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ABSTRACT 
In this paper, we describe a runtime to automatically enhance the 
performance of applications running on heterogeneous platforms 
consisting of a multi-core (CPU) and a throughput-oriented many-
core (GPU). The CPU and GPU are connected by a non-coherent 
interconnect such as PCI-E, and as such do not have shared 
memory. Heterogeneous platforms available today such as [9] are 
of this type. Our goal is to enable the programmer to seamlessly 
use such a system without rewriting the application and with 
minimal knowledge of the underlying architectural details. 
Assuming that applications perform function calls to 
computational kernels with available CPU and GPU 
implementations, our runtime achieves this goal by automatically 
scheduling the kernels and managing data placement. In 
particular, it intercepts function calls to well-known 
computational kernels and schedules them on CPU or GPU based 
on their argument size and location. To improve performance, it 
defers all data transfers between the CPU and the GPU until 
necessary. By managing data placement transparently to the 
programmer, it provides a unified memory view despite the 
underlying separate memory sub-systems. 

We experimentally evaluate our runtime on a heterogeneous 
platform consisting of a 2.5GHz quad-core Xeon CPU and an 
NVIDIA C870 GPU. Given array sorting, parallel reduction, 
dense and sparse matrix operations and ranking as computational 
kernels, we use our runtime to automatically retarget SSI [25], K-
means [32] and two synthetic applications  to the above platform 
with no code changes. We find that, in most cases, performance 
improves if the computation is moved to the data, and not vice-
versa. For instance, even if a particular instance of a kernel is 
slower on the GPU than on the CPU, the overall application may 
be faster if the kernel is scheduled on the GPU anyway, especially 
if the kernel data is already located on the GPU memory due to 
prior decisions. Our results show that data-aware CPU/GPU 
scheduling improves performance by up to 25% over the best 
data-agnostic scheduling on the same platform.  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – run-time 
environments.  

General Terms 
Performance, Design, Experimentation. 

Keywords 
Heterogeneous platforms, multi-core processors, accelerators, 
distributed memory, runtime. 

1. INTRODUCTION 
Heterogeneous platforms consist of one or more multi-core 
general-purpose CPUs and one or more throughput-oriented 
many-core processors (for example, GPUs).  Driven by many 
emerging data-parallel applications and by the need for higher 
performance, server vendors are beginning to rapidly 
commercialize these platforms [9], a trend that is expected to 
continue. 

The most straightforward (and currently available) 
configuration that allows fast time-to-market is to have the many-
core processor on an add-on card that is connected to the system 
via a non-coherent interconnect such as PCI Express. This has 
two implications. First, the CPU processing and its memory sub-
system is completely separated from the many-core processor 
(GPU) and its memory sub-system, i.e., the two memory sub-
systems are not coherent and there is no shared memory. This 
makes programming difficult since the programmer has to 
manage the data that is manipulated by the CPU as well as the 
GPU. Second, with current PCI-E bandwidths, large data transfers 
between the two processing sub-systems can at times overwhelm 
any speedup achieved by the many-core when the processing 
alone is taken into consideration.  

Such “loosely-coupled” distributed memory heterogeneous 
systems do not present the programmer with a unified view of the 
memory and compute elements. Today, applications that require 
acceleration from heterogeneous systems must be carefully 
profiled to discover data-parallel portions (“kernels”) that could 
benefit from a many-core GPU. Once GPU custom 
implementations for those kernels are available, the application 
developer must explicitly schedule not only the kernel 
computations but also the required data transfers.  

Ideally, a heterogeneous system should enable any legacy 
code written for homogeneous systems to run faster, in a way that 
is transparent to the programmer. GPU libraries for commonly 
available kernels (such as linear algebra for example) are 
necessary in order to enable this, but are not enough to allow 
complete transparency. A runtime that schedules computations as 
well as data transfers in order to maximize performance is 
required.  

In this paper, we propose such a runtime. As a significant 
difference from past work [3], our runtime is cognizant of data 
transfer overheads and dynamically schedules operations taking 
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into account not only the predicted processing performance, but 
also data transfers. For instance, suppose an application has three 
candidate kernels with both CPU and GPU implementations. 
Assume that during a certain execution path, the first kernel is 
estimated to be much faster, but the second and third much slower 
on the GPU (based, say on the sizes of their parameters). Given 
this information, a data-agnostic scheduler is likely to run the first 
kernel on the GPU, transfer data back and run the remaining two 
kernels on the CPU. However if the first kernel produces a large 
amount of data that is consumed by the second kernel, a better 
schedule may be to run the second kernel also on the GPU and 
avoid the intermediate data transfer. With legacy code, the system 
is unaware what will follow the first kernel. After running the first 
kernel on the GPU, our runtime postpones data transfers back to 
the CPU until necessary. This way, when the second kernel is 
encountered, it can make a more informed decision taking into 
account the data transfer overhead, as well as the estimated 
performance. Although the GPU is slower in processing the 
second kernel compared to the CPU, running the kernel on the 
GPU could still result in an overall speedup. Our runtime analyzes 
these situations using simple, history-based models to predict 
processing as well as data transfer time, and uses these to guide 
the scheduling policy. It intercepts calls to candidate kernels, 
examines their arguments, and uses historical information and 
prior decisions to devise a schedule on-the-fly. Once a decision is 
reached for a kernel, the runtime invokes its CPU or GPU 
implementation transparently to the user.  

