
Exploiting the Forgiving Nature of Applications for Scalable Parallel Execution

Jiayuan Meng†‡, Anand Raghunathan†§, Srimat Chakradhar†, and Surendra Byna†
† NEC Laboratories America, Princeton, NJ

‡ Department of Computer Science, University of Virginia, Charlottesville, VA
§ School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN

Abstract—It is widely believed that most Recognition and
Mining (RM) workloads can easily take advantage of paral-
lel computing platforms because these workloads are data-
parallel. Contrary to this popular belief, we present RM
workloads for which conventional parallel implementations
scale poorly on multi-core platforms. We identify off-chip
memory transfers and overheads in the parallel runtime library
as the primary bottlenecks that limit speedups to be well below
the ideal linear speedup expected for data-parallel workloads.
To achieve improved parallel scalability, we identify and exploit
several interesting properties of RM workloads — sparsity
of model updates, low spatial locality among model updates,
presence of insignificant computations, and the inherently
self-healing nature of these algorithms in the presence of
errors. We leverage these domain-specific characteristics to
improve parallel scalability in two major ways. First, we
utilize data dependency relaxation to simultaneously execute
multiple training iterations in parallel, thereby increasing the
granularity of the parallel tasks and significantly lowering
the run-time overheads of fine-grained threading. Second, we
strategically drop selected computations that are insignificant
to the accuracy of the final result, but account for a dispro-
portionately large amount of off-chip (memory and coherence)
traffic.

Through the application of the proposed techniques, we
show that much higher speedups are possible on multi-core
platforms for two important RM applications — document
search using semantic indexing, and eye detection in images
using generalized learning vector quantization. On an 8-
core platform, we achieve application speedups of 5.5X and
7.3X compared to sequential implementations. Compared to
conventional parallel implementations of these applications
using Intel’s TBB, the proposed techniques result in 4.3X and
4.9X improvements. Although the optimized parallel imple-
mentations are not numerically equivalent to the sequential
implementations, the output quality is shown to be comparable
(and within the margin of variation produced by processing
the input data in a different order). We also explore error
mitigation techniques that can be used to ensure that the
accuracy of results is not compromised.
Keywords-Best-effort computing; Parallel computing; Par-

allel programming; Recognition; Mining; Multi-core; Depen-
dency relaxation.

I. INTRODUCTION

Recognition and Mining (RM) represent an emerging
class of computing workloads that are expected to be preva-
lent on future multi-core and many-core computing plat-
forms. RM applications address the digital data explosion
problem by building mathematical or statistical models that
help us to interpret and understand raw data, and use these
models to search through massive amounts of data [8], [12].
Several studies have demonstrated that many RM algorithms
are data parallel workloads and can easily take advantage
of parallel computing platforms [9], [22]. In other words,
their performance is expected to scale well on future multi-
core and many-core platforms. While this claim is true for
a good number of RM workloads, we demonstrate that not
all RM workloads fit this stereotype. In other words, some
important RM applications contain significant parallelism
that cannot be profitably exploited on current multi-core
platforms using conventional parallel implementations. We
present and analyze two representative applications that fall
into this category: document search based on Supervised
Semantic Indexing (SSI), and eye detection in images based

on Generalized Learning Vector Quantization (GLVQ). We
address the challenge of improving the performance of
these applications on multi-core platforms. Towards that end,
we propose a domain-specific parallelization technique that
leverages the computational structure and domain character-
istics of RM applications.

In this work, we specifically consider RM algorithms that
follow a computational template wherein a model or inter-
mediate result is iteratively refined based on the provided
input training or testing data. The reads and writes to the
model introduce data dependencies between successive “iter-
ations”. In conventional parallel implementations, iterations
are therefore executed serially, and parallelism within each
iteration is exploited. This approach, however, may limit the
algorithms’ parallel scalability due to a variety of factors
such as the granularity of parallelism, or communication and
synchronization between parallel tasks. To address this issue,
we propose an alternative approach to parallelizing RM
algorithms, which creates and exploits parallelism across
iterations by judiciously relaxing or ignoring some of the
data dependencies between iterations. Our approach goes
beyond conventional parallel implementation techniques be-
cause we focus on obtaining comparable output quality
rather than imposing the restriction of maintaining numerical
equivalence to the sequential implementation. The following
insights into the target applications allow us to take this
approach:

• Each iteration is likely to update only a small, data-
dependent portion of the model. We refer to this as the
sparsity of model updates.

