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ABSTRACT 
We examine the I/O behavior of thousands of supercomputing 
applications “in the wild,” by analyzing the Darshan logs of over a 
million jobs representing a combined total of six years of I/O 
behavior across three leading high-performance computing 
platforms. We mined these logs to analyze the I/O behavior of 
applications across all their runs on a platform; the evolution of an 
application’s I/O behavior across time, and across platforms; and 
the I/O behavior of a platform’s entire workload. Our analysis 
techniques can help developers and platform owners improve I/O 
performance and I/O system utilization, by quickly identifying 
underperforming applications and offering early intervention to 
save system resources. We summarize our observations regarding 
how jobs perform I/O and the throughput they attain in practice. 

Categories and Subject Descriptors 
C.4 [Performance of systems]: Performance attributes, 
Measurement techniques 

Keywords 
Input/Output; Performance Analysis; HPC; Parallel I/O 

 

1. INTRODUCTION 
The 2014 TOP500 list includes over 40 deployed petascale 
systems, and the high-performance computing (HPC) community 
is working toward developing the first exaflop system by 2023. 
Scientific applications on such large-scale computers often read 
and write a lot of data. For example, an earth science code on an 
IBM Blue Gene/P system at Argonne National Laboratory read 
~3.5 PB during two months in 2010 [1]. With such rapid growth 
in computing power and data intensity, I/O remains a challenging 
factor in determining the overall performance of HPC codes. 

Analyzing I/O behavior of applications (apps) can help improve 
their performance and increase the utilization of supercomputing 
systems. By analyzing the runtime behavior of an individual job, 
we can identify its I/O bottlenecks and potential implementation 
inefficiencies and suggest improvements to its owner and users. 
By analyzing the I/O behavior of an app (i.e., the set of all its 
jobs), we can identify patterns in its behavior. By analyzing the 
I/O behavior of the workload of a platform (i.e., a supercomputer 
instance), we can give the platform owners insights into the usage 
of their storage systems and identify apps that consume I/O 
resources inefficiently, so that improvements to these apps may 
free up resources for other apps. By analyzing the changes in I/O 
behavior when apps migrate to similar or radically different 

platforms, we can help scientists avoid unexpected performance 
degradation. I/O behavior analysis can even show us how the 
behavior of individual apps evolves over time. To accomplish all 
these purposes, we need a systematic approach to app-specific, 
platform-wide, and cross-platform analysis of I/O behavior.  

In this paper, we show how automated collection and analysis of 
I/O logs across multiple platforms can help accomplish these 
purposes. We used Darshan [1], a lightweight instrumentation 
tool, to capture application-level I/O behavior at production scale. 
Because Darshan’s overhead is low, a number of platform 
owners1 have deployed it as the default option for all apps, thus 
enabling workload-wide and cross-platform analysis.  

This paper presents insights we gleaned by analyzing Darshan 
logs from three large-scale supercomputers: Intrepid and Mira at 
the Argonne Leadership Computing Facility (ALCF) and Edison 
at the National Energy Research Scientific Computing Center 
(NERSC). The logs span a substantial period of time—4 years on 
Intrepid, 18 months on Mira and 9 months on Edison—and 
capture the I/O behavior “in the wild” of about 1M jobs, 
representing thousands of apps and roughly a third of the 
workload on these platforms. This is the first study that has been 
able to compare and contrast the I/O behavior and evolution of 
many different apps at production scale across platforms. 

Our contributions fall into two categories: 

• The logs provide a broad portrait of the state of HPC I/O usage 
on three modern platforms. For example, among Darshan-
instrumented jobs: 

o Every widely used I/O paradigm (file per process, global 
shared file, or subsetting I/O) is represented in the set of best-
performing and worst-performing apps, in terms of 
aggregate I/O throughput. Thus, use of a particular paradigm 
does not in itself guarantee good or bad performance. 

o Roughly a third of jobs have aggregate average I/O 
throughput no more than that of a single contemporary USB 
flash memory thumb drive (~256 MB/s [2]). Three-quarters 
of apps never exceed the throughput of four thumb drives in 
any of their jobs. Over a third of jobs spend more time in I/O 
metadata functions than in transfer of actual data.  

                                                                    
1 In this paper, a job or run is a particular execution of an app.  

Unless otherwise noted, we consider two jobs to belong to the 
same app if and only if their executables have the same name. 
Someone who submits a job is a user; users may have to 
configure an app before they submit a job. Someone responsible 
for developing the source code of an app is its owner, or rather 
one of its owners. A widely used app may have a small set of 
owners and a much bigger set of users. A platform is a 
particular installation of a supercomputer. Someone responsible 
for configuring or administering a platform or for helping its 
users is an owner of that platform. 
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o Roughly half of apps have low throughput because none of 
their jobs access more than 1 GB of data, so that file startup 
costs cannot be amortized across much data transfer; or 
because they rely on text files instead of binary files. Even on 
the most data-intensive platform we studied, half of apps 
wrote less than 10 GB of data in 99% or more of their jobs. 
On one platform we studied, roughly one-fifth of apps relied 
exclusively on text files, which almost certainly guarantee 
poor performance at scale. 

o Three-quarters of jobs use only POSIX to perform I/O. This 
does not condemn a job to poor I/O throughput, but it does 
suggest a need to investigate why higher-level parallel I/O 
libraries are not more widely used. 

• We discuss ways to address these problems, including a simple 
and effective analysis and visualization procedure for quickly 
identifying apps’ I/O bottlenecks; criteria for system owners to 
identify potentially underperforming apps; and an I/O boot 
camp for users/owners of underperforming apps. The resulting 
performance improvements could raise the level of satisfaction 
of users, app owners, and platform owners. Two subtle points: 

o The I/O performance of an app may satisfy its owners but not 
necessarily the platform owners, and vice versa. Thus 
analysis of I/O logs must address the needs of both 
populations. 

o 90% of a platform’s I/O usage comes from less than 10% of 
its apps, but some of these apps do not have many large jobs. 
The greatest potential resource savings for platform owners 
lies in identifying and correcting an app’s I/O issues before it 
becomes a top consumer of I/O time. Automated analysis can 
be particularly helpful here, as smaller jobs are less likely to 
attract expert human scrutiny. 

The remainder of this paper is organized as follows. Section 2 
provides background on Darshan and summarizes related work. 
Section 3 describes the target platforms and collected data. 
Section 4 presents a three-dimensional analysis of the collected 
logs: app-specific, platform-wide, and cross-platform. Section 5 
summarizes our findings and outlines future work.  

