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Abstract—Data producers typically optimize the layout of data
files to minimize the write time. In most cases, data analysis tasks
read these files in access patterns different from the write patterns
causing poor read performance. In this paper, we introduce
Scientific Data Services (SDS), a framework for bridging the
performance gap between writing and reading scientific data.
SDS reorganizes data to match the read patterns of analysis
tasks and enables transparent data reads from the reorganized
data. We implemented a HDF5 Virtual Object Layer (VOL)
plugin to redirect the HDF5 dataset read calls to the reorganized
data. To demonstrate the effectiveness of SDS, we applied two
parallel data organization techniques: a sort-based organization
on a plasma physics data and a transpose-based organization on
mass spectrometry imaging data. We also extended the HDF5
data access API to allow selection of data based on their values
through a query interface, called SDS Query. We evaluated
the execution time in accessing various subsets of data through
existing HDF5 Read API and SDS Query. We showed that reading
the reorganized data using SDS is up to 55X faster than reading
the original data.

I. INTRODUCTION

Large-scale data analysis is key to scientific discoveries
today [2]. A recent example is the confirmation of the existence
of Higgs boson - the “God particle,” where petabytes of
high-energy collision data from Large Hadron Collider (LHC)
experiment was collected and analyzed [1]. Another example
is the Square Kilometre Array (SKA), designed to survey the
sky ten thousand times faster than ever before, will produce in
excess of one exabyte of raw data per day [11]. These large
data sets are stored in files and have to be read from disk to
perform analysis tasks. Depending on the amount of data to
be analyzed and how the data is organized on file systems,
the reading time dominates the total analysis time. Therefore,
improving the performance of reading data is critical to data
intensive scientific applications [16].

In most scientific analyses, data read performance lags sig-
nificantly behind write performance because the organization
of data files are determined by the data producers who are
more concerned about writing as fast as possible. For example,
in a plasma physics application, the simulation code VPIC
(described in Section II-B) [6] writes out data in the order
as it is stored in memory, while a common analysis operation
of that data is to find the characteristics of highly energetic
particles with their energy above a given threshold. The data
records of these high energy particles are scattered around the
data file causing poor read performance.
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Fig. 1. Speedup in accessing a reorganized data set compared with accessing
a raw data set from a single disk. A subset of ≈561 MB data from plasma
physics simulation is used in this test. The reorganized data set is sorted
according to energy of the particles.

Reorganizing data files for improving read performance
is a desriable strategy. Fig. 1 shows a motivating example,
where the performance speedup in accessing a VPIC dataset
organized on a single disk to match the read pattern. In this
case, we sorted the data records according to energy of the
particles and read the high energy particles from the disk.
The speedup shown is the ratio of the time needed to extract
the high energy particle data from the original dataset to the
time needed to extract the same data from the sorted dataset.
When a small fraction of the data records are read, using the
reorganized data is about 30X faster than using the original
data. Even when a large fraction of data is accessed, reading
from the sorted dataset is faster because of avoiding to sift
through the data in memory.

Many research efforts [22], [21], [18], [3], [14] explored
optimizing data organization by deriving an optimal file layout
strategy for a certain access pattern. However, analysis tasks
have to be aware of the reorganized layout to read the data.
Moreover, read access patterns to a single file may vary
over time and there is no universal data organization that is
effective for all read access patterns. Storing data manually
in different organizations based on read patterns and chang-
ing analysis codes for reading the newly organized data is
impractical. An automatic framework that identifies dominant
read patterns and reorganizes data automatically is needed.
Towards that goal, we are developing a system to enable
dynamic reorganization of the data based on established data
read patterns. This paper introduces the first step with the
Scientific Data Services (SDS) framework. The SDS is a client-
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server architecture implemented using the new Virtual Object
Layer (VOL) of HDF5. Based on the access patterns of two
data intensive applications: VPIC and OpenMSI, we designed
and implemented parallel sorting-based and parallel transpose-
based reorganizations. Using the VOL, analysis tasks read data
transparently. The key contributions of this work include:

• Design of the Scientific Data Service (SDS) frame-
work to enable data reorganization and transparent
data accesses.

