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ABSTRACT
The modern parallel I/O stack consists of several software
layers with complex interdependencies and performance char-
acteristics. While each layer exposes tunable parameters, it
is often unclear to users how different parameter settings in-
teract with each other and affect overall I/O performance.
As a result, users often resort to default system settings,
which typically obtain poor I/O bandwidth. In this research,
we develop a benchmark guided auto-tuning framework for
tuning the HDF5, MPI-IO, and Lustre layers on produc-
tion supercomputing facilities. Our framework consists of
three main components. H5Tuner uses a control file to ad-
just I/O parameters without modifying or recompiling the
application. H5PerfCapture records performance metrics
for HDF5 and MPI-IO. H5Evolve uses a genetic algorithm
to explore the parameter space to determine well-performing
configurations. We demonstrate I/O performance results for
three HDF5 application-based benchmarks on a Sun HPC
system. All the benchmarks running on 512 MPI processes
perform 3X to 5.5X faster with the auto-tuned I/O param-
eters compared to a configuration with default system pa-
rameters.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Parallel I/O, Auto-Tuning, Performance Optimization, Par-
allel file systems

Keywords
H5Tuner, H5Evolve, H5PerfCapture, HDF5 Auto-tuning

1. INTRODUCTION
Our goal in this research is developing a benchmark-driven

auto-tuning framework for identifying appropriate HDF5,
MPI-IO, and Lustre settings on a given platform. Figure 1
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shows an overview of our I/O auto-tuning framework with
H5Tuner, H5PerfCapture, and H5Evolve. H5Tuner provides
transparent parameter injection into the parallel I/O calls.
It is a shared library which can be preloaded before the
HDF5 library, prioritizing it over the native HDF5 func-
tions. H5PerfCapture, built on Darshan [1], gathers I/O
performance statistics, such as I/O time and number of bytes
read/written, and traces HDF5 calls. H5Evolve uses a ge-
netic algorithm (GA) to sample the I/O parameter space in
order to find high-performing I/O configurations.
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Figure 1: A functional schematic of the the auto-
tuning framework

2. RESULTS
We choose three parallel I/O kernels to evaluate our auto-

tuning framework: VPIC-IO, VORPAL-IO, and GCRM-IO.
These kernels are derived from real scientific applications.
We applied the auto-tuning framework for these applica-
tions on Texas Advanced Computing Center’s Ranger sys-
tem. We ran the tests on 128 and 512-core concurrency. We
hand-selected a number of important parallel I/O parame-
ters from the HDF5 (alignment), MPI-IO (collective buffer
size, number of collective buffering nodes) and Lustre (strip
count, stripe size) software layers.

Figure 2 shows the GA evolution of overall GCRM-IO
kernel runtime using H5Evolve on 512 Ranger cores. The
x-axis shows the experiment number and the y-axis shows
the time taken to complete writing GCRM-IO data. We ob-



served a large variation in I/O time, with spikes correspond-
ing to parameter choices that performed poorly. Over time,
the GA adjusts tunable parameters to find good combina-
tions, favoring exploration around well-performing choices.
We chose the set of parameters with the smallest I/O time
in the last group of experiments (the last GA generation) as
the tuned set.
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Figure 2: Evolution of GCRM-IO runtime with
H5Evolve on Ranger using 512 cores

Tuned	  Parameters,	  Run/mes,	  and	  Speedup	  of	  Tuned	  over	  Default	  
System	   Ranger	  (128	  Cores)	   Ranger	  (512	  Cores)	  

Applica/on	   VPIC-‐IO	   GCRM-‐IO	   VORPAL-‐IO	   VPIC-‐IO	   GCRM-‐IO	   VORPAL-‐IO	  

Parameter	  	   Tuned	  Sets	  of	  Parameters	  Iden/fied	  by	  H5Evolve	  

Stripe	  Count	   16	   32	   16	   96	   96	   32	  
Stripe	  Size/	  
CB	  Buffer	  Size	   16	  MB	   16	  MB	   32	  MB	   128	  MB	   1	  MB	   8	  MB	  

CB	  Nodes	   128	   96	   96	   48	   64	   64	  

Alignment	  
(thrsh,	  bndry)	  

0	  KB,	  	  
4	  KB	  

0	  KB,	  	  
64	  KB	  

0	  KB,	  	  
16	  KB	  

4	  KB,	  	  
16	  KB	  

0	  KB,	  	  
64	  KB	  

0	  KB,	  	  
256	  KB	  

Descrip/on	   Measured	  Run/me	  (seconds)	  /	  Bandwidth	  (MB/s)	  

Default	  	  
Parameters	  

119.91	   135.43	   179.97	   417.50	   498.21	   391.72	  

258.52	   302.73	   322.27	   308.98	   327.17	   584.60	  

Minimum	   57.38	   44.75	   50.76	   127.92	  	   84.29	   103.99	  

Maximum	   243.88	   284.26	   357.54	   1205.89	  	   1485.36	   959.51	  

Tuned	  Set	  
68.11	   48.86	   53.31	   132.64	  	   89.64	   108.52	  

455.14	   839.13	   1087.97	   972.55	   1818.38	   2110.21	  

Speedup	   1.76x	   2.77x	   3.37x	   3.14x	   5.55x	   3.60x	  

Table 1: Tuned results for Ranger using 128 cores
and 512 cores

Table 1 summarizes tuned I/O parameters, runtime, and
speedup obtained by the framework for the kernels and plat-
forms for three benchmarks using 128 and 512 cores. We
can observe speedups ranging from 1.7x to 3.4x for 128-core
scale and those ranging from 3.1x to 5.5x at 512-core scale
compared to default I/O settings.

3. RELATED WORK
Auto-tuning has been used extensively in computer sci-

ence for improving performance of computational kernels [4,
3, 5]. Our study focuses on auto-tuning I/O subsystem for
writing and reading data to a parallel file system in con-
trast to tuning a few computational kernels. Yu et al. [7]
manually characterize, tune, and optimize parallel I/O per-
formance on Lustre file system of Jaguar. Howison et al.
[2] also perform manual tuning of various benchmarks that

select parameters for HDF5, MPI-IO and Lustre parameters
on Hopper. You et al. [6] proposed an auto-tuning frame-
work based on queuing theory models for Lustre file system
on Cray XT5 systems at ORNL. They search for file system
stripe count, stripe size, I/O transfer size, and the num-
ber of I/O processes. Developing a mathematical model for
different systems can be farther from the real system and
may produce inaccurate performance results. In contrast,
our framework searches for parameters on real system using
search heuristics.

4. CONCLUSIONS
We have presented a general framework for optimizing I/O

performance of HDF5 applications. The framework is able
to search a configuration space consisting of HDF5, MPI-
IO and Lustre parameters to determine good settings. The
framework is then able to execute these settings without re-
quiring any effort from the application developer. We have
demonstrated the successful application of the framework for
three HDF5 benchmarks derived from production simulation
codes. We applied the framework on a Sun Constellation
cluster, and demonstrate convincing performance improve-
ments over system default settings. We believe that this ap-
proach holds much promise in terms of hiding the complexity
of the I/O stack and providing performance portability.
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