2. BACKGROUND AND RELATED WORK 
For over 20 years, researchers have sought to understand HPC I/O 
workloads. As the size, composition, and complexity of platforms 
and their workloads grow continuously, the topic must be 
revisited in each generation of platforms (see, e.g., [3][4] from the 
1990s, [5][6] from the 2000s, and [7][8] from the 2010s). Many 
workload studies (e.g., [5][6][8], among more recent works) use 
popular scientific codes such as FLASH [11], GCRM [12], 
Nek5000 [13], CESM [14], and their associated benchmarks as 
representative of the entire I/O workload. Such benchmarks are 
widely used to tune and refine I/O libraries and storage systems. 
Since these apps are widely used in their fields, any improvements 
made to them can benefit many users. As important as they are, 
however, these well-studied apps and benchmarks are not 
necessarily representative of the long tail of apps that constitute 
the majority of submitted jobs. By considering a platform’s entire 
workload, we can gain additional insights into its I/O system 
usage. By considering multiple platforms and many apps, we can 
gain general insights into I/O performance portability. 

I/O tracing is very helpful in capturing details of individual I/O 
functions and allowing in-depth analysis of application 
performance. Researchers have created many tools for generating 

app I/O traces, such as RIOT I/O [15], ScalaIOTrace [16], 
//TRACE [17], IPM [18], LANL-Trace [19], TraceFS [20], and 
Recorder [21]. After the traces have been generated, they can be 
used for app debugging, performance tuning, creating 
benchmarks, system analysis, or cross-platform studies. For 
example, the RIOT I/O tracing toolkit has been used to assess the 
performance of three I/O benchmarks on three platforms with 
GPFS and Lustre file systems. ScalaIOTrace, //TRACE and 
Recorder traces can be replayed to create app-specific 
benchmarks. I/O tracing provides very detailed information about 
app executions, which can be extremely useful in improving I/O 
performance. Such I/O tracing tools are ideal for investigating 
individual runs in full detail, but are too expensive to be used to 
find broader patterns at the scale of thousands of jobs and apps.  

Kim et al. [7] characterized platform workloads by instrumenting 
the storage system. This approach does not provide app-specific 
information for analysis. In this paper, we rely on data captured 
for a general production workload, which can be used to 
characterize I/O behavior at both the app and workload levels. 

Darshan [1] instruments I/O functions at multiple levels, primarily 
MPI-IO and POSIX I/O. Darshan collects about 30 pieces of 
summary data for each job, as well as 162 additional parameters 
for each file opened by a process of the job. Example job-level 
data include the numbers of processes, files accessed, and bytes 
read/written; aggregate I/O throughput; and total run time and I/O 
time [9]. After a run, users can employ Darshan’s tools to parse 
their job’s logs and summarize its I/O behavior. 

Darshan’s minimal collection of data (1-2% overhead, depending 
on the app [10][23]) allows it to be enabled for all jobs by default. 
This allows us to observe a platform at workload scale and to 
identify its jobs and apps that can most benefit from follow-up 
analyses with I/O tracing and other performance analysis tools. 
As Darshan captures all runs of the apps it observes, we can see 
the patterns of I/O behavior at scale and across platforms, rather 
than only for selected jobs.   

Darshan logs have already been used for system-wide analysis. 
Carns et al. used two months of Darshan logs on Intrepid [1] and 
four months on Hopper [10] to explore how such logs can be used 
to improve storage system utilization and identify candidate apps 
for additional I/O tuning. We extend this approach to cover three 
platforms over a much longer period of time. To the best of our 
knowledge, this is the first study that compares and contrasts 
application I/O behavior across platforms at full scale.  

3. TARGET PLATFORMS AND LOGS  
Darshan is deployed and enabled by default for all users of ALCF 
and NERSC platforms, and Edison users automatically see 
Darshan’s I/O summary report on a web page for their completed 
job. But Darshan does not see every job running on a platform. 
Apps are not logged if they do not call MPI_Init()and 
MPI_Finalize(), use nondefault build scripts, or run legacy 
executables that are not already linked to Darshan. Further, an 
issue in the F90 MPI wrapper on Mira prevents Darshan from 
observing F90 codes (a fix has been requested from IBM). Users 
can also choose to disable Darshan but do not normally do so. 

On average, Darshan logs on Intrepid, Mira and Edison cover 
roughly a third of jobs. In the remainder of this paper we consider 
only those jobs and apps observed by Darshan, and we use the 
term workload to refer to the platform workload as observed by 
Darshan. We do not know whether Darshan’s observations are 
typical of the I/O behavior of the unobserved part of the 



workload; but the observed fraction of the workload is large 
enough to interest platform owners in its own right.  

Table 1 describes Intrepid, Mira, Edison, and their Darshan logs. 
Intrepid is an IBM Blue Gene/P computer at ALCF with 40,960 
quad-core nodes, 557 TFlops peak performance, and 88 GB/s 
peak I/O throughput to its GPFS file system. Each set of 64 
compute nodes has one of 640 dedicated I/O forwarding nodes 
(IONs). From Jan. 2010 to Dec. 2013, Darshan captured 239K 
jobs representing over 1K apps, 1405M core-hours, and up to 
163K processes and moving as much as 218TB of data in one job. 

Table 1. Target platforms and their Darshan logs 

Platform Intrepid Mira Edison 
Architecture BG/P BG/Q Cray XC30 
Peak Flops 0.557 PF 10 PF 2.57 PF 
Memory 80 TB 768 TB 357 TB 
Cores per node 4 16 24 
# of cores 160 K 768 K 130 K 
Storage 6 PB 24 PB 7.6 PB 
Peak I/O  88 GB/s 240 GB/s 168 GB/s 
File system GPFS GPFS Lustre 

Period logged Jan’10 –
Dec’13 

Apr’13 – 
Oct’14 

Jan’14 – 
Sep’14 

Jobs logged 239,304 137,311 703,647 
Intrepid’s successor at ALCF is Mira, an IBM Blue Gene/Q 
running GPFS. Mira has 48K 16-core nodes, a peak computing 
performance 20x faster than Intrepid, and peak I/O throughput 3x 
faster than Intrepid. Mira has 384 IONs, each serving 128 
compute nodes. Mira entered production mode in April 2013, with 
Darshan enabled. The 137K jobs Darshan observed there used 
1456M core-hours and up to 1.04M processes and 570 TB per job.  

Edison is the newest supercomputer at NERSC, a Cray XC-30 of 
size and performance roughly halfway between Intrepid and Mira. 
Edison has 5,576 24-core nodes and a peak I/O bandwidth of 168 
GB/s to its Lustre file system. Edison’s cores are several times 
more powerful than Mira’s, making up for their smaller number. 
Darshan observed 703K jobs consuming 75M core-hours, using 
up to 131K processes and moving up to 426 TB of data in one job. 