• Design and implementation of a high-level parallel
querying API to perform value-based queries for a
target data set.

• Implementation a HDF5 VOL plug-in to transparently
read data using HDF5 read API.

• Implementation of parallel sorting-based and
transpose-based reorganization algorithms.

This rest of the paper is organized as follows: Section II
discusses two science use cases where reorganization of data
is beneficial for analysis. Section III introduces the SDS
architecture and its components. In that section, we also ex-
plain sorting-based and transpose-based data reorganizations.
Section IV discusses experimental platform. Section V presents
the performance results. In Section VI, we review related work
and in Section VII, we provide concluding remarks and future
directions.

II. HDF5 VOL AND ANALYSIS USE CASES

In this section, we briefly discuss the HDF5 VOL and the
two use cases from real scientific applications we used in this
study.

A. HDF5 Virtual Object Layer (VOL)

HDF5 is a popular data format library [10] used by many
scientific applications around the world. VOL is a new abstrac-
tion layer internal to the HDF5 data model, right below the
public HDF5 API [7]. The VOL intercepts all HDF5 API calls
that could potentially touch the data in a file and forward those
calls to a plugin object driver. The VOL provides flexibility to
store or read data with the use of custom plugins. For example,
a plugin could store data objects in a different file format from
the native HDF5 file format, or in a different file layout from
the original organization. In this study, we develop a plugin to
read data from optimally reorganized data instead of originally
stored organization to achieve better performance.

B. Use case: Vector Particle-in-Cell (VPIC) Data Analysis

Our recent VPIC simulation modeled magnetic reconnec-
tion, an important mechanism of space weather [6], by tracking
two trillion particles on the Hopper supercomputer at National
Energy Research Scientific Computing Center (NERSC). Par-
ticle properties of interest in this simulation include spatial
locations in x,y, and z dimensions, momentum in the three
dimensions, and energy. The data size of each particle is
28 bytes. The number of data records in a snapshot of the
simulation gradually increases from 1 trillion to about 1.5
trillion and the data file size grows from 30TB to 42TB. In
this study, we use a subset of these data files, where the energy

value of particles is greater than 1.1. The sizes of subset data
files are between 2.5 TB and 5 TB per time step.

One of the analysis tasks of this data is to visualize the
high energy particles. The domain scientists identify different
thresholds for high energy values. Visualizing these particles
requires reading energy values and global coordinate datasets
in three dimensions. A full scan of the energy data is needed
to identify the particles with energy values above a given
threshold, i.e. multiple full scans are needed for multiple
threshold value searches. The positions of the high energy
particles are then read from data files. Because the high energy
particles are spread out in the data files, the function to extract
the selected x, y, and z values are effectively reading through
all the data records is extremely slow.

C. Use case: Mass Spectrometry Imaging Data Analysis

Mass spectrometry imaging (Mass Spec) [17] is a key
technology in various biological science applications, such as
understanding metabolism. Mass spec analysis visualizes the
distribution of molecules at each location within a sample,
which is reconstructed as a molecular image showing the
localization and abundance of specific molecules (e.g. lipids,
proteins, small metabolites, etc.) comprising a sample. The
size of an image collected by mass spec devices currently
ranges from 10 GB to 50 GB. This size is expected to
grow to hundreds of gigabytes as the resolution of mass
spec instruments grows. Each dataset contains hundreds of
thousands of these images, making the overall size of a dataset
multiple terabytes.