• Successive iterations are highly likely to update differ-
ent parts of the model. In other words, model modifi-
cations display minimal locality across iterations.

• Occasional errors introduced in the model by executing
iterations in parallel while relaxing data dependencies
can be tolerated by the inherently resilient (statistical
and self-correcting) nature of RM algorithms, causing
either imperceptible or acceptable variation in the final
output.

From a more general perspective, these properties attribute
to the forgiving nature of RM applications: they accept input
data that is noisy and redundant, they perform computations
that are statistical in nature, and they can produce a large
number of (numerically) distinct solutions that are all con-
sidered equivalent or acceptable. In the context of parallel
computing, this forgiving nature implies that numerical
equivalence of results between parallel and sequential imple-
mentations is not mandatory; different implementations are
equivalent as long as they produce results of similar quality
(classification accuracy, detection probability, relevance of
search results, etc.).

Figure 1 qualitatively demonstrates the net effect of the
proposed techniques, which is to improve application per-
formance and scalability with increasing numbers of cores.
This is achived in two ways. First, dependency relaxation
allows coarse-grained parallelism with minimal commu-
nication or synchronization. Its performance can scale to
a larger number of cores until other limits such as the

978-1-4244-6443-2/10/$26.00 ©2010 IEEE

Figure 1. Conceptual illustration of impact of data dependency relaxation
on performance and parallel scalability of RM applications

off-chip bandwidth bottleneck set in due to memory and
coherence traffic. We demonstrate that the impact of off-chip
bandwidth on performance scaling can be alleviated by once
again exploiting the forgiving nature of RM applications.
We identify a small set of computations that have minimal
impact on the output, but cause a disproportionate amount of
memory or coherence traffic. These computations, together
with the associated memory accesses, are dropped, resulting
in improved parallel scalability.

In our previous work [25], we proposed the concept
of best-effort parallel computing and introduced a parallel
programming model that naturally emobides this concept.
In this paper, we study RM applications’ parallel scaling
bottlenecks in detail and apply best-effort techniques to
address these bottlenecks. Specifically, this paper makes the
following contributions:

• The bottlenecks in scaling two significant RM applica-
tions are investigated quantitatively using state-of-the-
art profiling tools.

• The forgiving nature of these applications is character-
ized to justify the proposed techniques.

• Data dependency relaxation is suggested as a tool to
mitigate runtime library overheads.

• Memory and coherence traffic is reduced to address
the bandwidth bottleneck by leveraging the forgiving
nature to drop non-critical memory operations and their
corresponding computations.

• New techniques are proposed to mitigate the loss of
output quality due to the use of best-effort techniques.

We apply our techniques to the SSI and GLVQ ap-
plications and evaluate the improvements in performance
and scalability on an 8-core Dell Poweredge 2950 server
platform. Overall, we achieved application speedups of upto
5.5X and 7.3X respectively over sequential implementations.
These correspond to speedups of 4.3X and 4.9X respectively
over conventional parallel implementations using Intel’s
Threading Building Blocks (TBB) [21]. Although our paral-
lel implementations do not preserve numerical equivalence
with the sequential implementation, we argue that this is
perfectly acceptable for RM applications, where there is
often no “golden” result (e.g., providing input data in a dif-
ferent order leads to a different result even for the sequential
implementation). We demonstrate that our optimized parallel
implementations produce results of comparable quality (the
output falls within a small, tolerable range). In addition,
we propose techniques that can be used to mitigate any
loss of quality, and demonstrate that identical accuracy
can be achieved while maintaining significant performance
improvements.

The rest of the paper is organized as follows. In Section II,
we describe the applications used in our work, and the

underlying algorithms. In Section III, we motivate our work
by analyzing conventional parallel implementations of these
applications on an 8-core platform and demonstrating their
scaling bottlenecks. In Section IV, we analyze the relevant
characteristics of RM applications to make a case for data
dependency relaxed parallel implementations, supporting
our observations through empirical data. In Section V, we
present data dependency relaxed versions of the SSI and
GLVQ algorithms, and examine the impact of the proposed
technique on application performance and output quality. In
Section VI, we present techniques to address the off-chip
bandwidth bottleneck by dropping selected computations
that have insignificant impact on the output but cause
disproportionately high memory or coherence traffic. In
Section VII, we present techniques to mitigate the impact of
data dependency relaxation on applications’ output quality.
We present related work in Section VIII, and conclusions in
Section IX.

