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ABSTRACT
Large-scale scientific applications typically write their data to par-
allel file systems with organizations designed to achieve fast write
speeds. Analysis tasks frequently read the data in a pattern that is
different from the write pattern, and therefore experience poor I/O
performance. In this paper, we introduce a prototype framework
for bridging the performance gap between write and read stages of
data access from parallel file systems. We call this framework Sci-
entific Data Services, or SDS for short. This initial implementation
of SDS focuses on reorganizing previously written files into data
layouts that benefit read patterns, and transparently directs read
calls to the reorganized data. SDS follows a client-server archi-
tecture. The SDS Server manages partial or full replicas of reor-
ganized datasets and serves SDS Clients’ requests for data. The
current version of the SDS client library supports HDF5 program-
ming interface for reading data. The client library intercepts HDF5
calls using the HDF5 Virtual Object Layer (VOL) and transparently
redirects them to the reorganized data. The SDS client library also
provides a querying interface for reading part of the data based on
user-specified selective criteria. We describe the design and imple-
mentation of the SDS client-server architecture, and evaluate the
response time of the SDS Server and the performance benefits of
SDS.

General Terms
Scientific Data Services, I/O performance optimization, data reor-
ganization, data layout optimization
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SDS, Scientific Data Services, SDS Framework

1. INTRODUCTION
Large scientific simulations and experiments typically store data

to parallel file systems with a layout that gives the best performance
for writing. Research efforts are underway to write data to parallel
file systems, such as Lustre and GPFS, with the goal of achieving
peak I/O bandwidth [3, 1]. The stored data is frequently distributed
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to many users around the world for further analysis. It is common
for some of the analysis tasks to read data in a different pattern that
does not match the write pattern. For example, simulation data is
typically written out one time step at a time, while many analy-
ses read data records from a spatial region over time. Such read
operations are much slower than contiguous read operations.

Difference in read and write access patterns also exists in other
applications such as database systems. Relational database man-
agement systems improve the read performance through techniques
such as using indexes, caching frequently accessed data, and stor-
ing materialized views. These optimizations are invisible to database
users. However, with scientific data, once the data is stored to a
file system, the data becomes immutable, and users have to imple-
ment read optimizations in their own application code. The aim of
this work is to bring the automatic data management features from
database community to scientific data stored in files [14].

Reorganizing data is a proven strategy for improving read per-
formance. Methods such as elastic data reorganization (EDO) [11],
2-D layout [10], and multi-dimensional chunking [9], have been
shown to work well for specific data access patterns. Our recent
study also shows that accessing sorted or transposed data layout
speeds up reading data by more than 50X [6].

Different access patterns generally require different data orga-
nizations, creating the appropriate organization requires extensive
knowledge about the complex parallel I/O subsystems. Further-
more, managing the reorganized copies requires extensive knowl-
edge about the file system. Encapsulating these operations into an
automated automated system for the reorganized data could signif-
icantly improve the performance of data analysis tasks and acceler-
ate scientific discovery.

Ultimately, we plan to develop a scientific data management sys-
tem that achieves the peak I/O bandwidth for both write and read
operations. In this paper, we describe our first step towards that
overarching goal: the design and an initial implementation of the
Scientific Data Services (SDS) framework. We first analyze the
requirements involved in the automatic data reorganization process
and identify the key requirements for implementing a data reorgani-
zation system. We then present our initial implementation of SDS,
which is a new lightweight client-server based framework for reor-
ganizing files stored on parallel file systems. Specifically, SDS is
able to automatically identify the files that need to be reorganized
and to invoke an appropriate data reorganization algorithm (such
as sorting and/or transposing the data), and to reorganize the files
accordingly. SDS currently supports HDF5, a popular high-level
I/O interface, for reading the optimally reorganized data files. To
perform transparent redirection of HDF5 read calls, we have im-
plemented a new HDF5 Virtual Object Layer (VOL) plug-in that
intercepts the HDF5 calls and directs them to SDS organized files.



We have also introduced a new interface, called SDS Query, for
querying the data that satisfies given range conditions. The follow-
ing are the contributions of this work.

• We discussed the requirements of developing an automatic
data reorganization framework.

• We introduced the design and the implementation details of
the SDS framework.

• We evaluate the overhead of using the SDS framework and
the performance benefits with SDS.

