Model-driven Data Layout Selection for Improving Read Performance
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Abstract—Performance of reading scientific data from a
parallel file system depends on the organization of data
on physical storage devices. Data is often immutable after
producers of data, such as large-scale simulations, experiments,
and observations, write the data to the parallel file system.
As a result, read performance of data analysis tasks is often
slow when the read pattern does not conform with the original
organization of the data. For example, reading small non-
contiguous chunks of data from a large array is many times
slower than reading the same size of contiguous chunks of data.
Towards improving the data read performance during analysis
phase, we are developing the Scientific Data Services (SDS)
framework for automatically reorganizing previously written
data to conform with the known read patterns. In this paper,
we introduce a model-driven strategy for selecting the data
layouts that benefit the performance of different read patterns.
We have developed a parallel I/O model based on the striping
parameters on Lustre file system and the block-level striping
on RAID-based disks within an Object Storage Target (OST)
of Lustre. We have applied the model to reorganize large 3D
array datasets on a Cray XE6 platform and achieved 9X to
128X improvement in accessing the reorganized data compared
to reading the data in its original layout.

Keywords-Scientific Data Management, Scientific Data Ser-
vices (SDS), I/O Performance Model, Big Data, high perfor-
mance computing

I. INTRODUCTION

Discoveries in all fields of science depend on the col-
lection and analysis of large quantities of data [24]. For
example, the recent discovery in confirming the existence
of the Higgs boson that led to winning the Nobel prize
in physics involved analyzing petabytes of high-energy col-
lision data generated by the Large Hadron Collider [18].
Similarly, applications across various science domains, in-
cluding plasma physics [6], astrophysics [11], astronomy
[12, 14], and climate [1], produce or are expected to produce
petabytes of data each hour or each day. Rapid analysis
of these enormous datasets is vital to enable fast scientific
discoveries.

Scientific data analysis tasks often use large cluster
computers, where the tasks read the data to be analyzed
from highly concurrent parallel file systems. However, in
many analyses, the time to read data from the storage is
significantly longer than the time to write. When data is
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written, data producers such as simulations organize data
on the storage system in a layout' that gives the best
performance to write. Reading that data in a different pattern
is typically slow. For example, a plasma physics application
writing particle data organizes the data in large contiguous
chunks on all available storage targets. An analysis task
studying highly energetic particles needs to read and scan
the whole data even when only a small fraction of the data
is needed for analysis. Similarly, accessing a small sub-
plane or sub-cube of a large 3-D dataset results in numerous
non-contiguous I/O requests causing poor read performance.
The read performance must be improved to speed up the
scientific data analysis process.

An effective strategy to accelerate data read speeds is
reorganizing previously written datasets according to specific
read patterns and redirecting data read calls transparently
to the reorganized data. Our recent effort in reorganizing
original data and accessing it achieves a performance im-
provement of greater than 50X compared to accessing the
original data [9]. Many research efforts [2, 17, 20, 23, 25]
also explored optimizing data organization by deriving an
optimal file layout strategy for a certain access pattern.

While it is proven that reorganizing data is beneficial,
there are three main steps towards automating the process
of data reorganization. They are: identifying an organization
that improves the performance of read patterns, reorganizing
the data automatically, and redirecting the I/O read calls
to the reorganized data. Read patterns represent the logical
view of data in terms of arrays and indices. The physical
view of data varies based on the parallel file system and the
storage hardware. In the case of Lustre file system, data is
stored on Object Storage Targets (OSTs) and the data can
be written to or read from multiple OSTs simultaneously. If
the data accesses are distributed uniformly on the OSTs,
parallelism may be beneficial. Accessing one or a small
fraction of the available OSTs wastes concurrency and may
result in poor performance. Finding a balance between
parallelism, locality, and the number of requests holds key
to better performance. Performing reorganization of data

'We use layout and organization interchangeably to refer to the way
data is distributed on a parallel file system.



automatically requires a technique to find the computation
and memory resources to read data from the original dataset,
perform any transformation such as data transposition or
sorting, and write the data to a new layout. Redirecting I/O
calls based on the read patterns needs analyzing the read
calls and transparently reading the reorganized data when
they can provide better performance.