Figure 1 shows that average Darshan coverage is 20% to 40% 
(Edison graph omitted here). For these three platforms, Figure 2 
compares the number of processes per job and the bytes each job 
read or wrote, showing quartiles and outliers in log scale. On all 
platforms, some jobs run at full system scale and/or transfer over 
100 TB. However, most jobs transfer relatively little data and use 
few processes compared with the available number of cores. On 
Edison, 75% of jobs use under 100 processes and/or transfer no 
more than 3 GB of data. On Intrepid and Mira, 50% of jobs 
transfer less than 4 GB and/or use no more than 2K processes. 
Figure 3 shows that few apps ever use more than 4K processes or 
transfer more than a few gigabytes of data.  

We imported Darshan’s log files into a MySQL database and used 
SQL scripts to analyze the data. Script details are important for 
ensuring meaningful and reproducible results on other platforms, 
but due to space constraints, we only discuss the critical issue of 
computing the aggregate I/O throughput of a job. For each process 
of the job, we consider the total time spent in Darshan-tracked 
POSIX IO or MPI-IO data and metadata function calls for all the 
files the process opened. We set the job’s I/O time to be the 
largest I/O time among all its processes. We computed the job’s 
(aggregate) I/O throughput as its total bytes moved in Darshan-
tracked POSIX IO or MPI-IO calls, divided by its I/O time. 

App-level I/O throughput could be computed in other ways, e.g., 
sum/median/average across processes, but we find the slowest 
process’s viewpoint best for comparing throughput across many 
jobs/apps. Usually computation does not resume until the slowest 
process has finished its I/O, due to an explicit barrier or the need 
to exchange data with neighbors.  Thus from the app’s point of 
view, our formula approximates its I/O throughput, and avoids 
misleading statistics when I/O loads are skewed across processes.  

 

 
Figure 1: Darshan coverage in core hours on Intrepid (top) 

and Mira (bottom).  

Figure 2: Cross-platform comparison of each job’s number of 
processes (left) and number of bytes read/written (right).  

 
Figure 3: Cross-platform comparison of each app’s maximum 

number of processes and maximum bytes read/written.  
Darshan records the number of processes that a job runs on, but 
not the number of cores or nodes. The default Darshan 
configuration tracks most of the key POSIX IO or MPI-IO 
functions; condensing the wrapped functions’ names, they are 
[l][f]seek[64], [ncmpi_][H5f]creat[e][64], [aio_][p][f]read[v][64], 
lio_listio[64], [aio_][p][f]write[v][64], [ncmpi_][[H5]f]open[64], 
mmap[64], aio_return[64], __[l][f]xstat[64], f[data]sync, and 
[ncmpi_][[H5]f]close. Darshan’s default configuration does not 
track character-oriented functions such as getc and putc and their 
higher-level analogs scanf and printf, all intended for text data 
transfer. (Such functions may choose to call read or write for data 
access, but POSIX IO does not require them to do so, and we have 
not observed them doing so on our platforms.) The Darshan 
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developers did this to reduce overhead, assuming users would not 
spend much time performing character-oriented I/O.  

4. ANALYSIS OF DARSHAN LOGS 

4.1 Application-specific analysis 
In this section, we present an analysis and visualization procedure 
that app users and owners can use to identify I/O bottlenecks and 
inefficiencies across all runs of their apps. Platform owners can 
use the same techniques to examine the apps that are their top 
users of I/O time (as identified by another set of scripts we wrote). 
The analysis consists of the following steps. 

STEP 1. Identify where the job/app spends most of its I/O time, 
out of four possibilities: 
a) Global metadata. All metadata functions for global files 

(i.e., files accessed by all processes), such as file open, 
close, stat, and seek functions. 

b) Nonglobal metadata. Metadata functions for files that are 
not global (i.e., files accessed by a proper subset of the 
job’s processes). These files may be local, that is, accessed 
by a single process; or subset, i.e., accessed by multiple 
processes, such as under a subsetting I/O paradigm. 

c) Global data I/O. Data transfer functions for global files. 
These include the read, write, and sync functions. 

d) Non-global data I/O. Data transfer for nonglobal files. 
STEP 2. Identify which file(s) consume most of that time. We 

categorize the files along three dimensions: global, local or 
subset; MPI or POSIX; read-only, write-only, or read/write.  

STEP 3. Examine Darshan’s performance data for those files. 

 
Figure 4: Breakdown of total run time for each Earth1 job. 
As a case study, consider the app that consumed the most I/O time 
on Mira, an Earth science code we’ll call “Earth1”. Earth1 ran 
~18K times in 4400 wall-clock hours and 36M core-hours. With 
Earth1’s jobs ordered by their percentage of run time that is not 
I/O time (light blue), Figure 4 divides each job’s remaining run 
time into the four categories in Step 1. Earth1 spent over half its 
time in I/O, most of which was for global file metadata.  

To begin Step 2, we examined a randomly-selected Earth1 run. 
This job had 35 global shared files, including 24 using MPI for 
write-only files, 5 using POSIX for read-only files, and 6 using 
POSIX for write-only files. The total I/O time of the job was ~700 
seconds, of which 567 seconds were spent on 6 POSIX write-only 
global files. Returning to the set of all Earth1 jobs, Figure 5 shows 
how Earth1’s I/O time relates to the number of POSIX write-only 
global files its jobs use, as computed by our scripts. Global data 
I/O time increases gracefully with the number of files, while 
global metadata time increases much faster – even though graphs 
not included here show that the amount of global data transferred 
differs by a factor of 3 across runs with the same number of 
POSIX write-only global files. In other words, I/O throughput 

tracks the changes in file count. This result indicates that the app 
owner should take a closer look at those files. 

In Step 3, an I/O expert would quickly notice that according to the 
per-file Darshan data, each process writes the POSIX global files 
in relatively small pieces (<256 KB) that do not align with file 
block boundaries, making I/O costs high. Common issues of this 
nature could be included in a checklist for users or automatically 
recognized. 

 
Figure 5: Earth1’s I/O time and number of POSIX write-only 
global files (red line).  
Job- and app-specific analysis can be done immediately after a run 
or a series of runs to help the app owner or user quickly locate an 
I/O bottleneck, avoiding a long-lasting inefficient implementation. 
Darshan’s data is relatively high level, so it can give owners/users 
an idea about where their I/O problems may lie; owners/users may 
want to follow up with a tracing or debugging tool. 