This rest of the paper is organized as follows: we review the re-
quirements for the automatic reorganization of data in Section 2.
In Section 3, we describe the design and implementation details of
the SDS framework. Section 4 discusses the experimental set up
for evaluating the SDS framework and Section 5 presents the mea-
surements of overhead of using SDS and the resulting read perfor-
mance. Section 6 reviews related work and Section 7 concludes the
paper with a brief discussion of future work.

2. REQUIREMENTS OF AUTOMATIC RE-
ORGANIZATION

2.1 Finding optimal organization
Determining an optimal organization of data for accelerating read

operations has been explored by several research activities [10]. A
typical strategy is to identify data read patterns of analysis applica-
tions, and then to determine an organization that improves the lo-
cality and parallelism of the data access from the file system. The
reorganized data may include one or more copies of the original
data. To minimize the storage space requirement, it is important to
replicate only the most useful information. For example, if the anal-
ysis operations only need a part of a data set, then we should avoid
replicating the whole data set. In this paper, we assume the read
patterns and their corresponding optimal organizations are known.
We focus on providing a mechanism for performing a selected reor-
ganization and for directing read calls to the reorganized datasets.

2.2 Performing reorganization
Given a specific organization, to produce a reorganized copy re-

quires us to consider a few practical issues. First, an automatic re-
organization system needs the permission to read the original data
and to protect the reorganized data. Scientific data is often pro-
duced by a user or a group of users and sharing of that data is lim-
ited by the owners. A reorganization system needs to respect the
established permissions. Second, the system has to read the data
and perform the reorganization, such as sorting and transposition,
and to write the data to the file system efficiently. This step re-
quires computing power and memory resources. To perform this
automatically on machines that run jobs in a batch mode, a reor-
ganization system needs to submit batch jobs automatically. Third,
after a reorganization job is finished, the system needs to manage
the reorganized data and its associated metadata for future read re-
quests. The replicated data also needs to be protected by giving
permissions only to the owners of the data. We will describe the
implementation for performing data reorganization with our SDS
framework in Section 3 addressing these issues.

2.3 Reading reorganized data transparently
Assuming there are multiple replicas of data in different layouts

on a file system, we need to redirect each read request to a replica
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Figure 1: An Overview of SDS Framework

that gives the best read performance. This task has three challenges:
selecting a replica of data to achieve the best performance for a
read pattern, intercepting a read call, and redirecting the call to
the selected data. Finding the best performing data organization is
similar to the requirement mentioned above in Section 2.1.

A reorganization system needs to recognize the pattern of one
or a set of read calls at runtime and match the logical pattern with
physical layout that will provide the best performance. This is a
challenge we will be addressing in our future work. This paper fo-
cuses on solving the second and third challenges: intercepting read
calls and directing them to read the data layout that will provide the
best performance.

3. SCIENTIFIC DATA SERVICES
In this section, we provide an overview of the Scientific Data

Service (SDS) framework. The current implementation includes
functions to perform specified reorganizations and redirecting read
operations to appropriate copies of the data.

3.1 SDS Framework Overview
Figure 1 shows a high-level overview of the SDS framework.

SDS has two main components: the SDS Server and the SDS Client.
The SDS Server performs reorganization of the data, manages

the metadata of the reorganized datasets, and handles the requests
from SDS Clients to identify the best version of reorganized dataset
to use. The Server handles multiple SDS Clients related to different
applications, simultaneously.

The SDS Client is a light-weight library responsible for inter-
cepting data read calls and for contacting the SDS Server for the
location of data to be read. MPI (Message Passing Interface) appli-
cation processes linked with the SDS Client library read the data
directly from the parallel file system and perform any mapping
needed between the reorganized data and the read request. Our
current implementation supports reading of data through HDF5 li-
brary. HDF5 is a popular data format used by numerous scientific
applications for reading and writing multi-dimensional array data.
In addition to HDF5 read calls, the SDS Client also supports range
queries through the SDS Query interface. With this interface, ap-
plications can request to access data with an SQL like query, such
as “var1 > value1 and var2 <= value2”.

3.2 SDS Server Design and Implementation
Figure 2 shows an overview diagram of the SDS Server. The

server contains the following components: Request Dispatcher, Query
Evaluator, Reorganization Evaluator, Data Organization Recom-
mender, Data Organizer, SDS Admin Interface, and SDS Metadata
Manager. We now explain each of these components.

