
A Framework for Auto-Tuning HDF5 Applications

Babak Behzad
University of Illinois at
Urbana-Champaign

Joseph Huchette
Rice University

Huong Vu Thanh Luu
University of Illinois at
Urbana-Champaign

Ruth Aydt
The HDF Group

Surendra Byna
Lawrence Berkeley National

Laboratory

Yushu Yao
Lawrence Berkeley National

Laboratory

Quincey Koziol
The HDF Group

Prabhat
Lawrence Berkeley National

Laboratory

ABSTRACT
The modern parallel I/O stack consists of several software
layers with complex interdependencies and performance char-
acteristics. While each layer exposes tunable parameters, it
is often unclear to users how different parameter settings in-
teract with each other and affect overall I/O performance.
As a result, users often resort to default system settings,
which typically obtain poor I/O bandwidth. In this research,
we develop a benchmark guided auto-tuning framework for
tuning the HDF5, MPI-IO, and Lustre layers on produc-
tion supercomputing facilities. Our framework consists of
three main components. H5Tuner uses a control file to ad-
just I/O parameters without modifying or recompiling the
application. H5PerfCapture records performance metrics
for HDF5 and MPI-IO. H5Evolve uses a genetic algorithm
to explore the parameter space to determine well-performing
configurations. We demonstrate I/O performance results for
three HDF5 application-based benchmarks on a Sun HPC
system. All the benchmarks running on 512 MPI processes
perform 3X to 5.5X faster with the auto-tuned I/O param-
eters compared to a configuration with default system pa-
rameters.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Parallel I/O, Auto-Tuning, Performance Optimization, Par-
allel file systems

Keywords
H5Tuner, H5Evolve, H5PerfCapture, HDF5 Auto-tuning

1. INTRODUCTION
Our goal in this research is developing a benchmark-driven

auto-tuning framework for identifying appropriate HDF5,
MPI-IO, and Lustre settings on a given platform. Figure 1

Copyright is held by the author/owner(s).
HPDC’13, June 17–21, 2013, New York, NY, USA.
ACM 978-1-4503-1910-2/13/06.

shows an overview of our I/O auto-tuning framework with
H5Tuner, H5PerfCapture, and H5Evolve. H5Tuner provides
transparent parameter injection into the parallel I/O calls.
It is a shared library which can be preloaded before the
HDF5 library, prioritizing it over the native HDF5 func-
tions. H5PerfCapture, built on Darshan [1], gathers I/O
performance statistics, such as I/O time and number of bytes
read/written, and traces HDF5 calls. H5Evolve uses a ge-
netic algorithm (GA) to sample the I/O parameter space in
order to find high-performing I/O configurations.

Run experiments, log results

Executable

I/O
Parameter
Control File

H5Tuner H5PerfCapture+ +

HPC
System

Execute

Collection of
Experimental

Inputs & Results

H5Evolve

HDF5
filesHDF5

files

Start

Performance
Statistics

Application,
I/O benchmark,
Appl. I/O kernel

Adjust

Figure 1: A functional schematic of the the auto-
tuning framework

2. RESULTS
We choose three parallel I/O kernels to evaluate our auto-

tuning framework: VPIC-IO, VORPAL-IO, and GCRM-IO.
These kernels are derived from real scientific applications.
We applied the auto-tuning framework for these applica-
tions on Texas Advanced Computing Center’s Ranger sys-
tem. We ran the tests on 128 and 512-core concurrency. We
hand-selected a number of important parallel I/O parame-
ters from the HDF5 (alignment), MPI-IO (collective buffer
size, number of collective buffering nodes) and Lustre (strip
count, stripe size) software layers.

Figure 2 shows the GA evolution of overall GCRM-IO
kernel runtime using H5Evolve on 512 Ranger cores. The
x-axis shows the experiment number and the y-axis shows
the time taken to complete writing GCRM-IO data. We ob-

served a large variation in I/O time, with spikes correspond-
ing to parameter choices that performed poorly. Over time,
the GA adjusts tunable parameters to find good combina-
tions, favoring exploration around well-performing choices.
We chose the set of parameters with the smallest I/O time
in the last group of experiments (the last GA generation) as
the tuned set.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

B
e
n
ch

m
a
rk

 r
u
n
n
in

g
 t

im
e
(s

)

GA experiment ID

GCRM running time with I/O parameters set by H5Evolve
GCRM running time with default I/O parameters

Figure 2: Evolution of GCRM-IO runtime with
H5Evolve on Ranger using 512 cores

Tuned	 Parameters,	 Run/mes,	 and	 Speedup	 of	 Tuned	 over	 Default	
System	 Ranger	 (128	 Cores)	 Ranger	 (512	 Cores)	