4.2 Platform-wide analysis 
An app’s inefficient use of shared system resources may impact 
other apps’ ability to perform useful work. Platform owners can 
use platform-wide analyses to assess job performance, identify 
large underperforming apps, and offer early intervention to save 
system resources. In this section, we assess the performance of 
I/O workloads on Edison, Intrepid, and Mira and propose criteria 
for platform owners to quickly identify underperforming apps that 
consume lots of system resources.  

4.2.1 Very low I/O performance is the norm for most 
apps on these platforms. 
Even though these platforms’ file systems have a peak throughput 
of hundreds of GB/s, few apps experience high I/O throughput.  

 

Figure 6: Maximum I/O throughput of each app across all its 
jobs on a platform, and platform peak I/O throughput.  
For each app and platform, Figure 6 shows the maximum 
aggregate I/O throughput observed by Darshan, among all of the 
app’s jobs on that platform. Horizontal lines show the platform’s 
peak I/O bandwidth. (Apps exceed the platform peak when their 
data fits in the file system cache and reads/writes do not have to 
access the disk before I/O functions return.) Aggregate throughput 
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for three-quarters of apps never exceeds 1 GB/s, roughly 1% of 
average peak platform bandwidth. As noted earlier, most apps are 
relatively small; and no one should expect a job running on a few 
nodes to approach peak platform I/O bandwidth. For example, the 
Mira owners told us that a 1K-node job cannot expect more than 
~20 GB/s I/O throughput, less than 10% of the platform peak. 
Looking at the situation another way, however, three-quarters of 
apps never exceed the aggregate throughput of four modern USB 
thumb drives (writes average 239 MB/s and reads average 265 
MB/s on the 64 GB Lexar P10 USB3.0 [2]). 

 

Figure 7: Number of jobs with a given I/O throughput and 
total number of bytes, on Mira (l) and Edison (r). 
In Figure 7, each tile represents one or more jobs, with the tile 
color indicating the number of jobs. The figure shows that on 
Mira and Edison, a job’s I/O throughput increases roughly linearly 
with its data size. Jobs that write very little data will not have high 
I/O throughput, because the fixed costs for accessing a file cannot 
be amortized across significant data transfer. Still, a third of jobs 
never reach the I/O throughput of a single modern thumb drive, 
and the vast majority of jobs never exceed the I/O bandwidth of 
10 modern thumb drives. Intrepid (not shown) is similar.  

Each vertical bar in Figure 8 represents all the jobs of one app on 
a platform. A bar’s color indicates the total bytes accessed by its 
jobs. For example, a half-red, half-orange bar means that half the 
app’s jobs accessed over 100 GB, and the other half accessed 10-
100 GB (with perhaps a few smaller jobs not visible without 
magnification). Maximum and average I/O throughput for each 
app are indicated by squares and crosses, respectively, using the 
log-scale right-hand axis. The apps are sorted in decreasing order 
of importance for the storage system, as measured by the total 
bytes transferred across all the jobs of the app. Note that roughly 
half of apps do not transfer more than 1 GB of data in their jobs.  

Darshan does not track text-oriented I/O functions, so apps that 
rely entirely on text files will register as having made metadata 
calls but transferring zero bytes, even if they access a lot of data 
and therefore are important to the storage system.  Along with the 
apps that perform no I/O (e.g., a hello-world test), these text-only 
apps can be found at the far right-hand side of each graph, where 
there is a visible knee in the cloud of throughput dots. As the 
results indicate, 105 out of 1507, 201 out of 1032, and 42 out of 
1183 apps open files but perform no binary I/O in any of their 
jobs on Intrepid, Mira, and Edison, respectively. Some of these 
apps are small by any measure, but others are not.  For example, a 
third of the Mira text-only apps had an average job size of at least 
1K processes, and a quarter of them averaged 16K or more 
processes per run. Some apps that heavily rely on text files also 
access binary files, so the counts listed above understate the extent 
of the usage of text files. Since we do not know how many bytes 
of text an app accesses, Figure 8 also understates the importance 
and impact on the storage system of text-based I/O. Since text-

based I/O generally does not scale up well, we conclude that text-
based I/O is a more widespread practice than previously 
observed and deserves further investigation. 

I/O throughput for small jobs does not matter, in the sense that 
users and owners will be happy when a job’s I/O time is only a 
second or so. But small jobs may be test runs for large jobs, such 
as the many Mira jobs in Figure 7 that transfer a terabyte of data 
and spend 10–20 minutes in I/O. Thus, small jobs may allow us to 
identify poor I/O practices before significant amounts of platform 
and user time have been wasted. Further, an app consisting 
entirely of relatively small jobs can still be a top user of I/O time 
on a platform. We consider these two points in the following 
discussions, which focus on apps that are heavy users of I/O time. 

 
Figure 8: Breakdown of each app’s jobs, by bytes written in 
each job, and average and maximum I/O throughput of each 
app’s jobs. Intrepid is at the top, Mira in the middle, Edison 
at the bottom. 

4.2.2 Platform I/O resource usage is dominated by a 
small number of jobs and apps. 
On Edison, Intrepid, and Mira, the total I/O time consumed by all 
jobs observed by Darshan is 5,920 hours, 13,052 hours, and 5,335 
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hours, respectively. With jobs sorted by their total I/O time, 
Figure 9 shows the cumulative portion of platform I/O time that 
they use. On Edison, the top 10% of jobs consume 90% of the I/O 
time. On Intrepid and Mira, the top 25% of jobs consume 90% of 
the I/O time. The curve is even steeper for apps (not shown): 90% 
of I/O time goes to under 4% of apps on Intrepid, 3% on Mira, 
and 6% on Edison; each platform has approximately 1K–1.5K 
apps. These results echo the findings of [1], in which a single app 
dominated I/O time usage in a two-month study. 

 
Figure 9: Cumulative percentage of platform I/O time 
consumed by jobs.  
Let us look at these apps more closely. Table 2 and Table 3 show 
the 15 biggest apps on Mira and Edison, in terms of total I/O time 
across all their jobs. In what follows, we refer to these as the big-
time apps. (Materials1, Turbulent1, and Molecular1 each merge 
two apps with near-identical executable names. We consider apps 
to be the same across platforms if their executables’ names differ 
at most in version numbers). Apps whose names are in bold are on 
the big-time list for multiple platforms. Since Darshan is not 
configured to observe data accesses using character-oriented I/O, 
the I/O time for text-file-based apps is undercounted when picking 
out the big-time apps. To save space, we omit Intrepid’s table, 
which includes Mira’s Earth1, Physics2, Turbulence2, and Molec-
ular2 at ranks 5, 7, 13, and 15, respectively, and Edison’s 
Weather1 at rank 3. The top 15 big-time apps account for 83% of 
I/O time on Mira, 70% on Edison, and 73% on Intrepid. The total 
data read/written across all their jobs varies from a high of 10 PB 
for Earth1 and Materials3 to a low of 1 TB for PDE1.  