Towards solving the above steps of automating reorga-
nization, we are developing the Scientific Data Services
(SDS) framework [9, 10] that performs reorganization of
data and redirection of I/O read calls to the reorganized data
transparently. This paper introduces a strategy for identifying
an optimal layout for known read patterns that appear in
analysis tasks. We have developed a parallel I/O performance
model based on the OSTs of the Lustre file system and
the disk blocks of a RAID storage within an OST. We
have also developed a prediction mechanism based on an
empirical analysis of measured I/O times in reading data
from the datasets organized in different layouts. Using these
measured time and read pattern information as a training
set, we predict read performance for a new read request
with various data layouts and select a layout that gives the
best performance. We have applied the data layout selection
strategy in the SDS framework for organizing a 3D array
dataset and evaluated performance benefits in reading data
from the reorganized dataset.

o We identify and show that maintaining multiple layouts
plays an important role in scientific discovery and can
have significant performance benefits.

e We design a new parallel I/O performance model
to select optimal data organizations for different I/O
request patterns. We design a new disk-level 1/O repre-
sentation that reduces the complex parameter space of
the hierarchical parallel I/O stacks into minimum key
factors.

o We apply the automatic layout selection strategy in SDS
and show it is easy to implement.

The rest of this paper is organized as follows. Sec-
tion II discusses related work and compares them with
our proposed approach. Section III introduces the SDS
framework and describes a scientific dataset as a use case.
Section IV introduces parallel I/O subsystem and our I/O
formalization. Section V presents the design of our parallel
I/O performance model. We present our system setup for
performance evaluation and experimental results in Section
VI. We conclude the discussion with a brief discussion of
future work in Section VIL.

II. RELATED WORK

Several research efforts studied organization of data on
parallel file systems and prediction of I/O performance. In
this section we briefly discuss existing research.

A. Data Organization

In high performance parallel systems, various projects ex-
plored improving performance by organizing data efficiently.
For example, the CHARISMA [19] project characterized
and explored the importance of access patterns and data
layouts of different user cases. In current scientific data
optimization, applying space-filling curves in placing data
improves the locality. In [15], the authors mapped multi-
dimensional data to the space-filling curves and indexed the
data using a B+ tree to facilitate the query. The Elastic Data
Organization (EDO) addresses the issue of accessing slow
dimensions of datasets via providing various data organiza-
tion schemes [25]. A Pattern-direct Layout-aware (PDLA)
runtime replication was proposed in [28]. The PLDA system
detects the read pattern of an application, and selects one of
three layouts in PVFS, i.e., 1D, 2D-V and 2D-H, to replicate
the accessed data. ‘Smart-IO” [26] applies an optimized
chunking model, hierarchical spatial aggregation, and space
filling curve reordering to speedup data analytics. These
efforts demonstrate that data reorganization is beneficial. But
to the best of our knowledge, the existing works try to search
the best layout for specific access pattern, although the I/O
requests in the same pattern may desire different layouts
and one application may have multiple access patterns. The
complexity of parallel system and the multiple I/O stacks
make it impossible to provide a single optimal layout for
all I/O requests, even for one access pattern. We identify
the importance of maintaining multiple optimal layouts and
develop a model to automatically select one.

B. I/O Performance Model

Several efforts studied predicting the I/O performance
of parallel applications as I/O is a major bottleneck in
high performance computing (HPC) applications. There
has been a lot of related work starting from the single
disk era to today’s parallel file systems. For example, in
[21], the authors demonstrate a procedure for selecting
IOR benchmark parameters to match the I/O patterns of
an application and to predict the I/O performance of the
application. A queuing network model was proposed in
[22] to predict the performance of I/O as a function of
I/O hardware configuration (e.g., 16 RAID-3 disk arrays).
In [23], a cost model was developed to predict the I/O
cost under different layouts (1DV, 1DH and 2D) on PVFS.
In [29], the author designs an auto tuning I/O framework
based on the queuing model on Cray XT5 system. To predict
the I/O performance, researchers usually represent the 1/O
workload as vectors [27, 30], and apply different models to
fit the data. The representation of workloads, the regression
tools, and the training I/O traces are three important factors
in model quality[27]. Our work differs from the previous
modeling efforts in workload representation. By looking
into the parallel file storage hierarchy, we logically map
the I/O from the HDF5 layer down to the disk level. There