One basic objective of our runtime is to target legacy code. 
In other words, we do not require source code modifications, but 
assume that the application performs function calls to well known 
kernels for which implementations targeting both the CPU and 
GPU are available. Our runtime’s invocation happens by function 
call interception. This mechanism alone would lead to data 
coherence problems when accesses performed outside function 
calls target data residing on the GPU. In [7], we discuss operating 
system modifications to avoid this problem. In particular, the 
proposed design adds synchronization points within the page fault 
handler; at each synchronization point our runtime’s API is 
invoked. As an alternative, it is possible to add synchronization 
points in the application via minimal source-level annotation (we 
discuss this in Section 4). Note that our goal is to propose a 
runtime, therefore we do not force the user to code a new 
application (or recode an existing one) according to specific 
primitives or frameworks. Therefore, our work fundamentally 
differs from previous efforts that propose programming models 
[1][5].  

In summary, our contribution could be viewed as a runtime 
for a heterogeneous platform that provides a unified memory and 
compute view to the programmer despite the underlying platform 
being composed of two separate CPU and GPU, each one having 
its own memory sub-system. Such a view is enabled by 
automatically scheduling kernels on the compute units while 
simultaneously optimizing data placement on the two memories. 
The goal of the runtime is to maximize the overall application 
performance without requiring application rewriting. In [7] we 
discuss how the design can be generalized to the case where 
multiple GPUs or accelerators are connected to the CPU, and to 
that where CPU and GPU share (pinned) memory regions residing 
on the CPU.  

The rest of the document is organized as follows. In Section 
2, we overview closely related work. In Section 3, we present a 

motivational example that illustrates the benefits of data-aware 
scheduling. In Section 4, we detail the design, implementation 
and operation of our proposed runtime. In Section 5, we present 
an experimental evaluation on some real and synthetic 
applications. We conclude in Section 6.  

2. RELATED WORK 
Various programming languages and libraries have been 
introduced by multi-core CPU and many-core GPU vendors to 
utilize their computing power. Nvidia’s CUDA [8], AMD’s 
Brook+ [10], Intel’s TBB [11] and Ct [12] provide programming 
interfaces to better utilize the underlying hardware. These 
interfaces, while making programming easier, target specific 
GPUs or CPUs and not a heterogeneous platform containing both. 
Similarly, solutions such as Microsoft Accelerator [13], 
Rapidmind [14], and Google’s Peakstream [15] only target GPUs. 
Programming models targeting heterogeneous and distributed 
memory systems are presented in [1] and [5]. However, 
programming models and languages can be used either to write 
new applications, or to rewrite existing ones. In contrast, this 
proposal aims to enable legacy applications on heterogeneous 
platforms without requiring source code modifications.  

PGI Accelerator [16], CAPS HMPP workbench [17], and 
HPC Project’s Par4All [18] developed compilers to generate 
CUDA code for data parallel portions, especially loops. These 
tools use compiler level information to decide whether to run a 
code segment on CPUs or GPUs, but do not take the cost of data 
transfers into account. Compiler solutions also cannot make 
scheduling decisions that are best made at runtime. Our runtime 
uses parameters such as data size and data locality and decides 
when to schedule computations as well as data transfers.  

Multicore-CUDA (MCUDA) [19] and Ocelot [20] translate 
CUDA code to run on multi-core processors. Liao et al [21] 
propose a similar translation of Brook-like code into 
multithreaded CPU code. The goal of these approaches is to 
provide a way to develop code for both CPUs and GPUs, but 
scheduling them on the hardware is left to the programmers.  

OpenCL [22] attempts to provide a common programming 
interface for multi-core and many-core platforms. However, the 
programmer must decide the mapping of the kernels to the 
processing elements. IBM’s OpenMP for Cell [23] and Intel’s 
Merge framework [24] are also capable of running code on both 
CPUs and GPUs, but the mapping is not automatic (and involves 
code modifications). Harmony [3] proposes a runtime to schedule 
kernels either on CPU or on GPU based on estimated kernel 
performance using an API. Qilin [4] proposes an API with 
automatic and adaptive mapping support, which reduces the 
decision burden on programmers. However, Qilin’s mapping is 
based on a curve fitting model to split computation on CPU and 
GPU. Neither Harmony nor Qilin consider the data transfer 
overhead, especially for legacy code. StarPU’s unified runtime 
system [34][35] proposes implementing CPU-GPU memory 
coherence using the MSI protocol. However, it requires 
programmers to use a new API proposed by the system.  

Data-aware scheduling strategies exist in cluster and 
distributed computing [28][29][30]. However, these techniques 
are used in scheduling jobs to fit data in disks and to reduce data 
transfers among cluster and grid computing nodes. We focus on a 
node within a cluster. 
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Table 1: Processing and data transfer times for SSI classification. For each input data size, the schedule resulting in the best 
performance is highlighted. 