Table 2: Mira’s 15 Apps with Biggest Total I/O Time 

# App 

Total 
I/O 
time 
(h) 

Total 
run 
time 
(wall h) 

#  
of  
jobs 

Total 
bytes 
(TB) 

Median 
job 
GB/s 

Run 
time 
I/O % 

1 Earth1 2,480 4,406 17,649 10,037 1.205 56% 
2 Materials1  577  22,912   4,579   196  .103 3% 
3 Turbulence1  428   4,121   972   153  .123 10% 
4 Physics1  150   3,387   762   1,051  .475 4% 
5 Physics2  133   6,262   1,966   1,115  .467 2% 
6 Climate1  95   2,039   1,520   112  .291 5% 
7 Molecular1 89   27,826   19,622   156  .571 0% 
8 Turbulence2  83   671   335   251  .212 12% 
9 Turbulence3  74   96   323   1,961  1.700 77% 
10 Physics3  67   202   66   51  3.274 33% 
11 Molecular2  67   1,686   2,480   34  .167 4% 
12 PDE1  62   120   298   1  .098 52% 
13  Plasma1  48   934   58   3,052  18.32 5% 
14  Physics4  42   202   309   90  .186 21% 
15  Aero1  41   61   151   359  2.505 67% 

 
Improvements in big-time apps’ throughput may free up resources 
for others to use and improve the satisfaction of all users. This 
principle drives the attention given to important apps and their I/O 
benchmarks; and indeed, the I/O behavior of at least five of the 
apps in Table 2 and three in Table 3 is well studied and carefully 
tuned. However, apps with I/O bugs and with I/O paradigms that 

are suboptimal for their situation also appear in the tables. For 
example, as we discuss elsewhere, PDE1 used global text files 
with many processes, and Earth1 used relatively small POSIX 
writes to global files. Indeed, the apps in these tables are top in 
usage of I/O time, not top in terms of I/O throughput. Apps that 
are extremely successful in extracting I/O performance will not be 
listed in the tables unless their total data size is incredibly high. 

Table 3: Edison’s 15 Apps with Biggest Total I/O Time  

# App 

Total 
I/O 
time 
(h) 

Total 
run 
time 
(wall h) 

#  
of  
jobs 

Total 
bytes 
(TB) 

Median 
job 
GB/s 

Run 
time 
I/O % 

1 Materials2 1,109 3,397 847 60 .016 33% 
2 Materials3 505 7,329 78,302 10,351 .475 7% 
3 Physics5 395 2,698 2,171 6 .005 15% 
4 Physics6 322 3,353 6,687 15 .010 10% 
5 Materials4 263 8,252 1,231 17 .038 3% 
6 Molecular3 249 7,392 2,194 51 .036 3% 
7 Materials1 219 11,671 16,221 44 .109 2% 
8 Materials5 215 21,439 34,213 27 .061 1% 
9 Materials6 213 983 926 16 .070 22% 
10 Chem1 145 18,909 5,412 4 .013 1% 
11 Materials7 129 453 5,769 18 .039 29% 
12 Weather1 110 686 299 1,189 .660 16% 
13 Materials8 103 1,011 1,383 2,477 7.993 10% 
14 Materials9 93 175 12,344 266 .860 53% 
15 Plasma2 89 102 41 246 2.265 87% 

 
In the tables, the percentage of run time that big-time apps devote 
to I/O rises from ~0% for Molecular1 on Mira to 87% for Plasma2 
on Edison. Owners and users of apps at the low end of this range 
are likely to be happy with their I/O throughput, even if platform 
owners are not. Boosting the minimum aggregate throughput 
for all big-time apps to 1 GB/s would save platform owners 
42% of total I/O time on Intrepid (3758 hours out of 8920), 
41% on Mira (1803 hours out of 4435), and 85% on Edison 
(3542 hours out of 4158). Jobs running concurrently with big-time 
apps might also benefit from increased I/O resource availability. 
 

 
Figure 10: Big-time apps’ throughput on Mira and Edison. 
According to the tables, less than a quarter of Edison’s and Mira’s 
big-time apps get over 1 GB/s I/O throughput in their median job; 
only one gets over 10 GB/s in its median job (Plasma1, 18 GB/s 
on Mira). Figure 10 shows the quartiles and outliers for the I/O 
throughput of the big-time apps’ jobs on Mira and Edison. As was 
true for the set of all jobs, big-time apps’ jobs get better I/O 
throughput when they have more data. Figure 11 shows this with a 
four-category breakdown of the big-time apps’ performance, 
based on whether they have small data (read/write under 10 GB) 
and/or few processes (under 2K). Figure 11 shows that most big-
time apps’ jobs with big data and processes get 1-16 GB/s of 
throughput on Mira.  As we will see, each platform has apps with 
much higher median throughput than the big-time apps. 
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Figure 11: Average I/O throughput of Mira’s (squares) and 
Edison’s (circles) big-time apps’ jobs, by job size.  

4.2.3 Early intervention by platform owners can 
identify apps with I/O problems, save I/O resources, 
and improve user satisfaction. 
Table 2 and Table 3 show that most of the big-time apps on Mira 
and Edison ran over a thousand times, and all but three ran over a 
hundred times. Clearly, early intervention where needed could 
have saved a huge amount of system resources. As Figure 12 
shows, almost all big-time apps have small jobs, especially on 
Edison, which is the newest platform; early smaller jobs are the 
ideal point for recognizing and addressing problems. 

 
Figure 12: Job sizes for Mira (l) and Edison (r) big-time apps. 

 
Figure 13: Evolution of PDE1’s I/O paradigms. Red dots show 
the number of processes of each job (right-hand y-axis). 
For example, PDE1 in Table 2 used ~13M core-hours on Mira and 
spent 52% of its run time in I/O. When PDE1 ran at scale (64K–
128K processes) in its first implementation, I/O consumed almost 
all of its run time. For example, one job with 512K processes took 
7 hours and over 3.5 million core-hours. Figure 13 includes a 
stacked bar for each successive PDE1 job, breaking down its total 
run time; the 7-hour run is excluded because it is off the chart. 
The clump of blue bars in Figure 13 shows that in its early runs at 

scale, PDE1’s I/O time was devoted to metadata functions; in fact, 
the data transfer time for most files was zero. This tells us that the 
files are being read/written with functions not tracked by Darshan, 
namely, character-oriented functions for text files. 

