
Tuning Parallel I/O on Blue Waters for Writing 10

Trillion Particles

Surendra Byna∗, Robert Sisneros†, Kalyana Chadalavada†, and Quincey Koziol‡

∗Lawrence Berkeley National Laboratory, USA. Email: sbyna@lbl.gov
†National Center for Supercomputing Applications, USA. Email: {sisneros,kalyan}@illinois.edu

‡The HDF Group. Email: koziol@hdfgroup.org

Abstract—Large-scale simulations running on hundreds of
thousands of processors produce hundreds of terabytes of data
that need to be written to files for analysis. One such application
is VPIC code that simulates plasma behavior such as magnetic
reconnection and turbulence in solar weather. The number of
particles VPIC simulates is in the range of trillions and the size
of data files to store is in the range of hundreds of terabytes. To
test and optimize parallel I/O performance at this scale on Blue
Waters, we used the I/O kernel extracted from a VPIC magnetic
reconnection simulation. Blue Waters is a supercomputer at
National Center for Supercomputing Applications (NCSA) that
contains Cray XE6 and XK7 nodes with Lustre parallel file
systems. In this paper, we will present optimizations used in
tuning the VPIC-IO kernel to write a 5TB file with 5120 MPI
processes and a 290TB file with 300,000 MPI processes.

I. INTRODUCTION

Large-scale simulations running on hundreds of thousands

of processors produce hundreds of terabytes of data that need

to be written to files for future analysis. One such application

is VPIC code that simulates plasma behavior such as magnetic

reconnection and turbulence in solar weather. The number

of particles VPIC simulates is in the range of trillions and

the size of data files to store is in the range of hundreds of

terabytes. To test and optimize parallel I/O performance at

this scale on Blue Waters, we used the I/O kernel extracted

from a VPIC magnetic reconnection simulation. Blue Waters

is a supercomputer at National Center for Supercomputing

Applications (NCSA) that contains Cray XE6 and XK7 nodes

with Lustre parallel file systems. In this paper, we will present

optimizations used in tuning the VPIC-IO kernel to write a

5TB file with 5120 MPI processes and a ≈290TB file with

300,000 MPI processes.

HDF5 is a versatile data model that can represent a number

of complex data objects and a wide variety of metadata.

HDF5 provides a software library that can run on a variety of

computing systems ranging from laptops to massively parallel

systems. The HDF5 file format is portable and comes with a

high-level application programming interface for several high-

level programming languages. Parallel I/O is a special feature

of the HDF5 library that offers various I/O optimizations

for parallel computers. HDF5 implements parallel I/O by ex-

ploiting features of MPI, including collective communication

and I/O, along with internal algorithmic optimizations that

enable high-performance application I/O. When an application

requests a collective I/O operation, HDF5 generates two MPI

datatypes, one that describes the application memory region

and another that describes the region in the HDF5 file to

access. The versatility and flexibility of the HDF5 library at-

tracted numerous applications in reading and writing scientific

data.

Vector Particle-in-Cell (VPIC) is a highly optimized code

for simulating plasma physics phenomenon. In this paper, we

use the VPIC-IO kernel, that mimics the data fields of a

magnetic reconnection simulation [6]. The number of particles

written by the kernel scales as the number of processes

increase. As the number of processes grow to hundreds of

thousands, writing to the same file can be become a perfor-

mance bottleneck. We show that proper distribution of write

load among processes and among I/O servers of the parallel

file system is beneficial. We also test a new feature of HDF5,

called multi-dataset writes, where multiple HDF5 datasets can

be written to the file without a collective call between each

dataset write operation.

VPIC-IO kernel uses HDF5 to write eight properties of

each particle. The size of properties for each particle is 32

bytes and in our configuration each MPI process operates

on 32 milion particles. HDF5 is an I/O library that provides

flexible hierarchical object representation of scientific data.