An analysis of mass spec dataset requires accessing a
subset of data. The access can be denoted as a triple [X, Y,
m/z], where X and Y are spatial positions, and m/z is the mass-
to-charge ratio. In a three dimensional data (with 100,000 2D
images), the analysis application may access a full spectrum
of certain coordination (e.g. [4, 4, :]) to compute the average
spectrum. Another common access pattern is to access a range
of consecutive images (e.g. [:,:,10000:20000]). In the first case,
the row-major layout is employed by most I/O libraries, such
as HDF5, can deliver a good performance. But, once the file
is stored in row-major layout, accessing of consecutive images
will perform a large number of small and non-contiguous disk
accesses that typically results in poor performance.

In this study, we focus on reorganizing the above men-
tioned datasets to match the read patterns and to expedite
analysis tasks.

III. SCIENTIFIC DATA SERVICES

In this section, we introduce the Scientific Data Services
(SDS) framework, explain the main components, and discuss
the current implementation of data organizations.

A. Overview of SDS framework

The goals of SDS is to manage reorganization of data
that benefits various read access patterns and to improve data
reading speeds during analysis. Fig. 2 shows an overview of the
SDS framework. The main components of the framework are
SDS Server and SDS Client. The SDS server is responsible for
reorganizing data, for managing metadata of the reorganized
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Fig. 2. An Overview of SDS Framework. The main components are SDS
Query API, SDS Client, and SDS Server. We currently implement two data
organizations using Sorter and Transposer.

and original datasets, and for directing read requests to the
optimized reorganized datasets. Current implementation of the
SDS Server performs data reorganization on previously written
data files and manages metadata related to the location of
original and reorganized data files. The API for using SDS is
simply HDF5 public API for accessing datasets [10]. SDS also
provides a query API, called SDS Query, for performing value
based queries on datasets. The SDS client, built as a HDF5
VOL plugin, intercepts HDF5 API calls for reading datasets
and then for redirecting them to reorganized datasets that will
give better performance. The SDS Client also processes queries
coming from the SDS Query API and contacts the server for
implementing the queries. The API and the SDS clients are
packaged as libraries that applications can dynamically link
and run. In this paper, we focus on decribing the implemen-
tation of a basic skeleton of the SDS framework and the two
data reorganization tools, namely, Sorter and Transposer. The
Sorter orders datasets based on a specific variable and the
Transposer transposes a 3D dataset to improve the contiguity of
read accesses. Current implementation calls the data organizer
functions with the use of a driver function that reorganizes
data in offline fashion. In future, we will move the driver
function into the SDS Server to automate selection of optimal
organization based on read patterns and to execute the selected
reorganization.

B. SDS VOL Plugin and SDS Query API

As many scientific applications use HDF5 API to store
and access data, the SDS framework supports HDF5 API for
reading data from HDF5 files. The H5Dread function sup-
ports reading all or part of a dataset. In addition to supporting
the HDF5 read API, we add a querying interface to select
data satisfying certain range conditions. Even though scientific
data sets are large, the essential information is often contained
in a relatively small number of data records. For example,
in climate data of petabytes in size (1015 bytes), the critical

information related to important events, such as hurricanes,
might occupy only a few gigabytes (109 bytes). Often these
events can be determined through a set of conditions on
variables such as location, velocity, and intensity. Using the
querying interface, users can specify these conditions and
retrieve the data records satisfying the conditions. Compared
to the common option of reading all data records into memory
and then filtering in memory, SDS could perform the selection
operations using indexing techniques and significantly reduce
the time needed. Our current implementation searches for
one variable with a query condition, such as “value1 <
energy < value2”.

The SDS Query Interface is implemented as a function
called SDSQuery that executes using parallel computing
resources. An example of applying SDSQuery on a VPIC
dataset is shown in Fig 3, where two processes call SDSQuery
with same query parameter “Energy > 1.4” at the same
time. The application provides SDSQuery with the dataset id
along with the query condition. After being evaluated by the
Query Processor of the SDS Client, SDSQuery returns to each
process the offset and the size of data records it is responsible
for reading in a sorted dataset. Note that the sorted dataset is
a reorganized dataset by the Sorter component. The returned
values of the SDSQuery are then used for reading the data.