Kernel Location 
(Schedule) 

Kernel Processing Time Number of 
simultaneous 
queries (Q) sgemm topk_rank sgemm topk_rank Total 

Data 
Transfer 

Time 

Overall 
Speed 

CPU CPU 1.25s 0.06s 1.31s - 41.12 ms/query 
GPU CPU 0.08s 0.06s 0.14s 0.11s 7.91 ms/query 

 
32 

GPU GPU 0.08s 0.31s 0.39s 0.06 ms 12.14 ms/query 
CPU CPU 2.07s 0.12s 2.19s - 34.20 ms/query 
GPU CPU 0.15s 0.12s 0.27s 0.23s 7.85 ms/query 

 
64 

GPU GPU 0.15s 0.33s 0.48s 0.09 ms 7.51 ms/query 
CPU CPU 2.88s 0.18s 3.06s - 31.84 ms/query 
GPU CPU 0.23s 0.18s 0.41s 0.34s 7.83 ms/query 

 
96 

GPU GPU 0.23s 0.36s 0.59s 0.12 ms 6.13 ms/query 

Finally, CUBA [6] proposes an architectural model where 
co-processors are encapsulated as function calls, as well as 
mechanisms to allow data physically residing on accelerator 
memory to be cached on CPU. CUBA assumes that the CPU has 
access to the co-processor memory mapped registers and to the 
co-processor local memory (which is not the case of the 
architecture we are considering). Moreover, the CUBA proposal 
discusses hardware changes (specifically, changes to the memory 
controller) whereas we operate at the runtime level. 

3. MOTIVATIONAL EXAMPLE 
In this section, we motivate the need for data-aware scheduling on 
heterogeneous platforms with a real application. The application 
we use is Supervised Semantic Indexing (SSI) classification [25].  

SSI is an algorithm used to semantically search large 
document databases. It ranks the documents based on their 
semantic similarity to text-based queries. Each document and 
query is represented by a vector, with each vector element 
corresponding to a word. Since documents and queries only 
contain a small fraction of possible words, each vector is sparse 
and has as many elements as the dictionary’s size. Each vector 
element is the product of Term Frequency (TF) and Inverse 
Document Frequency (IDF) of the word that it corresponds to. TF 
is the number of times a word occurs in the document and IDF is 
the reciprocal of the number of documents that contain the word 
(thus IDF reduces the importance of commonly occurring words). 
Before classification can take place, the system must be trained. 
During this training process, a weight matrix is generated. By 
multiplying a query or document vector with the weight matrix, 
we obtain a smaller dense vector which contains relevant 
information for document-query classification. Each dense 
document and query vector is C elements long, where C is the 
number of concepts [25]. The classification process multiplies the 
query vector with all document vectors and identifies documents 
whose vectors produced the top k results.  

The SSI classification process has two compute-intensive 
kernels which are good candidates for the many-core GPU. The 
first (sgemm) is the multiplication of the query vectors with all 
document vectors, essentially a dense matrix-matrix 
multiplication. With D documents in the database and Q 
simultaneous queries, the document matrix size is DxC and the 
query matrix size is QxC. The second kernel (topk_rank) must 

select, for each query vector, the top k best classification 
documents, that is, it selects the top k elements from the products 
of query vectors with document vectors. With millions of 
documents to search for each query, these two kernels take up 
99% of the SSI execution time.  

We motivate data-aware scheduling with three example runs 
of SSI classification. Our data set contains 1.6M documents and 
128 conceptual categories. For each run, we vary the number of 
simultaneous queries performed (we consider 32, 64 and 96 
queries). Each query requires the identification of 64 top 
classification documents from the document database. The 
document database contains documents selected from the 
Wikipedia [25]. For matrix multiplication, we use the Intel Math 
Kernel Library [26] on the CPU and the CUBLAS Library 
implementation of the sgemm function [27] on the GPU. 

Table 1 shows the processing and data transfer times for 
three possible schedules of the two kernels used in SSI 
classification, as well as the overall throughput. The first schedule 
assumes both kernels are run on the CPU with no data transfer 
required. In the second schedule, the kernels are profiled and run 
on the computational element (either CPU or GPU) that has the 
smaller kernel processing time. In the third schedule, all kernels 
are run on GPU. However, data transfers are not performed before 
and after every kernel invocation, but only when required. In 
other words, the topk_rank kernel will be able to use the results of 
the previous call to sgemm without transferring them from the 
CPU.  

As can be observed, dense matrix multiplication is much 
faster on GPU (by 12-15X), whereas topk_rank is slower on the 
GPU. However, as the number of queries increases, the speed of 
topk_rank on the GPU improves.  