The parallel I/O component of HDF5 offers various optimiza-

tions to make best use of file system bandwidth on large-

scale systems. These flexibility and optimization features have

attracted numerous HPC applications to write and to read

their data using HDF5. We have designed experiments to

catalog VPICs performance and scalability on Blue Waters

Lustre filesystem. HDF5 and Lustre provide several tunable

parameters. We are therefore interested in analyzing the effects

of these parameters on performance as well as one another

toward determining upon which optimal performance and

scalability are most dependent. Additionally, we test newly

introduced multi-dataset write feature of HDF5. We apply

the results of our analyses to the writing of over 10 trillion

particles of VPIC (≈290TB) to a single shared file.

While HDF5 offers various optimizations and features,

choosing the right combinations is necessary to obtain good

I/O performance. In this paper, we present an application case

study running VPIC [5] on Blue Waters at the National Center

for Supercomputing Applications (NCSA). Since HDF5 opti-



mizations vary based on the underlying parallel file system

and the data access patterns of applications, our study must

leverage many relevant optimization strategies, including those

specific to Blue Waters.

Overall, the contributions of this paper are:

• Studying the scalability of writing up to 10 trillion

particles of VPIC, that amounts to ≈290 TB data file

• Testing the newly introduced multi-dataset write feature

of HDF5

The reminder of the paper is organized as follows: We

describe our target hardware, Blue Waters, as well as our target

application, VPIC, in Section II. We then discuss related work

in Section III. We analyze the parallel I/O performance VPIC

in Section IV and conclude in Section V.

II. BACKGROUND

A. Blue Waters Systems Overview

Blue Waters is a Cray XE6-XK7 supercomputing system

managed by the National Center for Supercomputing Appli-

cations for the National Science Foundation. The system has

a peak performance of 13.34 PF, aggregate IO throughput in

excess of 1 TB/s, 26 PB online disk capacity and nearly 200

PB of nearline storage. Blue Waters contains two types of

compute nodes: XE6 and XK7. There are 22,640 XE6 nodes

and 4,224 XK7 nodes. Each XE6 node has two 16 core AMD

6276 CPUs, 64 GB of main memory. Each XK7 node has one

16 core AMD 6276 CPU, 32 GB of main memory and one

Nvidia Kepler K20X graphics processing unit (GPU) with 6

GB of GDDR5 on-board memory.

The compute and file system nodes are interconnected

using the Cray Gemini high speed interconnection network.

Two nodes share a single Gemini ASIC (Application-Specific

Integrated Circuit), which contains two network interface con-

trollers (NICs) and a YARC-2 router. The network is organized

in a 24 X 24 X 24 3D torus topology.

Blue Waters provides users with three distinct file systems:

home file system for user home areas, project file system

for group level file sharing and collaboration, and a scratch

file system for applications. All are implemented using the

Cray Sonexion Lustre storage technology and each has its own

metadata and object storage servers. The scratch file system

is the fastest of the three and provides approximately 980

GB/s peak throughput. The scratch file system consists of

1440 Object Storage Targets (OST) spread among 360 Object

Storage Servers (OSS). Each pair of OSS manage eight OSTs

in an active-active failover high availability configuration.

Using the Cray Lustre Network Driver (LND), compute

nodes mount Lustre file systems over the Gemini network. File

system operations from the clients are routed to the appropriate

Lustre device using the Cray XIO nodes that implement the

LNET routing services and handle packet routing between

different networks. There are 482 LNET routers for the scratch

file system. Currently, the compute nodes use Lustre version

1.8.6.

On Blue Waters, LNET routers are organized into groups

of four and each group is connected to three OSSs. A set of

four LNET routers are configured as the primary routers for

OSTs on these OSS units. A second group of LNETs act as

a backup ensuring alternate routes to any OST in the event of

failures.