C. SDS Server and Reorganization

The SDS Server performs data reorganizations and man-
ages metadata for the reorganized datasets. We have imple-
mented a sorting-based organization and a transpose-based
organization of data. These two organizations support the two
use cases mentioned in Section II.

1) Parallel-Sorting-based Reorganization.: A common
data access in scientific applications such as VPIC is to read
multiple variables, where one of the variable’s values are
continuous in an ascending or in a descending order. However,
these continuous values may be scattered around the whole
dataset. To improve the performance of this read operation, an
approach is to sort the data in a data set and then store the
sorted data in a new file. Note that this strategy is widely used
in relational database management systems, where a data table
is typically ordered according to a primary key.

To sort the data, we implemented a parallel sorting al-
gorithm based on the classic Sample Sorting algorithm [13]
using MPI. In this algorithm, the whole dataset to be sorted
is partitioned into chunks and assigned to MPI processes.
Each process sorts its own chunk of data using the quick sort
algorithm. Each process then sends some samples to the root
process. The root process decides pivots from all samples and
broadcasts the pivots to all processes. Based on the pivots, each
process then exchanges data using all-to-all communication.
In order to avoid the congestion on a single node, only half
processes send their data and the other half processes receive
the data at any given time. Finally, each process sorts its own
data again and writes the sorted data to a HDF5 file. We
also store the minimum and maximum values and starting and
ending offsets of each chuck to help query processing later.

2) Transpose-based Reorganization.: A multi-dimensional
array in HDF5 is typically stored with the row-major ordering.
Given a 3D array with dimensions X, Y, and Z, X is the slowest



Process 0
...
global_query = "Energy > 1.4";
file_id = H5Fopen("filename.h5", ...);
dset_id = H5Dopen(file_id, "datasetname", ...);
space_id = H5Dget_space(dset_id)
SDSQuery(dset_id, global_query, &my_size, &my_offset...);
H5Sselect_hyperslab(space_id,..., my_offset, my_size,...);
buf = malloc(my_size * sizeof(data type));
H5Dread(dset_id,..., buf);
...

Process 1
...
global_query = "Energy > 1.4";
file_id = H5Fopen("filename.h5", ...);
dset_id = H5Dopen(file_id, "datasetname", ...);
space_id = H5Dget_space(dset_id)
SDSQuery(dset_id, global_query, &my_size, &my_offset...);
H5Sselect_hyperslab(space_id,..., my_offset, my_size,...);
buf = malloc(my_size * sizeof(data type));
H5Dread(dset_id,..., buf);
...

Fig. 3. An example of SDSQuery with two processes executing in parallel using the SDS Query API.

Fig. 4. An example of transposing a 3D array with four processes.

varying dimension and Z is the fastest varying dimension. In
this organization, all values with the same X-coordinate (also
known as an X plane) are stored contiguously in the data file.
Similarly, a line with the same X and Y coordinates (an X-
Y line) is contiguous in the file. This layout is optimal for
the accessing the X planes and X-Y lines, however, accessing
other subsets produce non-contiguous accesses of the data file.
For example, accessing a continuous range of image from the
mass spec data (i.e., the last dimension of a 3D array) always
has poor performance. In order to improve the performance
of such noncontiguous access, one method is to transpose the
array.

Fig. 4 gives an example of transposing a 3D array by
swapping the X and Z dimensions. This example involves four
process (P0, P1, P2, and P3). To perform contiguous reads on
the original array, we partition the file along the X-axis, as
shown in the left part of Fig. 4. Then, all processes use all-
to-all communication to exchange their data. After that, the
chunks on all processes should be a partition along Z-axis,
as shown in the middle of Fig. 4. The transpose algorithm
uses the fast memory-to-memory exchanges to allow both input
and output operations to be large contiguous I/O operations,
and therefore reducing the time needed for the transpose-
based reorganization. Finally, each process apply a local matrix
transpose between X and Z, which makes the access along Z
continuous.