The poor performance of sgemm on the CPU affects the first 
schedule making it the worst for all the considered data sets. 
When the number of queries is small (32), the second schedule is 
preferable. As the number of queries increases, the third schedule 
tends to provide best performance. In particular, the throughputs 
achieved with the second and third schedules are comparable 
when 64 queries are processed in parallel. However, when the 
data set size increases to 96 queries, then the third schedule 
performs substantially better (the throughput achieved increases 
by 20%).  
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Interestingly, what makes the third schedule preferable for 
large input sets is not the processing time, but the savings in terms 
of data transfer time. In fact, the sgemm call produces a matrix of 
size 1.6MxQ floats, which normally is transferred back to the 
CPU. If the runtime recognizes this and schedules the second 
kernel on the GPU even though the GPU is slower, the 
performance shown in the table is achieved. Note that the GPU-
GPU schedule would never be preferable if data transfers were 
performed before and after each kernel invocation, such as would 
be the case if the runtime were handling legacy code, and was 
data-agnostic. 

The key take-away is the following. First, the best schedule 
depends on data set size, determined at runtime for legacy 
kernels. Second, execution time alone is insufficient to achieve an 
optimal schedule. In particular, once a kernel executes on the 
GPU, the runtime should defer transferring back the data to the 
CPU until access to that data is performed. When subsequent 
kernels are invoked, the runtime should determine if it is 
worthwhile transferring back the data based on its predicted data 
transfer overhead, as well as the processing times of the kernel to 
run. 

4. THE PROPOSED RUNTIME 
In this section, we describe our runtime system design. 

4.1 Overview of our Runtime 
The primary goal of the runtime is to dynamically schedule 
computational kernels onto heterogeneous computing resources, 
namely the CPU and the GPU, in order to minimize the execution 
time of the overall application. To this end, the runtime aims to 
minimize kernel execution time as well as data transfer 
overheads. In effect, it hides the compute- and memory-
heterogeneity from the programmer. 

As mentioned above, the runtime operates at the granularity 
of a function call. The application runs by default on the CPU and 
may perform calls to well known kernels for which CPU or GPU 
implementations are provided. When one of these kernels is 
invoked, the runtime must determine the implementation to 
instantiate. This decision depends on two factors: kernel 
execution time and data transfer time. In turn, these factors 
depend on the size of the function call parameters and the location 
of the corresponding data. GPU kernel implementations assume 
that their parameters reside on the GPU memory: it is the 
responsibility of the runtime to hide this fact to the calling 
application, and to maintain a mapping between data structures 
residing on CPU and on GPU memories. As we will see, data is 
not transferred to the CPU memory at the end of each GPU kernel 
invocation, but only when required. 

Note that each computational kernel – whether it targets the 
CPU or GPU – is essentially a “black box” to the runtime: the 
only visible data transfers which can be optimized by the runtime 
pertain to the function arguments, and not to the data structures 
within the kernel itself. In other words, the runtime aims at 
minimizing CPU-GPU data transfers; optimizing data transfers at 
different level of the GPU memory hierarchy is outside the scope 
of this work.    

Figure 1 depicts our proposed runtime. It consists of two 
modules: function call handler and memory access handler. The 
function call handler intercepts kernel calls, determines which 
kernel implementations (CPU or GPU) to instantiate, and invokes 
them. The memory access handler maintains a mapping between 
CPU and GPU data structures, and handles data transfers and 
synchronizations. The services offered by the memory access 
handler are available to the function call handler through an API. 

We now give more details on the two modules. 

4.2 Function Call Handler 
The function call handler intercepts predefined kernel calls and 
invokes proper library implementations depending on the call 
parameters and the data location. For each kernel fn having 
(read-only) input parameters in_pars and (write-only) output 
parameters out_pars, the module contains a function whose 
structure is exemplified in the pseudo-code below (void is used 
for illustration only).  

The mam object (at lines 4, 7, 9, 11 and 13) represents the 
interface offered by the memory access module, that we will 
describe in more detail in the next section. 

 
(1) void fn(in_pars, *out_pars){ 
(2)   /* determine the best target for fn */ 
(3)   if(eval_loc(&fn,in_pars,out_pars)==CPU){ 
(4)     for (p in in_pars) mam->sync(p); 
(5)     /* schedule on CPU */ 
(6)     cpu_fn(in_pars,out_pars); 
(7)     for (p in out_pars) mam->set_cpu(p); 
(8)   }else{ 
(9)     in_pars_d = out_pars_d = Ø; 
(10)     for (p in in_pars)  
(11)       in_pars_d U= mam->get(p,true); 
(12)     for (p in out_pars) 
(13)       out_pars_d U= mam->get(p,false); 
(14)     /* schedule on GPU */ 
(15)     gpu_fn(in_pars_d, &out_pars_d); 
(16)     for (p in out_pars) mam->set(p); 
(17)   } 
(18) } 

 
The cpu_fn and gpu_fn routines (at line 6 and 15, 

respectively) represent the CPU and GPU implementation of the 
intercepted kernel. Under GNU/Linux based operating systems, 
the function call handler can be dynamically linked to the 
application through the LD_PRELOAD directive. Pointers to 
cpu_fn and gpu_fn are obtained using the combination of 
dlopen/dlsym directives (the pointer to cpu_fn can also be 
obtained simply using dlsym and setting the handle to 
RTLD_NEXT). 

