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Abstract—Modern petascale applications can present a variety
of configuration, runtime, and data management challenges when
run at scale. In this paper, we describe our experiences in
running VPIC, a large-scale plasma physics simulation, on the
NERSC production Cray XE6 system Hopper. The simulation
ran on 120,000 cores using ∼80% of computing resources, 90%
of the available memory on each node and 50% of the Lustre
scratch file system. Over two trillion particles were simulated
for 23,000 timesteps, and 10 one-trillion particle dumps, each
ranging between 30 and 42 TB, were written to HDF5 files at a
sustained rate of ∼27 GB/s. To the best of our knowledge, this job
represents the largest I/O undertaken by a NERSC application
and the largest collective writes to single HDF5 files. We outline
several obstacles that we overcame in the process of completing
this run, and list lessons learned that are of potential interest to
HPC practitioners.

I. INTRODUCTION

Running applications on petascale machines at full scale
can present a variety of challenges. When applications use
a significant portion of a supercomputing system, they push
the system’s computation, memory, network, and parallel I/O
resources to their limits. Such pressure on various subsys-
tems can cause configuration, runtime, and data management
challenges. Successful execution of these applications requires
careful planning and tuning.

In this paper we describe our experiences in running VPIC,
a large-scale plasma physics application on the Hopper system
[1], a Cray XE6 with over 153,000 cores installed at the
National Energy Research Scientific Computing (NERSC)
Center. The application simulates magnetic reconnection with
two trillion particles. It uses 120,000 cores on 5,000 nodes
of Hopper. The simulation uses ∼29 GB of the available 32
GB memory on each node with a total of ∼142 TB memory
footprint. The VPIC simulation dumps particle data ranging
between 30 TB and 42 TB per time step at an interval of
∼2,000 time steps. The total amount of data produced in this
simulation was ∼350 TB. The simulation also produced an-
other ∼140 TB of checkpoint data. In total, the data produced
here occupied 50% of the /scratch2 Lustre file system on
Hopper.

We discuss the following list of lessons learned in running
the simulation.

1) Collective writes to a single shared HDF5 file can work
as well as file-per-process writes. We demonstrate that
collective writes from 20,000 MPI processes to a single,

shared ∼40 TB HDF5 file using collective buffering can
achieve a sustained performance of 27 GB/s on a Lustre
file system. The peak performance of the system is ∼35
GB/s, which is achieved by our code for a substantial
fraction of the runtime. This performed as well as the
strategy where each process wrote a separate file (i.e. a
total of 20,000 files).

2) Tuning multiple layers of a parallel I/O subsystem
is a challenging task. The Cray XE6 parallel I/O stack
consists of various levels of software libraries (HDF5,
MPI-IO) and Lustre file system components. The libraries
and file system offer various tuning parameters; which
need to be set appropriately to obtain best system per-
formance. We designed a benchmark kernel to explore
this space manually and devised optimal configurations
for our large scale VPIC run. Furthermore, we modified
the HDF5 library to implement an important optimization
(see Section III-B). In this paper, we show performance
improvement obtained with HDF5 and Lustre file system
optimizations.

3) Advance verification of filesystem hardware is im-
portant for obtaining peak performance. Our initial
execution of VPIC achieved only 65% of Lustre peak
performance. With the use of Lustre Monitoring Toolkit
(LMT) [8], [18], we pinpointed the problem to a small
set of slow OSTs, which were exhibiting degraded per-
formance. We temporarily excluded these OSTs from our
tests, and were able to demonstrate ∼80% of the peak I/O
rates. Advance verification for slow OSTs is critical for
avoiding performance pitfalls.

4) Advance verification of available resources for
memory-intensive applications is important. Unre-
leased memory from previous applications could cause
out-of-memory errors. Since the simulation requires 90%
of the memory on each node, we routinely verified that
each node had sufficient memory before undertaking the
full-scale run.

5) Scalable tools are required for diagnosing software
and hardware problems. There are many points of
failure in a HPC system, and it can be difficult to isolate
faults either prior to or during the execution of a large
scale application. Scalable tools for fault detection are
essential for quickly identifying and addressing problems.



In the following section, we provide the details of the VPIC
application, the system configuration, and the configuration of
the trillion particle simulation. In Section III, we discuss each
of the above lessons in detail. We then conclude the discussion
in Section IV.