are several efforts focusing on I/O at the disk level, e.g.,
DiskSim [4]. In contrast, our disk-level I/O is a top-down
logical view by computing and mapping the logical I/O in
HDFS5 layer, instead of tracing or computing the physical
blocks accessing details at the disk level. The goal of our
prediction model is to estimate I/O performance accurate
enough to make a decision on selecting a data layout.

III. SCIENTIFIC DATA SERVICES FRAMEWORK

The goal of the Scientific Data Services (SDS) framework
is to apply data management optimizations transparently
without placing burden on scientific application developers.
SDS is targeted to reorganize and replicate data to improve
data access performance on large scale parallel computers,
where data is generally stored in parallel file systems.
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Figure 1: Overview of Scientific Data Services Framework

Figure 1 shows an overview of the SDS framework. We
design SDS as a client-server architecture. The SDS Server
analyzes the access patterns of I/O read calls, identifies
the data layouts that benefit the read patterns, performs
data reorganizations, and manages the metadata of the
reorganized datasets. The Access Pattern Analyzer (APA)
traces frequently accessed files, variables, and the offsets
(data locations) of the read accesses and identifies the read
patterns. We define the read patterns as a plane in a multi-
dimensional array, a sub-cube of an array, a sub-plane of an
array, contiguous chunks of data, and non-contiguous chunks
of data. These patterns are well-known in scientific data
accesses [5, 17]. Advanced users can pass this information
of the read patterns of applications to APA without the
need for tracing. APA stores the frequently accessed pattern

information as metadata. The SDS Metadata Manager, im-
plemented using Berkeley DB, manages the metadata. The
Organization Evaluator of the Server periodically reads the
frequently read patterns and contacts the Organization Rec-
ommender to identify data layouts that will achieve better
performance. After identifying the optimal layouts, the Data
Organizer component invokes the functions such as Sorter
and Transposer to organize partial or full replicas of the data
on the parallel file system. The Sorter sorts data according
to a given variable and the transposer transforms 3D array
data to improve locality. These reorganization functions
are pluggable to the SDS framework. We have described
the functionality of the SDS design and implementation in
our previous papers [9, 10]. In this paper, we focus our
discussion on the performance prediction models that the
Organization Recommender uses to detect optimal layouts.

IV. PARALLEL I/O SUBSYSTEM AND I/O MODEL
FORMATION

In this section we introduce the parallel I/O subsystem
that we consider to model. We will explain the logical and
physical views of data access patterns and the mapping of a
read request to physical view. Based on that, we introduce
our proposed I/O model.

A. Two-level Data Striping in the I/O Subsystem
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Figure 2: Two Level Data Striping in Lustre File Systems

The parallel I/O subsystem in most current supercomput-
ers contains multiple layers of software libraries including a
high-level I/O library (e.g. HDF5, PNetCDF, and ADIOS),
middleware layer (MPI-IO), and parallel file system (e.g.
Lustre, GPFS, and PVES). In this study, we develop a
model for the Lustre parallel file system with MPI-IO as
middleware and HDF5 as data format. The Lustre file system
uses Object Storage Servers (OSS) for managing data to
be stored on Object Storage Targets (OSTs). Lustre allows
parallel applications to read and write data concurrently to
the file system. To support this mechanism, Lustre splits the