The eval_loc routine (line 3) is also defined within the 
function call handler, and determines the best target for the 
intercepted function call. This decision is made by estimating the 
data transfer time of the input parameters and the kernel execution 
time on both CPU and GPU. We reiterate that the runtime 

CALL 
INTERCEPTION

DECISION POLICY

DATA SYNC +
CALL REDIRECTION

FUNCTION CALL HANDLER

CPU-GPU 
MEMORY MAPPING

CPU-GPU DATA 
SYNCHRONIZATION

MEMORY ACCESS HANDLER

GPU MEMORY 
FULLNESS HANDLING

location()

sync()
get()
set()

set_cpu()

 
Figure 1: Block diagram of our runtime system. 
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transfers (input) data only when they do not reside on the memory 
of the executing processor.  eval_loc queries the memory 
access module for the location of each input parameter, and 
estimates the data transfer time based on the parameter size. In 
case of GPU execution, eval_loc considers the size and the 
location of the output parameters to determine whether the GPU 
has enough free memory to allocate them. In order to estimate the 
kernel execution time on both CPU and GPU, eval_loc uses 
profiling information. In particular, for all considered kernels, we 
measured the CPU and GPU execution time for different input 
parameters and we obtained the input size/execution time 
characteristic. At runtime, the eval_loc routine uses the actual 
input parameters to locate the operation point. 

If the eval_loc routine establishes that the execution 
must happen on the CPU (lines 3-7), then the cpu_fn kernel 
must be invoked. Before its invocation, all input parameters must 
be synchronized (line 4). As we will see, mam->sync will have 
no effect if the CPU has an up-to-date copy of the data. After 
kernel execution, the output parameters are marked as residing on 
the CPU (line 7). This operation does not imply any data transfer. 

If the kernel execution must take place on the GPU (lines 9-
16), then gpu_fn is invoked (line 15). However, this kernel 
implementation operates on GPU memory. Therefore, a local 
copy of all input and output parameters (in_pars_d and 
out_pars_d) must be created (lines 9-13). For each parameter, 
the mam->get function returns the pointer to that copy (and, if 
necessary, allocates the corresponding memory on GPU). The last 
parameter of the mam->get call specifies whether the GPU must 
have an up-to-date copy of the data, which is necessary only for 
the input parameters. After kernel execution, the output 
parameters are marked as residing on the GPU (line 16). Again, 
this operation does not imply any data transfer. 

4.3 Memory Access Handler 
The goal of the memory access handler module is to orchestrate 
data transfers and synchronizations between CPU and GPU 
memory. In order to do so, it maintains a mapping between CPU 
and GPU memory regions. In particular, GPU global memory is 
seen as a set of non overlapping data blocks, each of them 
corresponding to a CPU data block. The mapping is stored in the 
data block list, a linked list of data_block_t structures, as 
represented below. 
 
typedef enum {SYNCED,ON_CPU,ON_GPU} sync_t; 

 
typedef struct { 

void *cpu_addr; 
void *gpu_addr; 
size_t size; 
sync_t sync; 
time_t timestamp;  

}data_block_t; 
 

Each data block has a CPU address cpu_addr, a GPU 
address gpu_addr, a size expressed in bytes, a 
synchronization status (sync) and a timestamp indicating the 
last access to the block. The synchronization status indicates 
whether the content of CPU and GPU blocks is synchronized 
(SYNCED) or whether the up-to-date copy of the data resides in 
CPU memory/GPU memory (ON_CPU/ON_GPU). Note that, 
since the application runs on the CPU and the runtime operates at 
the granularity of the function call, the memory access module 

allocates GPU memory (and updates the data block list) only 
when the runtime invokes the GPU implementation of an 
intercepted function.  

The memory access handler offers primitives that are invoked 
by the runtime. The bulk of the CPU-GPU memory mapping’s 
handling is performed within the get primitive, which is invoked 
by the runtime on all the parameters of a GPU kernel call.  

void *get(void *cpu_addr, size_t size, bool 
update) throw Exception 

Given a CPU memory block, get returns the pointer to the 
corresponding GPU memory block, and throws an exception if the 
block does not exist and cannot be allocated or transferred. If the 
parameter update is set to true, then the content of the GPU 
memory block must be up-to-date. This is typically valid when get 
is invoked on an input parameter of a function call, but is not 
required when this routine is called on an output parameter. For 
NVIDIA’s GPUs, get uses cudaMalloc and cudaMemcopy [8] 
to perform memory allocations and data transfers. 

When get is invoked, one of the following situations can 
occur (Figure 2). First, the required data block does not reside in 
GPU memory. In this case, a GPU memory allocation is performed, 
and a new entry is added to the data block list. The memory 
allocation is followed by a data transfer (from CPU to GPU) only if 