D. SDS Client

The SDS Client contains methods to process the API calls
from HDF5 dataset access API and SDS Query API. To
process the HDF5 calls, we have developed a HDF5 VOL
plugin. We added SDS Query API functions to HDF5 API to
perform value-based selection in HDF5 datasets and extended
the VOL plugin to handle data queries.

Fig. 5 shows common interactions between an SDS Client
and the Server. In the current implementation, the Server
performs data reorganizations offline based on user directions.
The SDS Client extracts the details of a read function call.

SDS	  Client	  
SDS	  Server	  

Extract	  I/O	  read	  
pa.ern	  

Inquire	  SDS	  Server	  for	  the	  best	  data	  set	  to	  read	  
IF	  SDS	  reorganized	  data	  that	  fits	  the	  access	  
pa6ern	  exists	  THEN	  
	  	  	  	  	  	  Reorganized	  data	  loca9on	  
ELSE	  
	  	  	  	  	  	  Null	  

Read	  original	  data	  or	  SDS	  
reorganized	  data	  

Perform	  data	  
reorganizaFons	  offline	  

Fig. 5. Interactions between an SDS Client and the SDS Server

The details include the name of the file, the id of the HDF5
dataset, and the query condition or the offsets for the data
to be read. It then contacts the SDS Server to obtain the
metadata of the dataset. If there exists an optimal reorganized
dataset that can give the better performance than accessing the
original file, the Server sends the reorganized data location. If
an optimal reorganized file is not available, the Server returns a
NULL pointer. Upon receiving the metadata, the Client reads
the requested data either from the original file or from the
reorganized data set.

1) SDS Query Processor: The first task of the SDS query
processor is to parse the query string received from the SDS
Query interface. Then, SDS query will send the extracted
information to the SDS server. Based on the response from
SDS server, SDS Query Processor decides whether to take
more actions about the query. For example, in the case of
parallel sorting-based reorganization, SDS stores the minimum
and maximum values of each chunk and their corresponding
offsets as part of the SDS metadata. When a query requests
for a sorted variable, the metadata could be used to locate the
actual offsets and the data size of the value satisfying the query.
Furthermore, the SDS Query Processor will partition these
values among the active processes to provide load-balancing.
With the parallel transpose based reorganization, SDS Query
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Fig. 6. Internal interactions in SDS VOL Plug-in

Processor will choose the version that requires the least amount
of I/O time based on the ordering of the dimensions.

2) SDS VOL Plugin: We employ the HDF5 VOL to for-
ward the data accesses to the SDS server. As Fig. 6 shows,
our SDS VOL plugin still relies on HDF5 native functions
to read the data values from the reorganized or the original
datasets. The key operation performed by our plugin is to
determine if an effective organization of data is available. If it
exists, the plugin reads the data from the alternative location.
Otherwise, the file access request is passed to the HDF5 native
VOL plugin. In some cases, additional post processing may
be required before the data is returned to user memory. For
example, when working with the transposed data, there may
be a need to reshuffle the dimensions of the data in memory
so that the dimensions in the output are in the same order as
in the original data.

IV. SYSTEM CONFIGURATION

We have conducted all our experiments on the NERSC
Cray XE6 supercomputing system, named Hopper 1. The
system has 6, 384 compute nodes, with two 12-core AMD
‘MagnyCours’ 2.1 GHz processors and at least 32 GB memory
per node. All experiments used 16 cores on each node, and at
most 16000 cores and 1200 cores are employed to perform
the parallel data reorganization and value-based query tests,
respectively.

We used a Lustre file system, exported as directory
/scratch2, for storing and reading data file. The file system
consists of 13 LSI 7900 disk controllers. Each disk controller
is served by two I/O servers, called OSSs (Object Storage
Servers), and each OSS hosts six OSTs (Object Storage
Target). There is a total of 156 OSTs, which can be considered
as a software abstraction of a physical disk. The data files used
in the following tests are striped across at most 144 OSTs
instead of the default stripe count of 2 OSTs. The striping
size for each file is 1MB.