data into "stripes" and stores each stripe on one OST. If the
stripes are more than the number of available OSTs, Lustre
distributes the stripes on OSTs in a round-robin fashion. As
shown in Figure 2, in a Lustre file system with 4 OSTs,
stripes 1 and 5 are stored on OST'1, and stripes 2 and 6
are stored on OST'2, and so on. Applications and users can
choose the size of a stripe and the number of OSTs to write
data on a Lustre file system. An OST typically writes data
to a RAID for achieving fault tolerance and speed. A RAID
also splits an OST stripe into smaller equal sized chunks of
data and stores it on multiple disks. For example, on Hopper
supercomputer at National Energy Research Scientific Com-
puting Center (NERSC), the /scratch2 Lustre file system
contains 156 OSTs and each OST manages a RAID6 with
8+2 (8 disks for storing data and 2 disks for storing parity)
organization. The stripe size of OST is configurable and the
block size of RAID6 hardware is set to 512-bytes. As Figure
2 shows, data is distributed to the disks (labeled from d1 to
d10) in a round-robin fashion. The minimum size of a read
or write request to the RAID is 4 KB referring to eight 512-
byte blocks. We consider this two-level striping model as
the basis for our I/O performance model and prediction.

B. Logical and Physical I/O Patterns

Mapping the logical view of reading data to the physical
organization of the data holds the key to improved read
performance. The logical view of accessing large datasets
is often expressed in terms of a multi-dimensional arrays.
The physical organization of the data is flattened array
stored on multiple storage targets and on numerous disks
at a small 512-byte block granularity. Mapping these two
views by reducing the number of small data requests and
by improving parallelism increases the read performance.
Towards that mapping, we define simple logical and physical
representations of read patterns.

Many large-scale scientific applications use high-level I/O
libraries, such as HDF5, ADIOS, and PNetCDF, for writing
and reading data from/to parallel file systems. Analysis
applications often read data using starting positions and
length in each dimension of a multi-dimensional array. We
represent this logical view using Equation 1.

I/Oiogicar = (Startn], Length[n]) (1

Since multi-dimensional arrays are flattened and stored on
multiple physical storage devices, typically disks, the read
patterns become non-contiguous. We express the physical
view of reading data using the blocks stored on RAID disks.

I/Ophysicat = (Block Depth, Block Gap) 2)

We define the Block Depth (BD) as the number of blocks
to be accessed on one disk to satisfy a read request. The
read time is dependent on the disk with the most number
of blocks to be accessed. Hence, we use maximum BD in

Equation 2, which refers to the maximum block depth among
all the participating RAID disks on all OSTs that contain the
data to satisfy a read request. For example, if a read request
needs to touch 36 blocks of data distributed among 8 disks,
the BD of 4 disks is 4 and that of the remaining 4 disks
is 5. Then, the Mazimum Block Depth is 5. In Equa-
tion 2, Block Gap(BG) refers to the gaps among different
blocks being accessed in a disk. BG is incremented when
two blocks are neither logically contiguous nor physically
contiguous.

Note that, the precise block distribution on storage hard-
ware depends on various factors of the file system. Our
representation of the physical view of data accesses is
a simple model of a complex system. With the goal of
predicting I/O performance trends quickly based on the read
patterns, we kept the model simple.

C. Determining Maximum Block Depth and Block Gap

Pseudocode 1: I/0 Logical to Physiscal Mapping

input : Dataset Dimension: n, Stripe Size: sts, Stripe
Count: stc, I/O (s,1), Block Size: bks
output: Block Depth and Block Gap

Step 1: map 1/O to each stripe
for i <+ sy to sg + [y do

for n... do
index = i [[[_jla+Jj*]}_ola... +n;
istripe = index/sts;
iblock = (index mod sts)/(bks * 8);

Step 2: Compute BD
for i < 0 to num(stripe) do
for j < 0 to num(block)/stripe do
L if iblock[i, j] > O then
| BD[i mod num(ost)|+ = 1;
Step 3: Compute BG
for i +— 0 to n do
if fast dim then
| BGi] = I[i]
else
| BGi) = (dimli] — i)