C=0xE0000700
G=0x54000000

size = 256 B
SYNCED

C=0xE0000000
G=0x55000000

size = 256 B
SYNCED

C=0xE0000000
G=0x55000000

size = 2048 B
SYNCED

C=0xE0000200
G=0x55000300

(a)

result=0x55000300 

size = 4096 B
ON_GPU

C=0xE0000000
G=0x55000000

C=0xE0000000
G=0x55000000

(b)

result=0x55000200 

size = 256 B
ON_GPU

size = 1024 B
SYNCED

C=0xE0000000
G=0x55000000

size = 256 B
ON_CPU

C=0xE0000500
G=0x55002000

C=0xE0000000
G=0x54000000

(c)

result=0x54000200 

Data block list beforeget() Data block list after get()

size = 4096 B
ON_GPU

size = 2560 B
SYNCED

 
Figure 2: Examples of the outcome of invoking 
get(0xE0000200, 2048B, true) in different situations: (a) the 
requested data block is not yet allocated; (b) the requested 
data block is already present in GPU memory and its content 
is up-to-date; (c) the requested data block overlaps with 
several data blocks previously allocated. In all cases, we show 
the content of the data block list before (left hand side) and 
after (right hand side) the get’s invocation, as well as the 
result of the operation (C=cpu_addr, G=gpu_addr) and the 
returned data block (highlighted in dark grey). 
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the update parameter of the get call is set to true. Second, the 
required data block already resides in GPU memory (possibly as 
part of a larger block). In this case, no memory allocation is 
required, and the content of the data block list is used to return the 
proper GPU address. A data transfer (from CPU to GPU) is 
performed only if the update parameter of the get call is set to 
true and the sync attribute of the block is equal to ON_CPU. In 
fact, no data transfer is needed if the GPU has already an up-to-date 
copy of the data. Finally, the requested data block – say BREQ - 
spans multiple existing blocks Bi and possibly extends beyond them. 
In this case, it is necessary to allocate a new data block BNEW which 
covers BREQ and all the Bi. Each Bi can then be de-allocated and 
removed from the data block list. To understand why, consider that 
GPU kernels are a black box to the runtime, and that their 
parameters must point to contiguous memory regions. Again, the 
data transfer of block BNEW from CPU to GPU is required only if the 
update parameter of the get call is set to true. However, if some 
Bi have attribute sync equal to ON_GPU, the portion of BNEW 
overlapping them must be restored from GPU memory before their 
de-allocation. In Figure 2 (c) the following sequence of operations is 
assumed: first, block (cpu_addr=0xE0000700, size=256) is 
copied from GPU to CPU; second, all three blocks on the left hand 
side are de-allocated and removed from the data block list; finally, 
block (cpu_addr=0xE0000000, size=2560) is allocated and 
copied from CPU to GPU. 

GPU kernel execution only affects GPU memory. The runtime 
does not enforce any GPU to CPU memory transfer after the 
invocation of a GPU kernel.  Data consistency is ensured by 
invoking set on the output parameters of the GPU kernel call.  

void set(void *cpu_addr) throw Exception 

Given a CPU address, this routine sets the sync attribute of 
the corresponding data block to ON_GPU. An exception is thrown if 
such block cannot be found in the data block list.  

When a kernel is invoked on CPU, the runtime must ensure 
that the CPU memory has an up-to-date copy of all input 
parameters. This is done with sync: 

void sync(void *cpu_addr, size_t size) throw 
Exception 

This function checks whether the data block list has one or 
more blocks Bi containing addresses in the range [cpu_addr, 
cpu_addr+size] and having attribute sync equal to ON_GPU. 
In this case, blocks Bi are copied to the CPU (and their attribute 
sync is set to SYNCED). Note that no action is required if the given 
address range is not mapped to GPU memory. An error during data 
transfer will cause an exception to be thrown. 

After execution of a CPU kernel call, output parameters must 
be marked as residing on the CPU memory. This is accomplished by 
calling the set_cpu function. 

void set_cpu(void *cpu_addr, size_t size) 

This function sets the sync attribute of data blocks containing 
the given address range to ON_CPU. Again, no action is required if 
the data block list contains no such blocks. 

As mentioned earlier, the eval_loc primitive in the function 
call handling module must obtain from the memory access module 
information about the location of the input parameters. This is 
achieved through the location function. 

sync_t location(void *cpu_addr,size_t size) 

location returns ON_GPU if the given address range belongs to 
a block B in the data block list, and the attribute sync of B is not 
equal to ON_CPU. In all other cases, ON_CPU is returned. Note 
that the goal of this function is to report whether invoking the 
get operation on the given address range would cause any GPU 
memory allocation and/or data transfer. This holds whenever 
location returns ON_CPU. 

Finally, the memory access module provides a free 
primitive. 

void free (void *cpu_addr, size_t size) throw 
Exception 

free eliminates from the data block list all entries 
containing addresses from the given address range, and frees the 
corresponding GPU memory. This function is invoked in two 
circumstances: when the application de-allocates data, and when 
GPU memory runs full. In the latter case, the runtime uses the 
timestamp field in the data_block_t structure to determine 
the least recently used blocks. “Dirty” blocks are copied back to 
CPU before GPU de-allocation. 

When running legacy applications, accesses performed 
outside intercepted function calls to address ranges mapped on 
GPU can originate data inconsistency problems. In the 
experiments presented in this work, we performed source code 
inspection and determined all accesses to variables which could 
potentially be modified by the intercepted function calls. We then 
modified the application by adding a call to sync before every 
memory read, and to set_cpu after every memory write to these 
variables. In [7] we describe operating system modifications to 
avoid this manual operation. The idea is to mark pages mapped to 
GPU as invalid, and to modify the page fault handler so that it 
will interact with our runtime and automatically call the proper 
function whenever a page fault is detected. In particular, handling 
will be performed within the runtime if the page fault involves a 
page mapped to GPU, whereas the page fault handler will resume 
its normal operation otherwise. 