1http://www.nersc.gov/systems/hopper-cray-xe6/

V. RESULTS

As explained in Sections II-B and II-C, an analysis of
VPIC data involves querying for high energy particles and an
analysis of mass spec data involves accessing various subsets
of a full dataset. In this section, we describe the data used
for our experiments, compare performance of accessing data
with SDS with that of the original HDF5 calls, and evaluate
scaling behavior of SDS performance for both use cases. We
also present the costs of reorganizing data; however, these
reorganizations are performed offline and do not affect data
analysis performance.

A. Evaluation of SDS Query Processing

1) VPIC Data: We have used five VPIC data files that
represent the data from five time steps of our VPIC simulation.
The size of the five HDF5 files are 2.5TB, 2.9TB, 3.3TB,
4.0TB, and 5.0TB. Each file contains seven variables: Energy,
X, Y, Z, U‖, U⊥,1, and U⊥,2, among which Energy, X, Y, and Z
are frequently used together. Analysis of high energy particles
requires reading the X, Y, and Z coordinates along with the
Energy values. The remaining three variables are not needed
for the analysis we tested. To query high energy particles with
a given threshold, SDS created partial replica of the original
dataset containing the required four variables sorted based on
the Energy values.

TABLE I. SIZE OF THE DATA SATISFYING EACH QUERY IN A 5TB
VPIC DATASET

Query Energy < 1.15 1.15 < Energy < 1.4 Energy > 1.4
Size(GB) 1927.00 883.25 2.30
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Fig. 7. Performance comparison between full-scan and SDSQuery with a
5TB VPIC data set

2) Performance of SDS Query Processing: We evaluate
performance of querying for data that satisfies a given con-
dition on Energy variable of the 5 TB VPIC data file. We
evaluate three queries: “Energy <1.15”, “Energy > 1.4”, and
“1.15 < Energy < 1.4”. The amount of data accessed in each
query is shown in Table I. We compare the time for retrieving
data for all four variables from the original data file to the
time for executing an equivalent query using SDS that reads
a reorganized data file. The former approach reads all data
related to the four variables into memory and then searches
for the desired data, where the Energy value meets the given
threshold. In SDS, the query is expressed using the SDS Query



API and the SDS Server sends the coordinates of data where
the threshold is met to the Client, and the Client simply reads
contiguous chunks of data from the sorted data file.

Fig. 7 compares the time for reading from the original
data, labeled ‘Full Scan’, and that for executing SDSQuery.
Both approaches use 8,000 MPI processes, where each MPI
process is mapped to a CPU core. The speedups with accessing
the reorganized dataset with SDSQuery are: 1.1X, 2.4X, and
24X, respectively, for the three queries. The full scan approach
roughly takes the same amount of time in all three cases. The
SDSQuery execution takes significantly small amount of time
in reading the smallest fraction of data. Overall, we observe
that SDSQuery is beneficial in all cases. The performance
benefit is significantly higher in accessing small fractions of
the data because SDS can directly read a fraction of data that
satisfies query conditions.

3) Scalability of SDSQuery: To evaluate the scalability
of querying functionality of SDS and the overhead of query
processing, we ran a query with the same condition using
different number of CPU cores. Specifically, we use the query
“1.15 < Energy < 1.4” and the 2.5TB dataset for this
experiment. The size of the data that needs to be read for
this query is 395 GB (i.e. 30% of the dataset). We scaled
the number of cores to run the SDSQuery from 400 to
1200, with 200 increments. Fig. 8 shows that the overhead
of SDSQuery and the total time in retrieving the data that
satisfies the condition. We can observe that as the number
of cores increases, the time to read data decreases. We also
observe that the query processing time is a small fraction of the
overall time, i.e. the overhead of SDS framework is negligible.
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Fig. 8. Scalability of SDS with the “1.15 < Energy < 1.4” query on
a sorted 2.5TB VPIC file