We estimate the maximum BD and BG values for a given
read request to a file stored on Lustre parallel file system
with specific striping information using the I/O logical to
physical mapping (IOLPM) function shown in Pseudocode
1. The IOLPM function takes the stripe count and stripe
size, and the read pattern information including the starting
offsets and lengths in different dimensions as input. The
mapping function returns the BD and BG values as output.
To calculate BD, the function uses the two-level striping



model to identify the number of blocks that would be
accessed from each OST and then from each disk. The
algorithm finds the number of I/O requests that go to each
OST and the number of requests that go to each disk on
RAID. We assume the the RAID6 model as we ran all our
experiments on Hopper at NERSC. To calculate the Block
Gap (BG), a tedious way is to use the intermediate result
when calculating Block Depth, i.e., index_block and then
accumulate the distance between two close blocks. Instead,
we compute the difference between the full length of the
dataset in an array dimension and the length of the read
pattern in the same dimension. For example, a read request
has 100 on one dimension (not the fast dimension), and this
dimension of the full dataset has size of 1000, then the block
gap on this dimension is 900.

V. 1/0 PERFORMANCE MODEL
A. Model Definition
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Figure 3: Linear Relations among Factors

We used linear regression analysis based on BD and BG
to predict I/O time of a read request. We ran a benchmark to
access data in different read patterns from a 3D array dataset
with 1024 x 1024 x 65536 dimensions. The total size of the
dataset is 128 GB and stored on a Lustre file system using
100 OSTs and with a stripe size of 1 MB. We use MPI-
IO’s collective I/O to access different 24 sub-cube patterns
of data, e.g., 1024*1024%1024 or 100%1024*65536, etc. For
these tests, we used 1024 MPI processes and 16 aggregators
for MPI-10 collective buffering with a buffer size of 16 MB.

We plot the ‘I/O Cost vs. Block Gap’ and ‘I/O Cost vs.
Block Depth’ to understand the relationships of BD and
BG with the I/O cost and fitted regression lines. As shown

in Figure 3, the BG fits into linear relations with the I/O
Cost, whereas the BD does not fit into the linear model
very well. The coefficient of determination (R?), which
indicates how well the I/O cost and BD, and the 1/O cost and
BG data points fit on a line, are 0.7 and 0.3, respectively.
Typically, a value of R?> > 0.5 indicates that the data fits
the linear model well [8]. We also analyzed the statistical
significance of BD and BG using p — value calculation.
The p-values of BG and BD are 0.000435 and 0.169462
separately, which means the BG is more significant than
BD. This is reasonable since the disk seek time (related
with BG) is usually 1000 times larger than the disk read
time (related with BD). Since the leading factor, i.e., Block
Gap, demonstrates a linear relation with the I/O cost, we
choose the linear regression model, as shown in Equation 3.

F=axBD+xBG+e¢ 3)

In Equation 3, we have not considered the number
of processes, the number of MPI-IO collective buffering
aggregators, and the Lustre striping parameters, such as
the number of OSTs and the stripe size. We refine this
basic model further to consider various other parameters. In
the first refinement, we use independent I/O without MPI-
IO collective buffering, and in the second refinement we
consider the collective buffering.

B. Model Refinement

Independent I/0. For independent I/O, each process car-
ries out its own I/O, and different processes compete with
each other when they access the same OST. In prior re-
search, a queuing model is usually deployed to simulate the
contention of concurrent processes on the server side. In
our model, we select two cases to simplify the contention,
i.e., ‘best case’ when processes come in the same direction
with the disk head movement, and ‘worst case’ when the
processes come in the reverse direction of the disk head
movement. For the ‘best case’, concurrent processes act
as a single I/O, which means the contention is absent. In
the ‘worst case’, the number of concurrent processes on
the same OST matters, and the increased latency leads to
increased I/O cost. The Equation 3 is now rewritten as,

F=axBD+ 3 x BG+~x Nproc/OST +¢ (4)

Collective 1/0. MPI-10 collective buffering reduces the
number of concurrent accesses to file system by individual
MPI processes. This feature is targeted to reduce the number
of metadata reads, which can become a performance bottle-
neck. Collective buffering implements reading data in two
phases.

« Phase 1. The aggregators collect read request informa-
tion from a set of MPI processes and perform the I/O
in an aggregated way on the server side, i.e., I/O phase.



o Phase 2. Aggregators shuffle and send the data to the
MPI processes on the client side, i.e., shuffle phase.