• The Request Dispatcher handles requests from SDS Clients
and the SDS Admin Interface. The clients send metadata re-
quests to verify whether there are any reorganized data files
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Figure 2: Design of the SDS Server and interactions among var-
ious components. Reorganization Evaluator and Data Organi-
zation Recommender are implemented partially and the other
highlighted components are implemented fully.

related to a read request and to obtain metadata of the re-
organized data files, such as the reorganized data file name,
offsets, sizes of the data to be read, etc. We have developed
an SDS Admin Interface for issuing data reorganization re-
quests. Ideally, the SDS Server should be capable of making
intelligent decisions on finding data organizations based on
known read patterns. However, at this initial stage, we use
the Admin interface for providing well-known data organi-
zation decisions to the Server. We implemented the com-
munication between the client and the server using protocol
buffers or protobuf [12], a message interchange format pro-
vided by Google. The client or the Admin Interface sends
requests comprising of file name, dataset name, query or co-
ordinates of the array variable, and the type of the request
(read, query, or reorganization) encoded into a protobuf mes-
sage. The Request Dispatcher decodes the message; based
on the type of request it dispatches the request either to the
Query Evaluator or to the Reorganization Evaluator.

• The Query Evaluator analyzes the metadata requests from
SDS Clients and performs a lookup for existing reorganized
datasets in the SDS Metadata Manager. The Metadata Man-
ager maintains relationships between the original data files
and their reorganized datasets. Typical SDS metadata in-
cludes the name, file location, group name, dataset name
for both the original and the reorganized files, and the per-
missions of the datasets. To ensure the security of the reor-
ganized file, the original file’s access permissions for both
user id and group id are stored in the SDS metadata. We
also store the read statistics including the frequencies and ac-
cess patterns for each file. We store the SDS Metadata Man-
ager using Berkeley DB. The Query Evaluator uses a thread
pool to provide concurrency while control the resource us-
age. The Query Evaluator is capable of supporting numer-
ous SDS Clients simultaneously. Each thread handles one
client request for looking up reorganized datasets, verifying
permissions, and sending the location of reorganized file to
the client. The Query Evaluator encodes the metadata using
protobuf and sends that information to the client.

• The Reorganization Evaluator is responsible for deciding
whether to reorganize data based on the frequency of ac-
cess to a dataset and for handling reorganization requests
that come from the SDS Admin Interface. It periodically
checks the SDS metadata for the most frequently accessed
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Figure 3: An overview of the SDS Client and the interactions
among various components

data files and their read patterns for deciding the need for re-
organization. The Reorganization Evaluator also utilizes the
Data Organization Recommender in selecting the best orga-
nization when multiple reorganized files are available. The
current implementation supports the requests from the SDS
Admin Interface.

• Based on known read patterns and the original layout of the
data on the file system, the Data Organization Recommender
selects the optimal layout and suggests the Reorganization
Evaluator to perform the reorganization. This component
evaluates the logical view of the read requests and physical
data layout of the data for satisfying the read requests, and
estimates the latency with various possible physical layouts.
We are currently developing a model for choosing optimal
data layout.

• The Data Reorganizer performs the selected reorganization
task. It initiates a reorganization method by generating a
batch script to run on a large computer system. We currently
support two types of reorganization methods: parallel sorting
and transposition. We have shown the benefits of these two
data organization methods for two scientific datasets [6]. The
SDS Admin Interface is designed to support other reorgani-
zation functions to be added in the future. The Data Reorga-
nizer also monitors the health of a reorganization script and
after executing the script, it stores the reorganization related
metadata into the SDS Metadata Manager database.

3.3 SDS Client design and implementation
Figure 3 shows an overview of the SDS Client architecture. The

client library supports two types of read interfaces: the HDF5 Read
API and SDS Query Interface. The Parser parses the data query
request conditions of the Query Interface and the Server Connector
communicates with the SDS Server. We implemented the current
SDS Client library using the Virtual Object Layer (VOL) of the
HDF5 library [4]. The VOL supports a mechanism for intercept-
ing HDF5 calls. Our recent paper [6] provides details of our VOL
plugin implementation.

• SDS Query Interface. The SDS Query Interface provides
users the ability to run SQL-style queries on arrays. We ex-
tend the HDF5 Read API to accommodate the querying con-
ditions on the specified dataset. The Query API supports re-
turning the count of the data elements satisfying a condition
and returning the results of the query to the application.