II. VPIC SIMULATION

A. Application

Collisionless magnetic reconnection is an important mech-
anism that releases explosive amounts of energy as field lines
break and reconnect in plasmas, such as when the Earth’s
magnetosphere reacts to solar eruptions. The massive energy
released by the solar eruptions can damage satellite communi-
cation equipment as well as produce beautiful aurora borealis
at the poles of the Earth. Such a reconnection also plays
an important role in a variety of astrophysical applications
involving both hydrogen and electron-positron plasmas.

Simulation of magnetic reconnection with VPIC (vector
particle-in-cell) [3] is inherently a multi-scale problem. It
is initiated in the small scale around individual electrons
but eventually leads to a large-scale reconfiguration of the
magnetic field. Recent simulations have revealed that elec-
tron kinetic physics is not only important in triggering re-
connection [6], [5], [7], [11], [14], [13], [19], but also in
its subsequent evolution. Based on this conclusion, plasma
physics scientists find that they need to model the detailed
electron motion, and that modeling poses severe compu-
tational challenges for 3D simulations of reconnection. A
full-resolution magnetosphere simulation is an exascale-class
computing problem.

We recently ran the highly optimized VPIC code [3],
which simulates collisionless magnetic reconnection with open
boundaries in 3D. The simulation tracks two trillion particles
on the Hopper Cray XE6 supercomputer at NERSC. Particle
properties of interest in this simulation include spatial location
(x,y,z), energy, and projection of velocity components on the
directions parallel and perpendicular to the magnetic field U‖,
U⊥,1, and U⊥,2.

B. System Configuration

Hopper is a NERSC Cray XE6 system consisting of 6,384
compute nodes, each containing two 12 core AMD 2.1 GHz
MagnyCours processors. Each compute core has a peak per-
formance of 8.4 Gflops/se resulting in a system with a peak
performance of 1.28 PFlops. All but 384 compute nodes have
32 GB memory while the remaining larger nodes have 64 GB
memory creating a system with over 217 TB of memory. It
employs the Gemini interconnect with a 3D torus topology.

Hopper has two identical local Lustre parallel file systems:
/scratch and /scratch2, each has a peak performance
of 35 GB/sec and a capacity of 1.1 PB. The Lustre file
system is made up of an underlying set of IO servers and
disks called Object Storage Servers (OSSs) and Object Storage
Targets (OSTs) respectively. Each /scratch file system has
156 OSTs which is the lowest software abstraction layer
with which users need to interact. When a file is created in

Fig. 1. Configuration of our VPIC simulation using MPI and OpenMP threads
for computation. Parallel I/O uses MPI-IO in collective buffering mode and
Lustre parallel file system

/scratch it is “striped” or split across multiple OSTs. The
default stripe count on Hopper is 2 and the default stripe size
is 1 MB.

VPIC uses Cray’s MPICH2 library (xt-mpt 5.1.2) and HDF5
version 1.8.8 with modifications as described in Section III-B.
The particle data is written with H5Part version 1.6.5, along
with Cray’s MPI-IO implementation.

C. Parallel I/O and Data

The VPIC simulation writes a significant amount of data at a
user-prescribed interval. In our simulation of 2 trillion particles
(including 1 trillion ions and 1 trillion electrons), we store
particle data sets, field and hydro data sets, and checkpoint
data sets. The particle data set for a given time step comprises
∼1 trillion electrons. The data size of each electron particle is
32 bytes, representing the particle properties mentioned in Sec-
tion II-A. The number of particles increases as the simulation
progresses. In our simulation, the data sets written in each time
step varied between 30 TB to 42 TB of data. The simulation
wrote the particle data set at 10 time steps and the total particle
data size was ∼335 TB. The data set for the ions is not stored
to disk to reduce storage requirement. Furthermore, most of
the physics questions can be answered with only information
about electrons. The field data set includes information such
as electric and magnetic field strength, and the particle data
set includes information about its position, momentum and
energy. The field data set is relatively small, on the order
of tens of gigabytes. We dumped field data at 33 time steps
and size of this data set was ∼15 TB. The simulation also
wrote a checkpoint data set multiple times. We configured
the simulation to maintain two such data sets. The size of
each checkpoint data set was between ∼60 TB and ∼72 TB.
Overall, the total amount of data after finishing the simulation
was ∼490 TB. After discarding the checkpoint data sets, the
total amount of data we had to analyze was ∼350 TB.