Both phases of collective buffering contribute the I/O
cost. For the I/O phase, the cost includes BD, BG, the
number of OSTs, and the number of aggregators. For the
communication between aggregators and MPI processes,
the communication cost is dependent on the number of
communications and the data size. For the communication
cost, we use the model similar to [7, 16].

To rewrite Equation 3, the two separate equations for the
two phases of collective I/O are:

Fi=axBD+  x BG+vx Nagg/OST + ¢;

Fy =X x Nproc+ X Nagg + w x Size/Nagg + €2
(5)

In Equation 5, F) represents the I/O phase on the server
side, and F5 represents the shuffle phase on the client side.
The linear regression model for the total I/O cost is F' =
F + Fs.

VI. EXPERIMENTAL RESULTS AND ANALYSES

We have evaluated the accuracy of the I/O model and
the selection of data layouts including data transpositions
and Lustre stripe settings. Based on our initial results of
the accuracy, we refine the prediction model further. As
mentioned earlier, we ran all the experiments on the Hopper,
a Cray XEG6 supercomputer with 6384 nodes. Each node has
two 12-core AMD ‘MagnyCours’ 2.1 GHz processors and
at least 32 GB memory per node. The Lustre file system we
used has 156 OSTs with a 35 GB/s peak I/O bandwidth.

A. Layouts Selection with Common I/O Pattern

We have compared the predicted I/O performance with the
measured performance for different read patterns accessing
data from different data organizations. Our goal of this
evaluation is to be able to predict the data organization that
gives the best performance for a given read pattern. The read
patterns include accessing a 1D array, a 2D sub-plane, and
a 3D sub-cube. These patterns are similar to the common
read patterns we have discussed in Section III. We used
a synthetic benchmark for reading these patterns from a
large 3D array with [1024, 1024, 65536] size in [X, y, z]
dimensions. We stored data in [X, y, z], [X, z, y], and [z, X,
y] dimensions that represent three different data layouts. We
label these layouts as 1, 2, and 3, respectively.

10 Measured Best
1D | (1,1,3,3,2,2,1,3)
2D | (1,2,3,3,2,1,1,2)
3D | (3,1,3,2,2,1,3,2)

Predicted Best Speedup
(1,1,3,3,2,2,3,3) 128.42
(1,2,3,3,3,1,1,2) 68.46
(3,3,3,2,2,1,3,2) 9.26

Table I: Organization Selection based on Models

For each I/O pattern, we conducted 8 tests with 512
processes, with varying starting offsets and the lengths of
read requests. We used independent I/O where each process
accesses the file system. For example, in the tests with
1D pattern accesses, each process accesses a 1D line with
varying lengths. We measured the I/O cost in accessing data
stored in three different organizations: (1024,1024,65536),
(65536,1024,1024), and (1024,65536,1024). We compared
the best predicted I/O cost using Equation 4 for each test in
accessing different organizations. We have also measured the
best I/O cost with each test. Table I compares the measured
best costs for each test in the three I/O patterns with the
predicted best costs. For example, in the first row under
"Measured Best" column, (1,1,3,3,2,2,1,3) refers to the list
of data organizations that give the best performance for the
1D pattern tests. The "Predicted Best" list matches 7 out of
the 8 tests with the measured best organizations. We show
the predicted best cases that mismatch with the measured
best cases in “red” color. We also show the average speedup
achieved when accessing the selected layouts compared to
the original layout, which is organization 1. The average
speedup for 1D patterns is 128.42X , that for 2D patterns is
68.46X, and that for 3D patterns is 9.26X.

B. Improving the Accuracy of Prediction

In this section, we explore the mismatched "Predicted
Best" and "Measured Best" cases further and refine our
linear model to avoid such mismatches. We discuss the 3D
pattern accesses. Figure 6 compares the predicted I/O costs
(using Equation 4) and the measured I/O costs for the eight
3D access patterns to the three datasets (showing all 24
cases). We can observe that the error of predicted costs is
higher in 8 of the 24 cases. The average residual error in
these 8 mismatching predicted times is 126.8. The reasons
for this error may be due to the contention in the system
from other users accessing the I/O system simultaneously.
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Figure 4: Empirical Model at Larger Scales

To improve the prediction accuracy, we applied “multi-
plicative linear regression model” [8] instead of the additive



linear model we used earlier. Using the ‘multiplicative’
model [3], Equation 4 can be refined as Equation 6.