4.4 Additional Considerations 
The runtime can be extended to support multiple GPUs or other 
devices connected to the CPU through the PCI-bus and having a 
local address space (e.g. FPGA-based accelerators). The 
extensions, which primarily involve the memory access module, 
depend on whether the design allows the same data to reside at 
the same time on multiple devices. The interested reader can find 
more discussion on this aspect in [7]. 

5. EXPERIMENTAL EVALUATION 
In this section, we present some experimental results. 

5.1 Methodology 
We run our experiments on a heterogeneous workstation 
consisting of an Intel Xeon quad-core CPU and an NVIDIA Tesla 
C870 GPU. Table 2 shows the details of the architecture. As 
workloads, we used two real applications – K-means and SSI 
classification – as well as two synthetic applications consisting of 
various combinations of kernels, as summarized in Table 3.  

The first application consists of two kernels, Sort (quick sort 
algorithm) and Reduce. Sort is implemented on the CPU using 
Intel TBB while Reduce is implemented using pthreads (in both 
cases, four threads are used). Both are implemented on the GPU 
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using CUDA 2.3. The GPU version of Reduce is from CUDA 
SDK [31].  

K-means is the well-known clustering algorithm used in 
image segmentation [32]. We use Lloyd’s algorithm [33] to select 
k means given n points (e.g., pixels in an image). Starting with an 
initial value for the k means, the algorithm proceeds iteratively. 
Each iteration consists of three parallelizable kernels that we call 
K1, K2 and K3. K1 calculates the Euclidean distance between the 
n points and the current k means. K2 picks the closest mean for 
each point, and K3 updates the values of the k means by averaging 
all points closest to each mean. Since K3 could only be 
parallelized into k threads, and k is small (under 64), it was 
always faster on the CPU. We implemented K1 and K2 on both 
the CPU and GPU using Intel’s MKL [26] and CUDA 2.3 
respectively. 

The third application consists of two kernels, SpMV and 
topk_rank. SpMV [31] performs sparse matrix-vector 
multiplication. For topk_rank, the same kernel used in the 
example of Section 3, we use our own implementation on both 
CPU (using pthreads) and GPU (using CUDA). 

Finally, SSI classification uses two kernels (dense matrix 
multiplication and topk_rank) and has been described in Section 
3. 

For all applications, we measure wall-clock processing as 
well as data transfer times. In the experiments that use our data-
aware runtime system, we also accounted for the overhead due to 
call interception and runtime scheduling.  

5.2 Results 
In this section, we report our findings using our data-aware 
runtime for the above applications. 

5.2.1 Sort and Reduce  
Figure 3 shows the performance of running Sort and Reduce on 
CPU and GPU separately. The GPU performance bars show the 
split costs for real processing, memory allocation and data 
transfer. We see that Sort on GPU is slightly faster for small data 

Table 3: Benchmarks. 
Apps Description Input Size 
Sort + 
Reduce 

Synthetic benchmark 
with parallel sorting 
and parallel reduction 
kernels 

Data size from 4K 
elements to 1024K 
elements 

K-means Clustering algorithm 
used in image 
segmentation 

1K to 1M pixels 
clustered into 32 regions 

SpMV+  
topk-
rank 

Synthetic benchmark 
with sparse matrix-
dense vector 
multiplication and top 
k ranking 

Sparse matrices with 
100-700K 
rows/columns, up to 
3.9M non-zeros 

SSI Supervised Semantic 
Indexing of documents 
based on  text queries 

1.8M documents with 
32-96 simultaneous 
queries  
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Figure 3: Processing and data transfer time for Sort and Reduce on GPU (left) and CPU (right). The GPU is faster for Sort 
while the CPU is faster for Reduce. 

Table 2: Experimental setup. 

 CPU GPU 
Model Intel Xeon E5420 Tesla C870
Cores 4 128 
Frequency 2.5 GHz 1.35 GHz 
Memory size 12 GB 1.5 GB 
Threading API Pthreads, TBB CUDA 2.3
Compiler gcc  -O3 nvcc 2.3 –O3
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sizes (4K elements) and much faster as the data size increases. For 
Reduce, the CPU multithreaded version is faster than the GPU 
implementation.  

When running an application consisting of multiple kernels, 
a data-agnostic scheduler assigns each kernel to the computational 
unit that offers the best performance, in this case the GPU for Sort 
and the CPU for Reduce. However, being unaware of data 
location, such a scheduler leads to data transfers before and after 
each GPU kernel invocation. The data-agnostic runtime must do 
this since it is unaware of which kernel may be invoked next, as is 
the case for legacy code. As can be observed, the transfer time is 
not trivial for large data sizes. Our runtime keeps track of data 
location, delays data transfers and takes the cost of data transfers 
into consideration when performing online scheduling decisions. 