Figure 1 shows an overview of the VPIC simulation set up
on Hopper. VPIC uses 20,000 MPI processes, where each MPI



process spawns 6 OpenMP threads to perform computations.1

Each OpenMP thread runs on a CPU core and the total of
CPU cores used in this simulation is 120,000. The figure also
shows MPI-IO aggregators to collect data from multiple MPI
domains before writing data to the Lustre file system. We will
explain our work in using MPI-IO, HDF5, and H5Part with
collective buffering enabled in Section III-A.

III. LESSONS LEARNED

A. Lesson 1. Collective writes to a single shared HDF5 file
can work as well as file-per-process writes

As with many HPC applications, the I/O pattern in VPIC
is “banded”, i.e. there is a period of computation and com-
munication across all nodes and then a barrier at which all
MPI ranks must rendezvous. Figure 2 illustrates a sample
banded pattern of interleaved computation and I/O phases.
After the barrier the I/O takes place and the compute and
communication resources are idle (at least so far as the appli-
cation is concerned). Once the I/O is complete, all the nodes
rendezvous again, and then the next phase of computation
and communication proceeds. This pattern repeats for multiple
cycles.

Fig. 2. An example banded pattern showing computation and I/O phases. The
slowest process reaching rendezvous dictates the finishing time of a phase.
During the I/O phase, computation resources stay idle wasting energy.

In order to get the most science done we’d like the I/O
bands to be as narrow as possible. We can accomplish this
by limiting the amount of data written and/or read and by
achieving the best possible I/O performance given the I/O
pattern. As mentioned in Section II-C, we only saved the
electrons, which halved the amount of I/O necessary. It is
commonly assumed that a file per process (fpp) I/O model
will achieve the best performance. This assumption is based
on the fact that there is no need for file system range locking
when each rank has exclusive access to its target file.

1) Writing file with file per process model: In the original
implementation of the VPIC code, each MPI domain writes
a file, in binary format, containing its particle data [12].
Each of the files has a header with the cell offsets and the
number of particles in the file. The fpp approach is able to

1In subsequent discussion we refer to an “MPI process” as an “MPI
domain” in order to highlight the fact that each MPI process has multiple
OpenMP threads.

Fig. 3. A file-per-process I/O model initially performs well, but its
performance degrades over time. This comes from an imbalance in the load
on the OSTs.

achieve a good fraction of system I/O bandwidth, but has a
number of limitations. The first is that the number of files
at large scale becomes too large. For example, in our largest
scale test, the simulation generates 20, 000 files per timestep
corresponding to 20, 000 MPI domains. Performing even a
simple ls command on the directory containing these files
has significant latency. Second, the fpp model dictates the
concurrency of subsequent stages in the analysis pipeline.
Often a post-processing step is necessary to refactor fpp data
into a format that is readable by analysis tools. Third, many
data management and visualization tools only support standard
scientific data formats, such as HDF5 [16] and NetCDF [17].
Fourth, the fpp I/O model might be suboptimal, as we’ll
discuss shortly.

Performance of an fpp application can be undermined by
a load imbalance if the individual files are unevenly assigned
(in Lustre) to the Object Storage Targets (OSTs). If the OSTs
perform at their maximum rate (the same for all) and some
OSTs are assigned more work than others, then those OSTs
will take longer. The files assigned to those OSTs, and the
MPI ranks for those files, will complete their I/O later than
the rest, so those ranks will arrive later to the rendezvous.
The result is a larger I/O band than might have been achieved
with uniform load balancing. The time series of server I/O
observations in Figure 3 shows that the file system can deliver
in the range of 35 GB/s, and the load imbalance shows up as
a long downward sloping tail in the I/O rate as the slowest
OSTs straggle in. The resulting effective I/O rate ends up at
27,007 MB/s for writing 29.7 TB of particle data.

Figure 4(a) shows the amount of data assigned to each of the
156 /scratch2 OSTs on Hopper (x-axis in GB) versus the
time-to-completion of the I/O on that OST (y-axis in seconds).
Figure 4(b) gathers the load for the six OSTs on each RAID
controller (x-axis in TB), it is clear that the uneven load leads
directly to the uneven completion time. That imbalance is what
gives Figure 3 its characteristic shape. Some form of manual
load balancing could help with the performance penalty, but



(a) OSTs (b) RAIDs

Fig. 4. The 20,000 VPIC files are of comparable size, but they are distributed unevenly over the OSTs (left) and RAID controllers (right), with six OSTs
per controller. There is a wide variety of time-to-completion among the OSTs. For the controllers, it is clear that the load largely determines the time to
completion.

the fpp I/O model may not be the best choice for all the
foregoing reasons.