B. The VPIC Application

VPIC [5] is a highly optimized and scalable particle-in-cell

code to simulate plasma physics phenomenon, such as col-

lisionless magnetic reconnection [7]. Magnetic reconnection

is an important mechanism that releases energy explosively

as field lines break and reconnect in plasmas, such as when

the Earth’s magnetosphere reacts to solar eruptions. VPIC

is able to simulate trillions of particles using hundreds of

thousands of CPU cores. Each particle has a total of eight

properties including their location, id, and momentum in three

dimensions. Since the simulation takes extensive amount of

computation, we have separated the I/O kernel of VPIC and

developed VPIC-IO benchmark [6]. VPIC-IO benchmark (also

referred as VPIC-IO kernel) writes particle data from each

MPI process to a shared file using the H5Part library [8]

and HDF5 file format. Each particle is represented by six

floating point and two integer values. Each of these properties

is structured as a HDF5 dataset. In our experiments, particle

count was kept constant at 32 million per rank.

HDF5 recently implemented a new feature called multi-

dataset write operations. Traditionally, HDF5 required a col-

lective operation after finishing each HDF5 dataset, causing all

processes to block after writing a dataset. In case of VPIC-

IO, where eight properties of particles are written into eight

HDF5 datasets, the MPI processes were synchronizing eight

times. With multi-dataset write operation, the processes only

synchronize once at the end of writing all the datasets. When

testing the performance of multi-dataset operations, we used

a modified implementation of the VPIC-IO kernel with multi-

dataset write calls.

III. RELATED WORK

Various optimization strategies have been proposed to

tune parallel I/O performance of applications or I/O kernels.

Howison et al. [9] also perform manual tuning of various

benchmarks that select parameters for HDF5 (chunk size),

MPI-IO (collective buffer size and the number of aggregator

nodes) and Lustre parameters (stripe size and stripe count) on

Hopper supercomputer at NERSC. Yu et al. [10] characterize,

tune, and optimize parallel I/O performance on Lustre file

system of Jaguar, a Cray XT supercomputer, at Oak Ridge

National Laboratory (ORNL). The authors tuned data sieving

buffer size, I/O aggregator buffer size, and the number of I/O

aggregator processes. In our study, in addition to applying the

strategies proposed by existing research, we took advantage of

two new HDF5 features.

Recent I/O auto-tuning efforts [4], [3], which include some

of the authors of this paper, traverse the vast optimization

parameter space and select optimal parameters the achieve

the best I/O. The performance advantage shown in this paper



adds few more optimizations to the search space, namely:

appending hyperslabs and multi-dataset operations.

IV. RESULTS

In evaluating VPIC on Blue Waters system, we used default

Cray Compilation Environment (CCE, v.8.2.2), Cray MPI

(v6.2.0), and Parallel HDF5 1.8.11 for compiling the VPIC-IO

kernel. We ran the VPIC-IO experiments on a non-dedicated

system. To factor out noise from other jobs on the system, we

ran the experiments multiple times and discarded the outliers.

A custom Lustre client, v.1.8.6 with backported bug fixes and

patches is used on the Blue Waters compute nodes. Though

the Blue Waters scratch file system contains 1440 OSTs, the

current Lustre deployment allows a single file to be striped

across a maximum of 160 OSTs. Our theoretical peak is

iconsequently reduced to approximately 107 GB/s.

A. Tuning baseline performance

We used an instance of VPIC-IO kernel using 5120 MPI

processes as the baseline for tuning I/O performance. At

this scale, VPIC-IO writes a 5 TB file to disk. We ran

this test multiple times to determine optimal file striping

parameters and runtime environment configuration. Initial ex-

periments consistently delivered a throughput of ∼25 GB/s.

We instrumented the code to measure performance of file

open, write, and close operations individually. We identified

that the file close operation was consuming an abnormally

high amount of time. H5Fclose function performs file size

verification operations that either extend or truncate the file

to match the allocated size. These operations initiate several

expensive metadata operations and negatively impact the file

close time [6]. We patched the HDF5 v1.8.11 to disable the file

verification step in H5Fclose and compiled with GCC v4.8.2.

This resulted in significantly reduced file close time.