4) Cost of sorting-based reorganization: For running the
queries mentioned in the above results, SDS needs the data to
be sorted. While the cost of reorganization is not a significant
factor during analysis because SDS performs reorganization
of data offline, for evaluation purposes, we tested the cost of
sorting-based reorganization explained in Section III-C with
five VPIC files. The sizes of these file are 2.5TB, 2.9TB,
3.3TB, 4.0TB, and 5.0TB. The experimental results are shown
in Fig. 9. We split the total time to show the time to read data
from the original file, perform sorting (Exchange), write the
new data set, and other costs including MPI related overhead.
We can easily identify that the sorting based reorganization
algorithm spends most time in exchanging the data among
processes. A major reason for this overhead is that even our
reorganization algorithm sorts only one variable (Energy), the

VPIC analysis application needs to extract the certain Energy
range with their corresponding locations (X, Y, and Z). Hence,
in the data sorting process, MPI processes need exchange three
extra variables. While we see that the parallel sorting algorithm
works fine as the amount of data increases with different data
sets, exchange of four variables has the most overhead. As
this reorganization is executed offline, this overhead does not
affect analysis applications. We are exploring other strategies
for reducing the SDS Server overhead in performing sorting.
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Fig. 9. Execution time of parallel sort-based reorganization on five VPIC
datasets

B. Performance of Accessing Array Data

To compare performance of accessing portions of arrays,
we used random 3D array data stored in the HDF5 format,
resembling images from mass spec experiment explained in
Section II-C. We used three datasets to evaluate the perfor-
mance of SDS. Their sizes are 4GB, 746GB, and 1.8TB. The
data required for the mass spec analysis tasks are various
images with specified charge mass ratios. This access pattern
can be expressed as [:, :,M : N ], where the first two colons
mean all range of spatial values X and Y separately and M
and N means the range of m/z.
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Fig. 10. Read performance of a original mass spec dataset vs. that of a SDS
reorganized dataset

Figure 10 compares the time for reading the SDS reorga-
nized file with that for reading the original file with three dif-
ferent image accessing patterns: [:,:,659:789] , [:,:,4569:5789],
and [:,:, 20000:30000]. For this comparison, we used the
dataset of size 746GB. SDS uses a transpose-based reorganized
file of the same size and reshuffles the accessed data in memory
before the analysis application uses the data. As the figure
shows, the time spent on accessing each image range from



the original file is much longer than the time of accessing the
same image range from the SDS reorganized file. The main
difference in performance is caused by non-contiguous disk
accesses in reading data from the original file that takes longer
time, whereas SDS reads contiguous chunks of data from SDS
reorganized file more efficiently.

1) Scalability of Accessing Reorganized Array Data: We
evaluate the performance of reading reorganized mass spec
dataset by using different number of cores varying from 50 to
125 CPU cores. We used the 746GB file in this experiment
and tested accessing a fixed image with coordinates of [:, :,
20000:30000].

Fig. 11 shows that in all cases, the overhead of SDS
VOL implementation is a fraction of a millisecond, which is
negligible. Also, with increasing the number client processes,
the time used to read the target data from the file decreases
gradually. This proves that the overhead of SDS VOL does
not have any impact on analysis performance and the benefits
with SDS reorganization is immense.
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Fig. 11. Scalability of accessing array ranges with SDS. Access pattern of
this test is [:, :, 20000:30000] from an mass spec data file with a size of 746
GB

2) Overhead of transpose-based reorganization: We show
the overhead of transpose-based reorganization although this
overhead does not affect analysis performance. The overhead
of transposing a 3D array includes time for reading data, for
exchanging data, for transposing subset of data, and for writing
results into SDS reorganized file. We used various files to
perform transpose, where the sizes of files range from 4 GB to
1.8 TB. Fig. 12 shows that the time to perform transpose-based
reorganization of a 1.8T array takes less than 500 seconds.
The time needed for exchanging data in transposing operation
is again a dominant portion of the total execution time along
with that to read data to memory. As SDS Server performs
these reorganizations offline, the analysis applications benefit
from the SDS framework.