2) Writing file with HDF5 and H5Part: In our updated im-
plementation of writing particle datasets, we take the approach
of writing a single global file with a standard data format
known as HDF5 [16]. More specifically, we use a particle data
extension of parallel HDF5 called H5Part. Parallel HDF5 has
demonstrated competitive I/O rates on modern computational
platforms [10]. As far as we know, we are the first group to
successfully write tens of terabytes in a single shared HDF5
file. The H5Part [9] extension to HDF5 improves the ease
of use in managing large particle counts. H5Part is a veneer
API for HDF5: H5Part files are also valid HDF5 files and are
compatible with other HDF5-based interfaces and tools. By
constraining the usage scenario to particle-based simulations,
H5Part is able to encapsulate much of the complexity of
implementing effective parallel I/O in HDF5. That is, it trades
off HDF5’s flexibility and complexity in supporting arbitrary
data models for ease-of-use with a specific, particle-based data
model.

Using a small set of H5Part API calls, we were able to
quickly integrate parallel HDF5 I/O into the VPIC codebase.
Our simple H5Part interface for writing VPIC particle data is
outlined in the following lines of code:

h5pf = H5PartOpenFileParallel (fname, H5PART_WRITE |
H5PART_FS_LUSTRE, MPI_COMM_WORLD);

H5PartSetStep (h5pf, step);
H5PartSetNumParticlesStrided (h5pf, np_local, 8);

H5PartWriteDataFloat32 (h5pf, "dX", Pf);
H5PartWriteDataFloat32 (h5pf, "dY", Pf+1);
H5PartWriteDataFloat32 (h5pf, "dZ", Pf+2);
H5PartWriteDataInt32 (h5pf, "i", Pi+3);
H5PartWriteDataFloat32 (h5pf, "Ux", Pf+4);
H5PartWriteDataFloat32 (h5pf, "Uy", Pf+5);
H5PartWriteDataFloat32 (h5pf, "Uz", Pf+6);
H5PartWriteDataFloat32 (h5pf, "q", Pf+7);

H5PartCloseFile (h5pf);

The H5Part interface opens the particle file and sets up the
attributes, such as the timestep information and the number of
particles. The H5PartWrite· · · () calls wrap the internal HDF5
data writing calls.

The H5Part interface opens the file with MPI-IO collective
buffering and Lustre optimizations enabled. Collective buffer-
ing breaks the parallel I/O operations into two stages. The first
stage uses a subset of MPI tasks to aggregate the data into
buffers, and the aggregator tasks then write data to the I/O
servers. With this strategy, fewer nodes communicate with the
I/O nodes, which reduces contention. The Lustre-aware im-
plementation of Cray MPI-IO sets the number of aggregators
equal to the striping factor such that the stripe-sized chunks do
not require padding to achieve stripe alignment [4]. Because
of the way Lustre is designed, stripe alignment is a key factor
in achieving optimal performance.

Fig. 5. A single-file I/O model must contend with range locking but will
automatically load balance across its OSTs. This particle dump achieved the
same (within 1 percent) I/O rate as the file-per-process example in Figure 3:
27 GB/s. The load balancing is better, but the H5Part wrapper imposes an
extra barrier between each of the eight variable dumps.



(a) OSTs (b) RAIDs

Fig. 6. The load across the OSTs and the RAID controllers is very evenly balanced. The time to completion for the dump varied across the OSTs by about
40 seconds compared to about 200 seconds for the file-per-process example in Figure 3.

One advantage of using a single file I/O model is that the
load automatically gets uniformly distributed to all the I/O
resources. On the other hand, H5Part also introduces a global
rendezvous (MPI-IO collective operation) between each of the
eight variable dumps (Figure 5). This creates little “gaps” that
make the I/O band larger than it otherwise might be, and makes
even more important the need to get well coordinated I/O.

Figures 6(a) and 6(b) show a very uniform load across
the 156 OSTs and the RAIDs, respectively. There is still
some variability in time-to-completion. Because of the MPI-IO
collective operation after each variable is dumped, we pay the
price for this variability eight times. Nevertheless, the achieved
data rate of 27,035 MB/s for 31.3 TB compares favorably with
the results from the fpp version.