F =a;3 x BD + as x BG+ as x Nproc/OST
+ a4 X BD x BG + a5 x BD x Nproc/OST
+ ag x BG x Nproc/OST
+ a7 x BD x BG x Nproc/OST +¢

(©)

With a multiplicative model, the interactive effect of
variables are measured, e.g., BD x BG. This is reasonable
in the real system, because with different Block Gap, the
blocks could be located on the outermost tracks, innermost
tracks, or across the entire disk surface, such that the disk
read speed can be significantly different to access same
Block Depth [13]. The equation for calculating the I/O
phase of collective I/O is similar to that of Equation 6, where
Nproc is replaced with Nagg.
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Figure 5: Comparison of Predicted and Measured I/O times
for Independent I/O with 1024 Processes

Figures 5 and 6 show the comparison of predicted and
measured I/O costs for accessing 3D pattern sub-cube data
using MPI independent I/O and collective I/O, respectively.
Each plot compares 24 tests with 8 variations of 3D pat-
terns accessing data from three layouts. We also show the
‘Residual error’ in the plots.

The average residual error in the independent I/O case
is now reduced to 40.7. The coefficient of determination
(R?) is 0.9951, which indicates close fitting of the linear
regression and improved accuracy of prediction.

The average residual error in the collective I/O case
(Figure 6) is 3.95. The coefficient of determination (R?)
is 0.9969, which is better than the independent I/O case.

We have applied the refined models for selecting organiza-
tions. We ran three 3D pattern tests for accessing data from
three organizations and the "Predicted Best" organizations
matched with the "Measured Best" cases with no errors for
both independent I/O and collective I/O tests. This proves
that the model is capable of selecting data layouts for
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Figure 6: Comparison of Predicted and Measured I/O times
for Collective I/O with 1024 Processes

improving read performance.

VII. CONCLUSIONS AND FUTURE WORK

Many scientific discoveries heavily rely on the collection
and analysis of large quantities of data. The performance of
reading scientific data has been a critical factor in determin-
ing scientific discovery productivity throughout these anal-
ysis processes. In this study, as observing read performance
is tightly related with the organization of data on physical
storage devices, we try to answer the question of how
data organization is correlated with the read performance
and how an optimal data organization can be automatically
determined and selected to maximize scientific discovery
productivity.

The contributions of this study are three-fold, and the
conclusions of this study can have a broad impact. First, we
identify and show that maintaining multiple layouts plays an
important role in scientific discovery and can have significant
performance benefits. Second, We design a new parallel I/O
performance model to select optimal data organizations for
different I/O request patterns. By transforming the logical
I/O requests to the physical I/O accesses, our model predicts
the I/O performance for various data organizations and
redirects the I/O to an optimal layout automatically. Third,
we have integrated this model-driven data layout automatic
selection into the Scientific Data Services (SDS) framework
we are developing. We have applied the model-driven layout
selection approach in SDS and evaluated performance of
reading data based on the heuristic guidance provided by
the performance model. In the evaluations, we verified the
model with respect to different transposing organizations.
The results confirmed that the linear regression model we
have introduced can distinguish different layouts, and the
SDS framework integrated with the performance model was
able to select the optimal data layout for incoming I/O
requests in the majority of cases. The proposed model-driven
data layout automatic selection can be a new methodology



that guides file systems and parallel I/O libraries to better
meet growing data-intensive scientific discovery needs, and
the integration with the SDS framework can have direct
impact on scientific applications with enhanced productivity.
For future work, we will further investigate the model
to enhance the prediction performance and reduce the real
time overhead. Besides, we will use this model to re-define
the I/O pattern by grouping the I/O based on their model
prediction cost, such that we can use the SDS to quickly
detect the I/O pattern and redirect to the better layout. We
are also seeking to design a partial layout selection based on
the model, in which, not all the data are replicated to another
layout, only a small portion of hot data are replicated.
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