VI. RELATED WORK

There are several ongoing efforts to reorganize file layout
to improve I/O performance. We classify them into two cate-
gories: system-level file reorganization [25], [12] and file-level
reorganization [21], [22]. The system-level file reorganization
reallocates multiple files among available I/O servers. The tar-
get of the system-level reallocation includes reducing variance
of I/O servers [12], improving load balance [25], [26] and
enhancing energy efficiency [24]. The file-level reorganization
can be further divided into two categories: static and dynamic.
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Fig. 12. Time spent for transpose-based reorganization with three mass spec
data sets.

The example of static file-level reorganizations are EDO [22]
and 2-D layout [21] and multidimensional chunks [18]. PLFS
[3] improves checkpointing by writing data to separate files
while presenting to user a coherent view of the checkpoint
as a single file. Generally, these efforts focus on deriving the
optimal layout strategy for specific access patterns, i.e., they
work well for applications with fixed access patterns. However,
different scientific applications typically have different access
characteristics, and these characteristics tend to vary over time
[9], [20]. Therefore, it is necessary to reorganize the files
dynamically. Moreover, the reorganization and the subsequent
data read operations require knowledge of the file layout. With
SDS framework, we target performing data reorganization
and data reads from replicated datasets that give improved
performance transparently. This paper describes HDF5 VOL-
based data read operations.

Querying data with conditions is a common data access
method in database management systems. However, usage of
databases in managing large scientific data is scarce because
scientific datasets do not easily fit into the relational data
model. Scientific datasets typically fit into array data model. A
recent attempt for using array model in database management
systems is SciDB [4]. SciDB requires the scientific data to
be loaded into the database and then use query languages,
called Array Query Language (AQL) and Array Functional
Language (AFL), to access data. Instead of developing a new
database system, there are also efforts to modify file systems
with high-level semantics [5], [15], [19]. While these efforts
are likely to be accepted by a few scientific communities, we
believe that the array data model needs to be supported as
a first class citizen instead of being supported through layers
of metadata. We have recently developed FastQuery [8], [6],
an array-based querying library based on FastBit [23], that
indexes and queries data in parallel and works with array
data in scientific data formats such as HDF5 and NetCDF.
SDS is the next step towards incorporating decision making
on reorganizing, indexing, and querying data transparently.

VII. CONCLUSIONS AND FUTURE WORK

The majority of the scientific data files are organized by
the data producers who are more concerned about writing as
fast as possible. Their organizations are typically not well-
suited for analysis operations. The paper presents the first
step of Scientific Data Services (SDS), a framework aiming
to combine the merits of database management systems and



parallel file systems without pushing the burden involved in
either systems on to users. The current implementation of
SDS reorganizes files based on its varying access pattern for
expediting the read operations. The SDS is based on a client-
server architecture currently using the new Virtual Object
Layer (VOL) of HDF5. Based on the access patterns of two
data-intensive applications: VPIC and Mass Spec Imaging, we
designed and implemented parallel sorting-based and parallel
transpose-based reorganizations under the SDS framework.
Furthermore, we designed and implemented a value based
query interface for SDS. Experimental results demonstrate that
reading from reorganized files can increase the performance
of accessing VPIC and mass spec data up to 23X and 55X,
respectively.

Our ongoing efforts include developing an on-line access
pattern detection method to enable SDS to make decisions for
reorganizing files and for accessing the relevant reorganized
files automatically and transparently. We are also working on
providing a general interface to support different reorgani-
zation methods thus efficient data layout optimizations can
be plugged in to SDS by the high performance computing
community.
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