B. Lesson 2. Tuning multiple layers of parallel I/O subsystem
is a challenging task

Performance of parallel I/O depends on multiple software
layers of the parallel I/O stack. Figure 7 shows a contemporary
parallel I/O software stack with HDF5 as high-level I/O library,
MPI-IO as middleware layer, and Lustre as the parallel file
system. Each layer offers tunable parameters for improving
performance, and hopes to provide reasonable default settings
for the parameters.

Tuning HDF5, MPI-IO, and Lustre parameters was an
important part of achieving our I/O performance goals. We
modified the implementation of HDF5 version 1.8.8 to disable
the file size verification process. For Lustre, we varied the
stripe count and the stripe size. The stripe count is the
number of OSTs used in writing contiguous chunks of data
and the stripe size is the size of the contiguous chunk. As
mentioned earlier, the Lustre-aware implementation of Cray
MPI-IO sets the MPI-IO collective buffering parameters. In
this implementation, the number of MPI-IO aggregators is
equal to the stripe count, and the size of the collective buffer
is equal to the stripe size.

Fig. 7. Parallel I/O Stack and the parameters we tuned and modifications
we made in this effort

Tuning I/O for the VPIC simulation typically requires
running the simulation multiple times while varying the values
of tunable parameters. However, VPIC is a computationally
intensive application, and it is impractical to run the entire
code repeatedly, at scale for tuning. Instead, we developed
a simplified parallel I/O kernel, called VPIC-IOBench. The
kernel uses the same H5Part calls shown in Section III-A
for writing VPIC particle data. VPIC-IOBench disables the
simulation component of the VPIC code and uses random
data. The kernel contains the full data volume generated by
the code with a slightly simplified pattern. In VPIC-IOBench,
each MPI process writes an equal number of particles to a
shared file, whereas in a VPIC simulation, each MPI domain
writes a slightly varying (up to 15%) number of particles. The
amount of data the kernel writes is proportional to the number
of MPI processes.

1) Tuning HDF5: When a HDF5 file is closed, the
H5Fclose function ensures that the size of the file matches
its allocated size. HDF5 tracks the size of the file for two rea-
sons: to detect external file modification/corruption (i.e. from



something other than the HDF5 library modifying/corrupting
the file), and to allocate space within the file for changes to
the file’s structure. HDF5 currently verifies the file’s size by
truncating the file (using a POSIX or MPI operation) to the
size of the allocated space within the file. This truncate-based
verification step initiates several metadata server operations
that degrade performance significantly. Disabling the file’s size
verification in some cases will likely make the file unreadable.
For example, if the truncate operation during H5Fclose would
actually extend the file (instead of truncate it), but doesn’t
occur (because of disabling truncate), data will be double
allocated in the file, causing corruption later. If the truncate
was actually truncating the file (instead of extending it), it
is less of a problem - space in the file will be leaked,
but the file will still be readable. We made a decision to
disable the file’s size verification for performance. In all our
datasets, disabling truncate did not affect the ability to read
it. We modified the HDF5 library source code (version 1.8.8)
to disable the file size verification process, which improved
performance of writing files by a factor 3-5X. Figure 8 shows
the impact of disabling the file size verification. The plot shows
improvement of the I/O bandwidth of VPIC-IOBench over
a range of MPI processes counts, where each MPI process
writes 32 MB data. A better alternative to simply disabling
the truncate call is to track the valid section of the file by
adding more metadata to the file format. This optimization
will soon be a part of upcoming HDF5 release allowing all
parallel HDF5 applications to more productively use HDF5
for I/O.

Fig. 8. Performance improvement with patching HDF5 truncate

2) Tuning Lustre file system and MPI-IO parameters:
We conducted a series of tests with VPIC-IOBench using 8
K tasks, and varied the stripe count from 64 OSTs to the
maximum of 156 and the stripe size from 1 MB to 1 GB.
The Cray Lustre-aware, MPI-IO implementation varies the
MPI-IO collective buffer aggregators and their buffer size to
match the corresponding stripe count and stripe size. Our prior
experiments indicated that the attainable data rate did not
increase with stripe counts beyond 144. The last few OSTs
didn’t add any performance. We settled on using 144 OSTs
and stripe size 64 MB.