Applica/on	 VPIC-‐IO	 GCRM-‐IO	 VORPAL-‐IO	 VPIC-‐IO	 GCRM-‐IO	 VORPAL-‐IO	

Parameter	 	 Tuned	 Sets	 of	 Parameters	 Iden/fied	 by	 H5Evolve	

Stripe	 Count	 16	 32	 16	 96	 96	 32	
Stripe	 Size/	
CB	 Buffer	 Size	 16	 MB	 16	 MB	 32	 MB	 128	 MB	 1	 MB	 8	 MB	

CB	 Nodes	 128	 96	 96	 48	 64	 64	

Alignment	
(thrsh,	 bndry)	

0	 KB,	 	
4	 KB	

0	 KB,	 	
64	 KB	

0	 KB,	 	
16	 KB	

4	 KB,	 	
16	 KB	

0	 KB,	 	
64	 KB	

0	 KB,	 	
256	 KB	

Descrip/on	 Measured	 Run/me	 (seconds)	 /	 Bandwidth	 (MB/s)	

Default	 	
Parameters	

119.91	 135.43	 179.97	 417.50	 498.21	 391.72	

258.52	 302.73	 322.27	 308.98	 327.17	 584.60	

Minimum	 57.38	 44.75	 50.76	 127.92	 	 84.29	 103.99	

Maximum	 243.88	 284.26	 357.54	 1205.89	 	 1485.36	 959.51	

Tuned	 Set	
68.11	 48.86	 53.31	 132.64	 	 89.64	 108.52	

455.14	 839.13	 1087.97	 972.55	 1818.38	 2110.21	

Speedup	 1.76x	 2.77x	 3.37x	 3.14x	 5.55x	 3.60x	

Table 1: Tuned results for Ranger using 128 cores
and 512 cores

Table 1 summarizes tuned I/O parameters, runtime, and
speedup obtained by the framework for the kernels and plat-
forms for three benchmarks using 128 and 512 cores. We
can observe speedups ranging from 1.7x to 3.4x for 128-core
scale and those ranging from 3.1x to 5.5x at 512-core scale
compared to default I/O settings.

3. RELATED WORK
Auto-tuning has been used extensively in computer sci-

ence for improving performance of computational kernels [4,
3, 5]. Our study focuses on auto-tuning I/O subsystem for
writing and reading data to a parallel file system in con-
trast to tuning a few computational kernels. Yu et al. [7]
manually characterize, tune, and optimize parallel I/O per-
formance on Lustre file system of Jaguar. Howison et al.
[2] also perform manual tuning of various benchmarks that

select parameters for HDF5, MPI-IO and Lustre parameters
on Hopper. You et al. [6] proposed an auto-tuning frame-
work based on queuing theory models for Lustre file system
on Cray XT5 systems at ORNL. They search for file system
stripe count, stripe size, I/O transfer size, and the num-
ber of I/O processes. Developing a mathematical model for
different systems can be farther from the real system and
may produce inaccurate performance results. In contrast,
our framework searches for parameters on real system using
search heuristics.

4. CONCLUSIONS
We have presented a general framework for optimizing I/O

performance of HDF5 applications. The framework is able
to search a configuration space consisting of HDF5, MPI-
IO and Lustre parameters to determine good settings. The
framework is then able to execute these settings without re-
quiring any effort from the application developer. We have
demonstrated the successful application of the framework for
three HDF5 benchmarks derived from production simulation
codes. We applied the framework on a Sun Constellation
cluster, and demonstrate convincing performance improve-
ments over system default settings. We believe that this ap-
proach holds much promise in terms of hiding the complexity
of the I/O stack and providing performance portability.

5. ACKNOWLEDGMENTS
This work is supported by the Director, Office of Sci-

ence, Office of Advanced Scientific Computing Research, of
the U.S. Department of Energy under Contract No. AC02-
05CH11231. This research used resources of the the Texas
Advanced Computing Center. The authors would like to ac-
knowledge John Shalf, Mohamad Chaarawi and Marc Snir
for their support and guidance.

6. REFERENCES
[1] P. Carns et al. Understanding and improving

computational science storage access through
continuous characterization. In 27th IEEE Conference
on Mass Storage Systems and Technologies, 2011.

[2] M. Howison et al. Tuning HDF5 for Lustre File
Systems. In Proceedings of 2010 Workshop on
Interfaces and Abstractions for Scientific Data Storage
(IASDS10), 2010.

[3] R. Vuduc, J. Demmel, and K. Yelick. Oski: A library of
automatically tuned sparse matrix kernels. In
Proceedings of SciDAC 2005, Journal of Physics:
Conference Series, 2005.

[4] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35,
2001.

[5] S. Williams et al. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In
2007 ACM/IEEE conference on Supercomputing, SC
’07, pages 38:1–38:12, 2007.

[6] H. You, Q. Liu, Z. Li, and S. Moore. The design of an
auto-tuning i/o framework on cray xt5 system.

[7] W. Yu et al. Performance characterization and
optimization of parallel i/o on the cray xt. In IPDPS
2008., pages 1 –11, april 2008.