Conversations with PDE1’s owner confirmed that the initial 
implementation used fprintf to write the output file accessed by all 
processes. After PDE1’s owner attended Mira performance boot 
camp, the owner created an MPI-IO–based implementation that 
runs in 11 seconds with 512K processes. PDE1’s owner would 
have benefited from automated analysis of the Darshan logs from 
its early jobs in Figure 13. Without extending Darshan to track 
character-oriented I/O functions, a script can still find apps that 
make heavy use of text files, by searching the logs for instances of 
files with high metadata time and zero data read/write time.  

The logs also show how app I/O behavior evolves over time. 
PDE1’s earliest runs used few processes, so its I/O paradigm was 
inexpensive relative to computation. As the number of processes 
went up, I/O dominated (purple bars). The purple bars disappear 
with the change to MPI-IO.   

 
Figure 14: Earth2 read hundreds of thousands of text files. 
As another example, consider “Earth2”, an Earth science code that 
ran for 60 hours wall time on Mira and consumed about 100K 
core hours. It read from hundreds of thousands to over a million 
files and spent the vast majority of its time in I/O, as shown in 
Figure 14. Its I/O time breakdown reveals the tell-tale pattern of 
text files: high metadata time and zero data access time. Later, its 
owners identified a bug that put their read operations inside an 
unrelated nested loop, rather than outside. This costly bug 
persisted for a long time before it was noticed. The situation is 
another argument for automated early intervention.  

We suggest the following four criteria to help platform owners 
identify apps whose I/O behavior makes them candidates for 
further investigation. The criteria are not absolute indicators of 
I/O problems, but rather help to narrow down the number of 
applications to consider.  

• Apps using a text file I/O approach, such as PDE1 and Earth2. 
A query for jobs that use only text files finds 2121 jobs from 59 
apps on Edison, 5561 jobs from 237 apps on Mira and 4725 
jobs from 171 apps on Intrepid. 

• Apps with many files and high metadata costs. For example, a 
query for Mira jobs with over 100k files and metadata time that 
is more than one third of run time finds 111 jobs from 11 apps, 
including Physics4 (discussed in Section 4.2.6).  

• Apps with little data but large I/O time. For example, on 
Edison, a query for jobs with under 4 GB of data that spend 
over 5 minutes in I/O finds 4020 jobs from 79 apps. One of the 
apps has more than 500 jobs that match this criterion. 



• Big time apps, such as the Top 15 discussed earlier. 

The filtering capability further emphasizes the importance of 
having a central database about system workload that will enable 
early intervention from platform owners to save system resources 
and improve system utilization. 

4.2.4 POSIX I/O is far more widely used than 
parallel I/O libraries. 
The HPC community has worked hard to create a stack of parallel 
I/O libraries, including MPI-IO, HDF5, and NetCDF. But Figure 
15 shows that users tend to stick with the POSIX I/O library 
(open, read, write). Nearly 95% of jobs visible to Darshan on 
Edison use POSIX exclusively. On Intrepid and Mira, the 
percentages are 80% and 50%, respectively. The remaining jobs 
use MPI-IO directly or use the libraries built atop MPI-IO (e.g., 
HDF5), for at least one of their files.  MPI-IO is used most often 
among mid-sized jobs, in terms of their number of processes. 

The POSIX-only approach does not necessarily mean low I/O 
performance; with care, POSIX apps can have high throughput. 
However, using MPI-IO offers more chances for decent I/O 
performance. As shown in Figure 16, on Mira and Intrepid, about 
45% of jobs that used the MPI-IO library achieve more than 1 
GB/s of aggregate I/O throughput, while less than 20% of POSIX-
only jobs reach 1 GB/s. On Edison, most apps that used MPI-IO 
do not do so efficiently, although some have excellent throughput. 
We return to this point in our cross-platform analysis. 

Carns et al. [1] analyzed the usage of different I/O interfaces and 
found that most jobs with few processors used POSIX I/O, while 
jobs with many processors used POSIX primarily for reads, if at 
all. MPI-IO prevailed among jobs with many processors and apps 
that wrote more data than they read. We found that, in addition, 
POSIX is popular among many-processor jobs. This result agrees 
with another study in [26]. 

 

Figure 15: Number of jobs using POSIX IO only (teal) and 
using MPI-IO directly or indirectly for at least one file (red).  

 
Figure 16: I/O throughput for apps that use only POSIX-IO 
and those that use MPI-IO for at least one file.  

4.2.5 Metadata costs often exceed data I/O costs. 
Metadata costs are a major factor in the I/O throughput of apps 
[10]. Averaging across the platforms in Figure 17, roughly 40% of 
jobs spend more time in metadata functions than in reading and 
writing data. We have already touched on a variety of reasons for 
this problem: the prevalence of small-data jobs and apps, which 
Figure 17 highlights; the hidden problem of overreliance on text 
files; and small data request sizes. 

 
Figure 17: Breakdown of jobs by total data size, for jobs that 
spend more time in metadata functions than in data transfer. 

4.2.6 No major I/O paradigm is always good or bad. 
Text files almost guarantee poor throughput at scale; we do not 
consider apps using this minor I/O paradigm in this section. 

As mentioned earlier, nonglobal files can be broken down into 
local files (i.e., accessed by one process) and subset files (i.e., 
accessed by more than one process but not all processes). An app 
uses the subset paradigm because it makes sense for the scientific 
problem and computational method—for example, adaptive mesh 
refinement—or because the owners want to put a subset of the 
processes (e.g., one process per node) in charge of all I/O. We call 
the latter subsetting I/O. Subsetting I/O can reduce contention and 
the number of files, but requires care for a good implementation. 
Taken to the extreme, subsetting turns into serial I/O, where one 
process does all the I/O, which never scales. In interpreting logs, 
we must distinguish between these three kinds of subset files. 

Local files, often called file-per-process, are easy for users to 
implement, with no coordination between processes. But as the 
number of processes goes up, metadata costs can be high, and 
post-run data analysis and file management become painful. The 
use of global files, each accessed by all processes, can keep the 
job’s input/result data tidy. But global files can have high 
metadata costs at scale, and contention can be an issue. Good 
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implementations of this paradigm tend to require expertise, and 
the resulting parallel I/O libraries have a learning curve for users.  

Some of these categories can be broken down further. For 
example, a sophisticated app might use subsetting I/O with files 
that are accessed by (and thus “global” to) all the processes 
allowed to perform I/O. And an app can use multiple paradigms in 
different jobs or inside one job. But the coarser breakdown 
suffices for our purposes. Each paradigm—global, local, and 
subset—has its pros and cons, and each is found among jobs with 
the worst and best I/O throughputs.   

