
owners. Our results also lead us to believe that while much
research effort is invested in extreme- scale testing and
optimization, a large fraction of the HPC community has modest-
scale metadata and data challenges; designers of HPC facilities
must take these needs into account when designing and
provisioning I/O resources. We believe that tools such as Darshan
can give platform owners critical insights into system utilization;
early and proactive intervention into suboptimal I/O behavior can
greatly enhance the utilization of a platform’s HPC resources.

Acknowledgments. We thank our application and platform owners
and users for helpful discussions. This work was supported by
NSF 0938064 and the U.S. Department of Energy, Office of
Science, Advanced Scientific Computer Research, under contracts
DE-AC02-06CH11357 and DE-AC02-05CH11231; the work used
resources from ALCF and NERSC.

REFERENCES
[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R.

Latham, R. Ross ,Understanding and improving
computational science storage access through continuous
characterization, ACM Trans. on Storage, 7(3):8, 2011.

[2] Fastest USB Thumb Drive, 14 February 2014.
http://www.maximumpc.com/fast_usb_thumb_drive_2014.

[3] B. K. Pasquale, G. C. Polyzos, A static analysis of I/O
characteristics of scientific applications in a production
workload, Supercomputing, 1993.

[4] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, M. L.
Best, File-access characteristics of parallel scientific
workloads, IEEE Transactions on Parallel and Distributed
Systems 7(10):1075–1089, Oct. 1996.

[5] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E.L. Miller, D.D.E.
Long, T. McLarty, File system workload analysis for large
scale scientific computing applications, IEEE Conference on
Mass Storage Systems and Technologies, 2005.

[6] S. Saini, D. Talcott, R. Thakur, P. Adamidis, R. Rabenseif-
ner, R. Ciotti, Parallel I/O performance characterization of
Columbia and NEC SX-8 superclusters, IPDPS, 2007.

[7] Y. Kim, R. Gunasekaran, G. M. Shipman, D.A. Dillow, Z.
Zhang, B.W. Settlemyer, Workload characterization of a
leadership class storage cluster, 5th Petascale Data Storage
Workshop, 2010.

[8] S. Saini, J. Rappleye, J. Chang, D. Barker, P. Mehrotra, R.
Biswas, I/O performance characterization of Lustre and
NASA applications on Pleiades, HiPC, 2010.

[9] Darshan-util installation and usage, http://www.mcs.anl.gov/
research/projects/darshan/docs/darshan-util.html.

[10] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, K.
Antypas, Production I/O characterization on the Cray
XE6, Cray User Group Meeting, 2013.

[11] FLASH: http://www.flash.uchicago.edu/site/
[12] GCRM: https://svn.pnl.gov/gcrm
[13] Nek: http://nek5000.mcs.anl.gov/index.php/Main_Page
[14] CESM: http://www2.cesm.ucar.edu/

[15] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J.
A. Herdman, I Miller, A. Vadgama, A. H. Bhalerao, S. A.
Jarvis, Parallel File System Analysis Through Application
I/O Tracing, http://eprints.dcs.warwick.ac.uk/1582/The
Computer Journal, 56 (2), 2013.

[16] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, Scalable
I/O tracing and analysis, Parallel Data Storage Workshop,
2009.

[17] M. P. Mesnier, M. Wachs, R.R. Sambasivan, J. Lopez, J.
Hendricks, G. R. Ganger, D. O’Hallaron, //TRACE: Parallel
trace replay with approximate causal events, File and Storage
Technologies, 2007.

[18] N. J. Wright, W. Pfeiffer, A. Snavely, Characterizing parallel
scaling of scientific applications using IPM, LCI
International Conference on High-Performance Clustered
Computing, 2009.

[19] LANL-Trace:
http://institutes.lanl.gov/data/software/index.php#lanl-trace

[20] A. Aranya, C. P. Wright, E. Zadok, TraceFS: A file system to
trace them all, File and Storage Technologies, 2004.

[21] H.V.T. Luu, B. Behzad, R. Aydt, M. Winslett, A multi-level
approach for understanding I/O activity in HPC applications,
Workshop on Interfaces and Abstractions for Scientific Data
Storage, 2013.

[22] S. Langer, B. Still, D. Hinkel, B. Langdon, E. Williams, A
pF3D case study of obtaining good I/O performance while
running on over 100,000 processors, http://visitbugs.ornl.gov/
attachments/43/Langer-pf3d-IO-study-Mar2011-final1.pdf

[23] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley,
24/7 characterization of petascale I/O workloads. IEEE
CLUSTER, 2009.

[24] B. Behzad, S. Byna, S. M. Wild, Prabhat, M. Snir. Improving
parallel I/O autotuning with performance modeling. High-
performance Parallel and Distributed Computing, 2014.

[25] V. Anantharaj, F. Foertter, W. Joubert, J. Wells,
Approaching exascale: Application requirements for OLCF
leadership computing, Oak Ridge National Laboratory, July
2013. https://www.olcf.ornl.gov/wp-content/uploads/2013/
01/OLCF_Requirements_TM_2013_Final1.pdf

[26] Hongzhang Shan, Katie Antypas, and John Shalf.
Characterizing and predicting the I/O performance of HPC
applications using a parameterized synthetic benchmark. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (SC), 2008.