VPIC-IO kernel calls H5Part write function resulting in

a transfer size of 128 MB per variable. We set the HDF5

alignment to 128 MB using the H5Part API. The Blue Waters

runtime configuration turns on the Cray MPI-IO Collective

Buffering algorithm by default. This optimization helps im-

prove I/O performance in specific cases of large unaligned

writes and small writes to the same OSTs [1]. Collective

Buffering is a two step process that involves data movement

among nodes and consolidates I/O requests among aggrega-

tors. A single variable write from 5120 node amounts to 655

GB, which is prohibitively large for collective buffering to

yield any benefit. To minimize the data movement, we turn off

collective buffering. With this tuning parameters, we observed

an I/O performance of 43.78 GB/s in writing 5 TB particle

data by VPIC-IO kernel.

B. Performance of 10 trillion particle run

Based on the performance of the baseline configuration, we

devised a larger run configuration as follows: 298,048 ranks,

32 million particles per MPI process resulting in more than

10 trillion particles and 291 TB on disk file size. Tuning

parameters from the baseline run were applied to this job.

However, compute node to OST ratio would be 18628:160

compared to 320:160 for baseline run resulting in an OST

over-subscription of 116:1 compared to 2:1. This was de-

termined to be an unrealistic configuration to achieve best

performance. To improve the OST to compute node ratio,

we doubled the number of ranks per node to 32 using 9,314

nodes resulting in an OST over-subscription of 58:1. In order

to further minimize OST contention, we increased the stripe

size of Lustre to 1 GB. With these tuning parameters, we

observed a performance of 51.81 GB/s. In Fig. 1, we show the

performance of VPIC-IO as the number of processes increase.

The I/O performance increased as we use more number of

processes because of reduced contention from other jobs when

using higher portion of the Blue Waters system for running

VPIC-IO.

C. Performance of HDF Muti-Dataset operations

HDF Multi-dataset operations support single collective op-

eration on multiple datasets. To evaluate the performance of

this feature, we modified VPIC-IO to use the multi-dataset

write calls. Job configuration was set to match the baseline

configuration described above. Initial experiments indicate that

write performance benefits to some extent.

To further explore opportunities for improving throughput,

we considered reducing OST contention. In the default MPI

rank placement scheme, SMP-style, ranks are assigned sequen-

tially starting from core 0 on node 0 within the allocated

nodes. This rank layout along with a stripe count of 160

results in each node communicating with 16 OSTs and each

OST is written to by 32 processes on 32 different nodes.

Minimizing the number of nodes communicating with an OST

can improve performance. Collective buffering will aggregate

I/O with one or more writers per OST but is inefficient due to

the large data transfer size of VPIC-IO. Cray MPI provides a

rank reordering mechanism to allow users to place ranks in a

custom configuration [2]. Using the rank reordering method,

ranks that would write to the same OST can be placed on two

or four consecutive nodes. This rank placement guarantees at

any given time a single OST is accessed by two or four nodes,

respectively, and that the interconnect path from the writer

to the OST is the same for all writers. With this approach,

the spirit of collective buffering is retained without excessive

data movement among nodes for aggregation. We used a stripe

size of 1 GB, which yielded the best performance for the 10

trillion particle run, for the multi-dataset write experiment. As

shown in Table I, the multi-dataset write achieves approx56

GB/s performance, approx1.3X improvement over the single-

dataset write performance for storing 5TB data.

D. I/O Performance Limitations

The best performance observed during these experiments

represents 52.5% of the theoretical peak of 160 OSTs. While

this is 2x the performance of the default configuration (25

GB/s), there is still room for improvement. Large-scale runs

using a single shared file will also need Lustre wide striping



Run Code Nodes Cores File Size Stripe Size Write Time Total HDF Time Throughput

Max Throughput Multiple Dataset 320 5,120 5 TB 1 GB 91.08 s 167.78 s 56.21 GB/s
Code Comparison Single Dataset 320 5,120 5 TB 128 MB 116.94 s 117.37 s 43.78 GB/s
Hero Run Single Dataset 9,314 298,048 291 TB 1 GB 5,763.14 s 5,779.89 s 51.81 GB/s

TABLE I
COMPARISON OF VPIC-IO KERNEL PARAMETERS AND OBSERVED I/O THROUGHPUT.