Local-file paradigm. If a job has enough data, it may be able to 
avoid the pitfall of excessive metadata costs at scale. An excellent 
example is the set of all jobs that access at least 1M files, grouped 
by app in Figure 18. Each job is represented by one vertical bar, 
subdivided into colors based on how it spends its I/O time. Each 
job also has a yellow dot indicating its throughput and a black X 
indicating its data size. Two apps are very tightly packed: 
Physics4 (116 jobs on Mira) and Plasma1 (1 subset-paradigm job 
on Intrepid and 41 local-file paradigm jobs on Mira). Figure 18 
shows how fast the local file paradigm can be: Mira1 attains over 
10 GB/s with ~25 TB of data, and Plasma1 attains about 20 GB/s 
for its many jobs with 60–80 TB of data. Plasma1 on Mira shows 
that even with millions of local files and metadata costs (red) 
exceeding transfer costs (blue), I/O throughput can reliably reach 
a level that would be the envy of most apps.  But the I/O time of 
the vast majority of local-file jobs in the figure is almost totally 
dominated by metadata costs, resulting in extremely low 
throughput for example Physics4. The throughput closely tracks 
the data size, both of which use the same right-hand y-axis. Two 
of Plasma1’s data points are off the chart: 174 TB and 100 TB of 
data. 

 
Figure 18: I/O throughput and I/O time breakdown for jobs 
that access over a million files.  
Subset paradigm. In Figure 18, jobs that used the subset 
paradigm have pink circles around their yellow throughput dots. 
Two apps used the subset paradigm exclusively, and the figure 
shows that it can be very effective: Mira2 attained ~30 GB/s and 
Edison1 had 10–20 GB/s—far better than most apps. (Mira2’s job 
has 165 TB of data, putting that data point off the chart.) But the 
third app, Plasma1, is the star, with over 60 GB/s in its lone 
subsetting job on Intrepid. The logs show that 1/8 of Plasma1’s 
processes performed I/O in that job, and approximately 1/225 of 
Mira2’s. Edison1 is using subset files, but not I/O subsetting; 
recall that subsetting serves other purposes too, such as AMR I/O.  

Subsetting is not a panacea: Intrepid3 has poor I/O throughput, 
totally dominated by metadata costs.  However, Intrepid3 was not 

doing I/O subsetting, as three-quarters of its processes wrote to 
the same file. For a better example of ineffective I/O subsetting, 
consider Turbulence1, which ran on Intrepid and Mira and is 
among Mira’s big-time apps; its I/O time there averages 10% of 
run time. Figure 19 shows Turbulence1’s Intrepid jobs, sorted by 
non-I/O time; the dark blue blocks are jobs using POSIX IO with 
subsetting (ratio 1000:1), and the light green blocks use MPI-IO 
with global files. No matter what paradigm is used, the I/O time 
has little impact on total run time, so the owners would have little 
motivation to try other I/O approaches. (One way to achieve this 
insensitivity is to dedicate processes to I/O, so computation can 
resume once the output data has been sent to those processes.) 
Examining a randomly selected job, however, we see that 90% of 
Turbulence1’s I/O requests are of size 8 B, which could be 
inefficient for the storage system and could impact other users. 
Climate1 also offers I/O subsetting, along with interfaces to a 
variety of storage options. Figure 20 shows that users took 
advantage of these different options in its many jobs on Intrepid. 
Through other channels, we know that Climate1’s owner worked 
very hard to tame metadata costs and reach its median job 
throughput on Mira, which Table 2 pegs at a low 0.3 GB/s. But 
Climate1’s throughput may still be hurt by very small I/O request 
sizes. For example, in three randomly selected Mira and Intrepid 
jobs including both primarily POSIX and primarily MPI-IO runs, 
over half its I/O requests have size ~100 B. A randomly selected 
Intrepid job shows subsetting ratios ranging from 4:1 to 1000:1 
during different parts of the job; each job subsets differently, with 
little visible impact on I/O throughput. With median job I/O time 
at just 5% of total run time on Mira, Climate1’s owner has little 
incentive to refine its I/O approach further.  

 
Figure 19: Turbulence1's 290 jobs on Intrepid. 

 
Figure 20: Climate1's 3578 Intrepid jobs, sorted by thruput. 
 



Global files. Global files did not perform well for Earth1, which 
made small POSIX IO requests, or Climate1, which made small 
requests with both MPI-IO and POSIX. But Figure 21 shows that 
global MPI-IO files work well for the jobs of the “Physics7” app 
on Edison, shown sorted by throughput. The I/O throughput of 
Physics7’s median job is 7 GB/s, helped along by its tendency to 
access data in 1 MB requests, well aligned with storage block 
boundaries. Also, Physics7 might not be using the default Lustre 
settings, which are slow for MPI-IO [24]. Physics7’s users 
experimented twice with nonglobal files: once when they first 
arrived on Edison and then again after about a hundred jobs, 
always using a dozen or more processes. Both trials were quickly 
abandoned.  

 
Figure 21: Physics7’s 199 Edison jobs, sorted by throughput. 

4.3 Cross-platform analysis 
Supercomputer lifetimes are short; a new and faster platform is 
always on the way. But improved performance does not always 
come easily for users, as noted by Anantharaj et al.: “The high 
development and maintenance effort required to tune 
[applications] to multiple platforms is considered a large burden, 
taking time and resources that might otherwise be spent on other 
aspects of the projects” [25].  
Migration to a new platform normally requires retuning of code 
for good performance, and I/O is no exception. Seemingly small 
details of the storage system can have a huge impact on a 
particular app’s throughput [22]. Further, the general trend toward 
packing more cores into each node tends to increase file access 
contention for processes in the same node. Thus an app running 
with the same number of processes on a new platform might see 
throughput fall even if the new storage system is similar to the old 
and has higher peak throughput. Therefore, to maintain current 
throughput, app I/O may need retuning even when moving to a 
similar but faster platform. Case studies and I/O benchmarks have 
provided such insights in the past; Darshan can potentially help us 
examine the impact of migration at a larger scale. 
Using the same naming methodology as in Table 2 and Table 3, 
we found the apps that ran on two or more of our platforms: 82 
apps on both Intrepid and Mira, 39 on Mira and Edison, 27 on 
Intrepid and Edison, and 10 on all three platforms. For each such 
app, we compared the median aggregate I/O throughput of its jobs 
across platforms. However, most of these median jobs have small 
total data, as do most apps; Figure 22 illustrates this with a box 
plot of job data size for the ten apps that ran on all three 
platforms, with apps separated by vertical black bars. We have 
already observed that a small-data job will have well under 1 
GB/s aggregate I/O throughput. Thus, the difference in median 
aggregate I/O throughput of jobs on different platforms is due 
primarily to differences in a job’s total data size. For a fair cross-

platform comparison of these apps, we need to match job sizes 
across platforms. With over a hundred apps to match up, we 
present just three case studies here. 