Figure 4 compares the performance of a data agnostic 
runtime with our data-aware runtime, where the data-agnostic 
runtime schedules kernels on the processor that is estimated to be 
faster, regardless of data location. In this case, a data-agnostic 
scheduler would always pick the GPU for Sort and CPU for 
Reduce. Our data-aware runtime schedules both kernels on the 

CPU when data size is small (4K elements), but picks the GPU 
for Sort and CPU for Reduce for intermediate data sizes (8K-
16K), and runs both kernels on GPU for larger data. While there 
is a small performance loss due to our runtime overhead (under 
2%) for small data sizes, we achieve around 20% performance 
improvement when these kernels work with 256K or more 
elements.  

5.2.2 K-means 
We recall that K-means has two candidate kernels K1 and K2. 
The third kernel K3 is always faster on the CPU, and with 
negligible data transfer into and out of K3, it is always scheduled 
on the CPU. We segmented random images of sizes ranging from 
1K pixels to 1M pixels into 32 clusters (i.e., k = 32). We found 
that for small images (specifically 1K and 4K pixels), the CPU 
was faster than the GPU for kernel K1 (it used MKL sgemm for 
most of its Euclidean distance computation), but the GPU was 
faster (with its CUBLAS sgemm implementation [27]) for larger 
images. Our custom implementation of Kernel K2 was faster on 
the GPU for images 4K or larger. Figure 5 shows the performance 
of K-means with data-agnostic and data-aware runtimes for small 
images and large images. Labels above the bars indicate the 
schedule for the two kernels. While the two runtimes schedule the 
kernels the same way for 16K and larger images, the performance 
improvement with the data-aware runtime is due to the 
optimization of data transfers. Specifically, after kernel K1 runs 
on the GPU, the runtime postpones the data transfer back to the 
CPU until K2 has been scheduled. From the figure, we see the 
data-aware runtime improves performance by up to 25% for both 
large and small data sets. Figure 6 shows the performance profile 
of the 3 different kernels in K-means. The data-aware runtime 
profile is shown on the left, and the data-agnostic on the right. We 
see that the data transfer portion of the profile is significantly 
reduced by the data-aware runtime resulting in the 25% 
performance improvement. 

5.2.3 SpMV and topk_rank 
Sparse matrix (SpMV) performance on the CPU and GPU depends 
on the number of non-zeros in the matrix. For our experiments, 
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we use three matrices (ranging in size from 100 to nearly 700K 
rows/columns, and up to 3.9M non-zeros, obtained from [36]) 
each multiplied by 64 and 128 dense vectors, as shown in Table 4. 
For each case, we multiply a given sparse matrix with the vectors, 
and select the top 64 elements of each result vector. The data-
agnostic runtime selects a schedule solely based on the estimated 
performance of the kernel, while our data-aware runtime selects 
the schedule based on estimated performance as well as the 
estimated data transfer overhead. For this benchmark, although 
our runtime chooses the same schedule as the data-agnostic 
runtime, it has better performance (for SparseM2) due to the fact 
that it defers data transfer and figures out it can avoid them. For 
SparseM2, once the SpMV has executed on the GPU, the data is 
not transferred back to the CPU until the next kernel is 
encountered a decision made regarding its schedule. We see 
improvements of up to 21% for SparseM2, but do not 
significantly affect the performance of the other matrices (our 
runtime overhead is under 2%). 

5.2.4 Supervised Semantic Indexing (SSI) 
We ran SSI with 32, 64 and 96 parallel queries, semantically 
searching the Wikipedia database consisting of 1.8M documents. 
SSI has two compute-intensive kernels: matrix multiplication 
sgemm and topk_rank. Table 5 shows the schedules and overall 
SSI performance in milliseconds per query for each case under a 
data-agnostic and our data-aware runtime. We see a performance 
improvement of 21.7% for 96 queries, of 4.4% for 64 queries and 
a negligible degradation for the small data set. 

6. CONCLUSION, FUTURE DIRECTIONS 
We presented a runtime for heterogeneous platforms consisting of 
one or more multi-core CPUs coupled with one or more many-
core GPUs via a non-coherent interconnect. The CPU and GPU 
do not have shared memory. The runtime provides a unified 
memory view to the programmer, and aims at enabling legacy 
programs to run seamlessly on the heterogeneous platform with 
higher performance. 

The key contribution is making the runtime data-aware. The 
proposed runtime schedules computations as well as data transfers 
taking into account the estimated performance and the time 
required to move data. In doing so, it may schedule a kernel on 

the slower processor simply because of data proximity. It also 
defers transferring data until necessary; thus, a kernel that runs on 
the GPU will not have its data transferred back to the CPU even 
though the runtime is unaware of when the data will be used in 
future. Rather, when another kernel requires those data, the 
runtime decides if they should be moved to a different processor, 
or the kernel should be scheduled on the processor hosting the 
data. 

We implemented the data-aware runtime and evaluated it on 
a heterogeneous platform with a quad-core x86 CPU and an 
NVIDIA Tesla C870 (128-core) GPU. For synthetic as well as 
real applications, our runtime shows a performance improvement 
of up to 25% when compared to a runtime that schedules in a 
data-agnostic manner. 
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