• The Parser verifies query requests for validity, such as whether
the requested data file and dataset exists. The Parser passes



the attributes of the query conditions to the SDS Server for
finding the location of a file organized by the requested dataset.
In our current implementation, the execution of the SDS Query
depends on whether a dataset being queried is sorted or not.
Answering queries with the help of indexes is under devel-
opment.

• The Server Connector packages either a query or a HDF5
read request into a protobuf data structure and sends it to the
SDS Server for retrieving information including the location
of the data to be read. In a parallel application using MPI, the
SDS Client with MPI Rank 0 sends the request to the SDS
server. This strategy avoids all processes of the application
asking for the same information from the SDS Server. After
the Server Connector on Rank 0 has received the metadata
information from the server, it broadcasts the information to
all other MPI processes of the application.

• The Reader issues HDF5 Read calls based on the metadata
information on the location of the dataset. We implemented
this as part of the HDF5 VOL with native HDF5 plugin,
where HDF5 data is read from the parallel file system.

• When reorganizations such as compression or transposition
to a different dimension are performed to achieve better per-
formance, the reorganized data needs to be decompressed or
transposed back when the data is returned to the application
[6]. Based on the reorganization type, the Post Processor
performs transformations to present the data in a way that
the application expects.

4. SYSTEM CONFIGURATION
We have tested our initial implementation of the SDS framework

on a Cray XE6 supercomputer at the National Energy Research Sci-
entific Computing Center (NERSC), named Hopper 1. The system
has 6, 384 compute nodes, with two 12-core AMD ’MagnyCours’
2.1 GHz processors and at least 32 GB memory per node. We used
a Lustre file system, exported as directory /scratch2, for storing
and reading data.

To have a static IP address and port number to serve the SDS
Client requests, we ran the SDS Server daemon on a Node Man-
ager (MOM) 2 of the Hopper system. The SDS Server submitted
reorganization job scripts to run on Hopper. Using the SDS Admin
Interface, we manually initiate the reorganization requests.

5. RESULTS
In this section, we evaluate the response time of the SDS Server

in handling concurrent SDS Client requests and the performance
benefit in reading data using the SDS Client library.

5.1 SDS Metadata Read Response Time
In our current deployment on Hopper, we used one SDS Server.

We measured the server response time with the number of SDS
Clients varying between 40 and 320. We also measured the time for
opening and closing HDF5 files with the same number of clients.
In both cases, each SDS Client accesses a different file. The SDS
Server reads the requested metadata related to a dataset from a
database managed by Berkeley DB and returns it to SDS Clients.
1http://www.nersc.gov/systems/
hopper-cray-xe6/
2https://www.nersc.gov/users/
computational-systems/hopper/configuration/
support-nodes/
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Figure 4: SDS Metadata Read Overhead from SDS Server

Figure 4 compares the response time of SDS with the time spent
for HDF5 Open and Close operations by the same number of clients.
The x-axis shows the number of clients and the y-axis shows the
time in seconds. Each data point refers to the average response
time with a range bar showing minimum and maximum response
times. The maximum response time of SDS is less than 0.1 sec-
onds in handling up to 200 clients and increases to ≈0.5 seconds
in responding to 320 clients. In the same figure, we also show the
time needed to perform HDF5 Open and Close operations. It is
easy to see that the time needed for SDS to look up the metadata
is considerably smaller than the time needed to open and close the
HDF5 files. On Hopper, the average number of concurrent applica-
tions is ≈250. In a production deployment, we expect the number
of applications using SDS to be close to a few 10’s and therefore
the overhead will be negligible.

5.2 Performance of Reading Reorganized Data
To show the effectiveness of using the SDS Client in reading a

reorganized dataset, we performed range queries on a large plasma
physics dataset. In [6], we have shown that sorting and querying
this dataset gives up to 50X performance benefit compared to the
traditional way of reading and sifting through the whole dataset for
a given query condition. In this paper, we use the new SDS Client
and Server implementation to verify that we are achieving similar
performance benefits. In other words, the overhead introduced by
the prototype implementation is minimal.