 
Figure 22: Quartiles and outliers of total bytes accessed by 
each job, for the ten apps that ran on all three platforms. 
Case study 1: Earth1 is the number 1 big time app on Mira and 
number 4 on Intrepid. Figure 23 shows I/O throughput and data 
size of all Earth1 jobs on Mira and Intrepid. Median job 
throughput drops from 4.5 GB/s on Intrepid to 1.2 GB/s on Mira. 
Data size also declines but remains too big to explain the drop.  

 
Figure 23: Earth1’s jobs, broken down by data size and I/O 
throughput, on Intrepid (left) and Mira (right). 

 
Figure 24: Earth1 jobs’ I/O time on Intrepid (l) and Mira (r). 
As shown in Figure 24, Earth1’s main Mira bottleneck is metadata 
activity for global files. As discussed earlier, Earth1 uses POSIX 
to write to global shared files. Earth1’s jobs on Mira use more 
processes, which are packed more tightly into nodes than on 
Intrepid. With more processes and less total data, request sizes 
drop. Tighter packing, more processes issuing requests, and 
smaller requests all increase contention, and throughput drops. 

Case study 2: The “Crossplat1” physics code is the rightmost app 
in Figure 22. Figure 25 shows that in general, Crossplat1 scales 
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well with increasing data on Mira and Edison, and with more 
processes on Edison. On Intrepid, Crossplat1 rarely exceeded 1 
GB/s throughput. 

 
Figure 25: I/O throughput, data size, and number of processes 
for each of Crossplat1’s jobs on three platforms. 
We applied the three-step app-specific analysis procedure to 
Crossplat1 on Mira and Edison, and found that most I/O time was 
spent in non-global I/O of a number of local POSIX read/write 
files (#lPrwf for short). Figure 26 depicts this for Mira, with jobs 
sorted by #lPrwf. The log-scale right-hand y-axis is for the 
overlay variables: I/O throughput, total bytes and #lPrwf. For a 
fixed #lPrwf, I/O throughput increases nicely with data size. But 
when #lPrwf is 512 or more, metadata costs shoot up (tall red 
bars). This suggests that limiting #lPrwf may improve throughput 
for Crossplat1 on Mira. Crossplat1’s behavior on Edison was 
similar (graph omitted) except that #lPrwf did not exceed 256, so 
metadata costs remained modest in almost all jobs on Edison.  

 
Figure 26: I/O time and throughput (green dot), bytes 
accessed (black X) and number of local POSIX read/write files 
(red diamond) for each of Crossplat1's jobs on Mira. 
Case study 3: Weather1 is the ninth app in Figure 22 and a big-
time app on Edison and Intrepid. Weather1 has few Mira runs, 
and we do not consider them here. Figure 27 shows that 
Weather1's I/O throughput was consistently low on Intrepid, but 
as high as 48 GB/s on Edison. The scaling pattern is unclear.  

In Figure 28, each Weather1 job on Intrepid is represented by a 
vertical bar whose colors give a breakdown of the job’s total I/O 
time (left-hand y-axis). The figure also shows each job’s I/O 
throughput (black X), number of processes (yellow dot) and data 
size (blue plus) on the log-scale right-hand y-axis. The jobs are 
sorted by data size. Different I/O paradigms were used by 
different users, visible in the figure as four distinct blocks of 
colors. Weather1 spent most of its I/O time in MPI global shared 
files and never reached 1 GB/s of throughput under any paradigm, 
even when accessing over 1 TB of data.  

 
Figure 27: Breakdown of Weather1's jobs by I/O throughput, 
number of processes, total data size, and platform. 

 
Figure 28: I/O time breakdown of Weather1 jobs on Intrepid. 

 
Figure 29: I/O time breakdown of Weather1 jobs on Edison. 
Weather1 fares better on Edison, where a third of the jobs exceed 
1 GB/s throughput, as shown in Figure 29 with jobs sorted by I/O 
throughput (black X). The figure also shows each job’s data size 
(blue plus), number of POSIX global files (orange dot) and 
number of MPI global files (yellow dot) on the log-scale right-
hand y-axis. Here, Weather1 jobs fall into three groups. The first 
group uses MPI-IO global shared files and has consistently low 
throughput (<0.2 GB/s). The second group uses local files and 
more modest data sizes (always under 1 TB) and throughput 
closely tracks data size, reaching as high as ~48 GB/s. The third 
group of jobs has extremely large data (over 10 TB), and uses 
POSIX global files; these jobs attain 3-6 GB/s. Darshan does not 
observe whether jobs tune Lustre parameter settings, but it is 
worth noting that these results are in line with others’ observations 
that the default settings on Lustre lead to low MPI-IO 
performance [24], and that the local file I/O paradigm tends to 
perform relatively well on Edison. 
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5. CONCLUSIONS AND FUTURE WORK 
Efficient I/O performance is a critical part of modern 
supercomputing. Lightweight tools such as Darshan can augment 
traditional benchmarking and tracing tools, and provide an overall 
understanding of the I/O behavior of apps, workloads, and 
platforms. This paper used Darshan I/O logs to provide a broad 
view of I/O behavior on three leading HPC platforms. Our results 
lead us to believe that while tremendous progress has been made 
in hardware and software research for HPC I/O, gaps remain in 
the adoption of best practices by scientific application developers. 
For instance, strategies such as usage of text files and raw, low-
level POSIX I/O calls will be untenable on future platforms; 
adoption of higher-level I/O libraries can help increase the 
longevity of codes on future generations of supercomputers. HPC 
I/O specialists need to ensure that app developers understand the 
tradeoffs in different ways of performing I/O, perhaps through I/O 
boot camps and tutorials offered in cooperation with platform 
owners. Our results also lead us to believe that while much 
research effort is invested in extreme- scale testing and 
optimization, a large fraction of the HPC community has modest-
scale metadata and data challenges; designers of HPC facilities 
must take these needs into account when designing and 
provisioning I/O resources. We believe that tools such as Darshan 
can give platform owners critical insights into system utilization; 
early and proactive intervention into suboptimal I/O behavior can 
greatly enhance the utilization of a platform’s HPC resources. 
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