Fig. 1. As the number of cores writing to a single shared file increases,
observed I/O throughput increases accordingly.

support so the compute node to OST ratio can be main-

tained at reasonable levels. Experiments with newer ver-

sions of Lustre client and tuning client side parameters like

max rpcs in flight have shown promising improvement in

per-node throughput. It is preferable to use one OST per

OSS to maximize performance. However, due to limitation

in current system configuration, the default OST assignment

provided by the MDS server was used. Future work will

focus on the impact of changes in the Blue Waters Lustre

configuration and the resulting impact on I/O throughput of

this workload.

V. CONCLUSIONS

Tuning parallel I/O for large-scale simulations and analysis

functions is often challenging. In this study, we tuned I/O

performance of an application running using newly developed

features of parallel HDF5.

We used an instance of VPIC-IO kernel using 5120 MPI

processes as the baseline for tuning I/O performance. At this

scale, our VPIC I/O kernel writes a 5 TB file to disk to 160

OSTs. With a reasonable initial configuration we consistently

achieved only 25% of the theoretical peak for these write

operations. We found the system default collective buffering

algorithm to directly conflict with our careful efforts to align

I/O operations. Simply correcting this allowed us to nearly

double our throughput. Additional configuration updates al-

lowed us to not only carry this increase to our 10 trillion-

particle run, but also improve upon it. This is a significant

result as the 298,048 ranks for that test are still writing to

only 160 OSTs.

There is therefore more scope for I/O throughput improve-

ment that requires configuration changes to the parallel file

systems. In our future work, we will consider those changes

and tune the I/O performance further. Our eventual goal is to

generalize these optimizations and select them automatically

based on the I/O patterns of the applications.

ACKNOWLEDGMENT

This research is part of the Blue Waters sustained-petascale

computing project, which is supported by the National Science

Foundation (awards OCI-0725070 and ACI-1238993) and the

state of Illinois. Blue Waters is a joint effort of the University

of Illinois at Urbana-Champaign and its National Center for

Supercomputing Applications. This work is supported by the

Director, Office of Science, Office of Advanced Scientific

Computing Research, of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231.

REFERENCES

[1] Getting Started on MPI I/O. http://docs.cray.com/books/S-2490-40/.
S249040.

[2] Message Passing Toolkit (MPT) 7.0 Man Pages. http:
//docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;f=man/xe mptm/
70/cat3/intro mpi.3.html.

[3] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir. Improving
Parallel I/O Autotuning with Performance Modeling. In Proceedings

of the 23rd International Symposium on High-performance Parallel and

Distributed Computing, HPDC ’14, 2014.
[4] B. Behzad, L. Huong Vu Thanh, J. Huchette, S. Byna, et al. Taming

Parallel I/O Complexity with Auto-Tuning. SC ’13, 2013.
[5] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan.

Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[6] S. Byna, A. Uselton, Prabhat, D. Knaak, and H. He. Trillion Particles,
120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on
Hopper. In Proceedings of 2013 Cray User Group, May 2013.

[7] W. Daughton, J. D. Scudder, and H. Karimabadi. Fully kinetic simula-
tions of undriven magnetic reconnection with open boundary conditions.
Physics of Plasmas, 13, 2006.

[8] M. Howison, A. Adelmann, et al. H5hut: A High-Performance I/O
Library for Particle-Based Simulations. In IASDS 2010, Heraklion,
Crete, Greece, Sept. 2010. LBNL-4021E.

[9] M. Howison, Q. Koziol, et al. Tuning HDF5 for Lustre File Systems.
In IASDS 2010, Sep 2010.

[10] W. Yu, J. Vetter, and H. Oral. Performance characterization and
optimization of parallel I/O on the Cray XT. In International Parallel

and Distributed Processing Symposium, 2008 (IPDPS 2008), April 2008.