In these tests, we use a 2.8TB plasma particle dataset generated
by our VPIC simulation [3]. The data contains seven variables:
Energy, X, Y, Z, U‖, U⊥,1, and U⊥,2. The properties of all the
particles is written into a HDF5 file based on X, Y, and Z location.
We used the SDS Admin Interface for sorting this dataset based on
Energy values using our parallel sorting algorithm explained in [6].
We ran multiple queries on this data with different ranges of Energy
values to retrieve particles with a certain Energy threshold, which
is a typical query for analyzing this data. The traditional approach
of searching for energetic particles is a “Full Scan”, where an anal-
ysis application reads all the data variables into memory and then
selects those where particle energy satisfies a given condition. With
the SDS Query interface, we can specify the query condition and
read the sorted file only where the energy value condition applies.
Table 1 shows the query conditions, the size of data that satisfies
the condition, and the percentage of data to be read from the total
dataset. For a query of E > 1.1, ≈78% of the data needs to be
read and for E > 1.5, ≈0.3% of the data is accessed.

Figure 5 shows the performance benefit of querying data with
SDS, where the SDS Client requests the Server for the location
of an optimal layout of the original data, and reads from a sorted
dataset. The full scan of data takes the same time for all cases, as



Table 1: Size of the data extracted by each query from a 2.8TB VPIC data set
E > 1.10 E > 1.15 E > 1.20 E > 1.25 E > 1.30 E > 1.35 E > 1.40 E > 1.45 E > 1.50

Size (GB) 2213.94 904.63 319.85 131.31 63.31 35.00 21.43 13.96 9.35
Percentage(%) 78.67 32.14 11.36 4.66 2.24 1.24 0.76 0.49 0.33
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Figure 5: Reorganized file performance benefit on a 2.8TB VPIC dataset

the main cost is reading the data from disk and searching for the
data that satisfies a given condition takes a negligible time. In com-
parison, SDS reads a fraction of the data that satisfies the condition.
As the amount of data to be read becomes smaller, the performance
benefit increases. We observed 20X to 50X speed up with SDS
compared to the traditional full scan method when ≈5% or less of
the data satisfies the query condition.

6. RELATED WORK
Matching the file organization to the data access pattern can im-

prove the data access performance. For a known access pattern, one
could usually define a custom file organization. These efforts can
be performed at system-level and at file-level. Typically, through
sophisticated file allocation strategy, the system-level method min-
imizes variance of I/O servers [8], improve load balance [15, 16],
and reduce I/O contention [7]. The granularity of file-level orga-
nization includes striping, disk blocks and so on. Typical file-level
organizations include EDO [11], 1-DV[10], 1-DH [10], 2-D lay-
out [10] and multidimensional chunks [9]. In most cases, these are
static methods, where the file organization is determined when they
are written to the file systems.

Recently, the ability to query scientific data similar to that of
database management systems became an active research field. One
idea is to load scientific data into special databases, and then apply
a specially designed query language to find data of interest. An ex-
ample of such an approach is SciDB [2], which provides query and
functional languages for querying the data. In most cases, loading
scientific data into SciDB is a laborious and time consuming effort.
Furthermore, scientists wish to have access to their preferred file
format, such as HDF5 or NetCDF. Another set of efforts is focused
on building a querying system directly on the raw scientific data
files. Typical examples include FastQuery [5, 3], an array-based
querying library based on FastBit [13] and FlexQuery [17]. These
efforts do not perform reorganization of data based on patterns.

7. CONCLUSIONS AND FUTURE WORK
Scientific data once written to parallel file systems with a certain

data layout becomes immutable. The read performance of subse-
quent analysis tasks is poor when the read patterns differ from the
write patterns. In this paper, we discuss the design and implemen-
tation of an automatic data optimization framework for reorganiz-
ing and augmenting the original data. We have shown the perfor-

mance overhead of our framework is minimal and the benefit is in
the range of 2X to 50X.

We are exploring several aspects of improving the initial imple-
mentation of the framework. As mentioned in Section 2, deter-
mining an optimal organization of data automatically by matching
the logical data access patterns with physical layout of the data is
underway. Replication of the full dataset is a typical practice in
Hadoop based systems. However, replicating petabytes of scien-
tific data is impractical due to storage limitations. We are exploring
methods to limit the replication to frequently accessed data. We are
also expanding querying to complex conditions which can benefit
for indexing. We plan to use bitmap indexes computed by FastBit
technology [13].
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