Figure 9 shows the results of a scaling study for 1 K to
128 K MPI tasks. This is a weak scaling study in that the

Fig. 9. VPIC-IOBench weak scaling study: I/O performance with increasing
number of processes writing data to a HDF5 file using H5Part.

number of particles per task is constant at eight million. These
experiments use the modified HDF5 library that has the patch
for disabling file size verification when a HDF5 file closes.
As the number of MPI tasks increases, the I/O rate becomes
greater. With fewer MPI tasks running on a highly shared
system, such as Hopper, interference from I/O activity of other
jobs can reduce the attained I/O rate. At the scale of 128 K
cores, VPIC-IOBench occupies 85% of Hopper, which reduces
the opportunity for interference from other jobs sharing the I/O
system. The 128 K task instance writes about 32 TB of data,
and Figure 9 shows at that scale the delivered I/O performance
is about 27 GB/s, which compares favorably with the rated
maximum on Hopper of about 35 GB/s. It is also comparable
with the best rates achieved with an fpp model.

The trillion particle VPIC simulation used the tuning pa-
rameters from this study and achieved 27 GB/s as shown in
Figure 5. Our study motivates that applications performing
large parallel I/O can benefit from a careful tuning process. It
will be even more beneficial to have automatic and scalable
I/O tuning tools.

C. Lesson 3. Advance verification of filesystem hardware is
important for obtaining peak performance

During an early VPIC run, we found that the particle dumps
(of eight variables) took much longer than we had expected.
In Figure 10(a) one OST shows good behavior as it quickly
completes the I/O for each of the eight variables. Nevertheless,
it must wait for a global rendezvous before starting the next,
and this leads to large gaps in its I/O pattern. For this run
144 OSTs were used, and to achieve an aggregate rate of 35
GB/s each OST needs to be performing at around 250 MB/s.
Clearly, OST0010 can reach that I/O rate, but its average value
ends up at half that due to the delays.

A close inspection of the performance of the individual
OSTs showed that one was behaving erratically (Figure 10(b)).
It looked like a disk was failing or the LUN was being rebuilt
after a failure. The problem resolved itself by the time of
the next run, but it contributed to a significant delay in that
execution of the application. The particle dumps took about
35 minutes in that case.



(a) Well behaved OST (b) Erratic OST

Fig. 10. An OST (left) behaves as it should, but has to wait for all the other OSTs between each variable dump. In this case one OST was behaving
erratically and delayed the whole dump step.

(a) Speedy (b) Slow

Fig. 11. The six OSTs on OSS-001 (left) perform well, but still have to wait for other OSTs between each variable dump. In this case two OSSs, including
OSS-013 (right) have all their OSTs performing poorly compared to the rest. There was an identified problem with a RAID controller pair at this time. Once
resolved, the I/O was able to proceed at its best speed.

A followup run later that month showed improved perfor-
mance. The particle dumps took about 23 minutes instead
of 35 minutes. There was still a significant gap between the
individual variable dumps. In Figure 11(a) the six OSTs of an
OSS cumulatively perform well, but again have to wait for a
rendezvous when other OSTs are delayed. In this case all the
OSTs on two OSSs performed at a consistently slower rate
(Figure 11(b)). There was coincidentally a failed-over RAID
controller pair, though the connection between that and the
slower OSSs is not clear. Again, the issue resolved itself before
the next run and subsequent runs were able to reduce dump
time to around 20 minutes.

These observations, lead the team to test and review in-
dividual OST performance at the beginning of each run. In
particular, the VPIC-IOBench I/O kernel acted as a system
probe. Running that for a minute or two at the beginning of
a VPIC run would be able to identify sluggish hardware, and

points to a possible system level service that would do the
same thing automatically.

D. Lesson 4. Advance verification of available resources for
memory-intensive applications is important

The trillion particle simulation requires a total memory of
∼142 TB. Using 120,000 cores on 5,000 nodes, where each
node has 24 cores, the memory requirement of the simulation
on each node is ∼29 GB. On Hopper, each node has 32 GB
memory and the memory requirement of ∼29 GB translates
to 90% of memory footprint. Considering some lightweight
OS related tasks running on the nodes, the 90% memory
requirement puts a significant pressure on the node.

In our simulation runs on Hopper, we used a combination
of tools to verify memory availability after experiencing an
application failure due to an Out-of-Memory (OOM) error
on one node. The Cray staff at NERSC used Cray’s Node



Health Checker (NHC) [15] to to check the available free
memory on each node and “admindown” those nodes that
have free memory below 29 GB. We also developed a Perl
script that reads the free memory information in a compute
node’s "/proc/buddyinfo" file. This /proc file is the most
accurate measure of available memory, for the application and
for the kernel, on a Cray XT/XE/XK compute node. The
script collects information on the available memory on all the
nodes that are allocated for running the simulation. The script
is placed in the PBS batch script of our simulation run to
verify available memory before and after our simulation. We
manually sorted the output based on the available memory to
verify that none of the nodes have free memory less than 30
GB.

From this experience, we learned that when running appli-
cations at scale with greater than 75% memory requirement
on each node, verification of available memory before and
after running the application is helpful. This is also another
opportunity for a system service automating what is currently
a burdensome process.

E. Lesson 5. Scalable tools are required for diagnosing soft-
ware and hardware problems before running applications
using 100k cores

It can be time consuming and tedious to systematically
verify system health prior to a hero run. Better tools and tools
that scale to very large problem size are very much needed.
When running applications at scale, a failure due to software
problems or hardware problems or both can cause significant
waste of system resources, including the waste of system time,
staff time, and the energy consumed.

1) Scalable computation and memory resource checker:
Cray’s Node Health Checker (NHC) is useful to verify node
status and available free memory, and we suggest automating
its use before running large applications. In our experience,
with help from Cray and NERSC staff, we used a combination
of OS capabilities and local tools to verify the computation
and memory resource availability. For instance, we used
"xtprocadmin", a capability of the Cray XE6 OS to
verify the current status of nodes. As mentioned above, we
used the NHC and a local script to verify the availability of
required memory. Automatic checks for resource availability
can reduce idle system time. Currently on Hopper, the NHC
script is used in production, with the threshold being adjusted
as needed. Sometimes the script is used in “log-only” mode
instead of “admindown” depending on the number of “bad”
nodes detected, and the possibility of false-positive detection
of “suspect” nodes which can cause the successive runs inside
the same batch job to fail. Improving the robustness of NHC
is desired.

2) Scalable I/O subsystem checker: The I/O subsystem
consists of multiple software libraries as shown in Figure
7. While we used manual tuning with multiple layers, a
scalable auto-tuning will help many applications. In many
cases, applications rely on default I/O settings and suffer from
poor I/O performance that becomes a performance bottleneck.

Moreover, in applications with “banded pattern” of compute
and I/O phases, poor I/O performance wastes a significant
amount of CPU time and the corresponding system and energy
wastage. We are currently working on a solution to auto-tune
parallel I/O [2]. In this effort, we plan to identify common
I/O patterns of applications and choose I/O tuning parameters
from a pre-populated database.

3) Scalable Runtime I/O Monitor: As illustrated in Section
III-C, even one slow hardware component in the file system
can cause a dramatic slow down. To avoid such inefficiencies,
we advocate scalable tools to monitor file system performance
persistently. When an OST becomes sluggish for any reason,
repairing it or removing it from the file system dynamically
can help overall application performance. In our VPIC simula-
tion, we were able to exclude OSTs that were over 85% full by
using stripe factor of 1 and selecting stripe offset, but there
is no systematic way that a certain application can exclude
certain “bad” (sluggish, nearly full, etc.) OSTs. In production,
setting these OSTs to “read-only” will impact other system
scripts such as quota checking and purge scripts, so it is
not recommended. Better control of OST targets within the
application space is desired.

IV. CONCLUSIONS

We have successfully undertaken an unprecedented Trillion
particle simulation on 120,000 cores on Hopper. The fully-
functional simulation produced 30 TB to 42 TB of data on
a per timestep basis resulting in major I/O challenges. While
we were utilizing a well-tuned production I/O stack consisting
of HDF5, Cray MPI-IO and Lustre; we faced and addressed a
number of issues at scale. We developed a custom protocol
to detect OSTs with poor performance characteristics and
compute nodes with low memory before the full scale runs. We
implemented a patch for HDF5 that enabled the application to
utilize all available system bandwidth with collective I/O. We
believe that Hero runs at scale require support and contribu-
tions from teams of diverse personnel. In this case, researchers
at LBL worked closely with NERSC system staff and Cray
engineers to diagnose and address challenges as they came
up. We believe that such a model of collaboration is critical
for facilitating state-of-the-art applications, such as VPIC, in
undertaking groundbreaking high resolution simulations and
fully utilizing HPC platforms.
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