II. BACKGROUND

In this section, we introduce two representative RM ap-
plications that are used as drivers for this work. Specifically,
we consider document search using Supervised Semantic
Indexing (SSI) [2], and eye detection using Generalized
Learning Vector Quantization (GLVQ) [26], [30], [28].
For both applications, training or building the underlying
model is much more computation-intensive than applying
the learned model; therefore, we focus on the training phase.
As shown in the next section, these applications represent
RM workloads that are not easily scalable in performance on
multi-core platforms. While we use these two applications
for our demonstration, we believe that our observations and
the proposed techniques apply to other RM workloads with
similar characteristics, as discussed further in Section V.

A. Supervised Semantic Indexing
Supervised Semantic Indexing [2] is an algorithm used for

ranking documents in a corpus or database based on their
semantic similarity to a given text-based query. It performs
this by establishing a direct association between the word
content of a document and its similarity score, taking into
account correlations between words due to synonymy and
polysemy. It has demonstrated state-of-the-art performance
in accuracy on large data sets such as Wikipedia [2].

In SSI, each document is represented by a vector of
TFIDFs for each word in the vocabulary 1. The TFIDF is
a product of Term Frequency (TF) and Inverse Document
Frequency (IDF). TF measures the importance of a word in
a document. It is the ratio of the number of occurrences of
a word in a document to the total number of occurrences of
all words in that document. IDF is a measure of the general
importance of a word in all documents. The IDF of word
is obtained by dividing the number of all documents by the
number of documents containing the word, and then taking
the logarithm of that quotient [1]. Using the trained model,
this long TFIDF vector can be transformed to a much shorter
semantic vector, representing the likelihood of a document
in a number of machine-learned conceptual categories. The
dot product between two semantic vectors measures the
semantic similarity between their corresponding documents.
In the context of document search, documents are ranked and
retrieved based on their similarity with the query document.

The SSI model is learned similar to an artificial neural
network (ANN) [29]; the input nodes are the TFIDFs of
all words in the vocabulary, whose values correspond to

1Since each document is likely to contain only a small fraction of the
vocabulary, this vector is represented as a sparse vector.

Figure 2. The computation structure of SSI training and its dependency
analysis. Colored elements in q, d, and r represent words with nonzero
TFIDFs. In every iteration, only those colored rows in U that correspond
to nonzero TFIDFs are used and updated.

an input document. Each input node is connected directly
to all output nodes that represent a predefined number
of conceptual categories to be learned. The ANN can be
represented as a bias vector b with a length of C and a
weight matrix U sized N × C, where N is the number of
words in the vocabulary and C is the predefined number
of conceptual categories. The ith column of U stores each
word’s weight in contributing to the likelihood of a docu-
ment belonging to the ith conceptual category. This model
is refined in iterations, where each training iteration involves
three TFIDF vectors representing a query document (q), a
labeled relevant document (d), and an irrelevant document
(r). Figure 2 illustrates the computations involved in two
consecutive iterations of the SSI training algorithm. In each
iteration, the model is updated by performing the following
steps:

1) Forward propagation: each of the three documents
(q, d, and r) is fed forward through the network
independently, producing three semantic vectors, each
of which is calculated as weighted sums of TFIDFs
for each conceptual category (sq = qTU + bT , sd =
dTU + bT , and sr = rTU + bT).

2) Comparing relevancy: The relevance scores of d and
r to q are calculated as sq ·sd and sq ·sr, respectively,
where “·” denotes the dot product. If the score of d
is not greater than that of r by a specified threshold,
three feedback gradients vectors are set to nonzero
(gq = sd−sr, gd = sq , and gr = −sq). These gradient
vectors are then fed to the backward propagation step.

3) Backward propagation: it is only computed when the
gradient vectors are nonzero. It updates U and b using
q, d, and r, and the gradients. Each document’s TFIDF
vector is multiplied by their corresponding gradient
vector to generate a gradient matrix, which is scaled
according to a predefined learning rate ξ and added to
U using the equation U = U+ξ×(q×gT

q +d×gT
d +r×

gT
r). These gradient vectors are also scaled and added

to b using the equation b = b+ ξ × (gq + gd + gr).
In our experiments, we use Wikipedia’s corpus [17]

composed of 1,863,574 documents to train the model. The
number of words in the vocabulary (N) is 30,000 and the
number of conceptual categories (C) is selected as 200 in
order to provide sufficient modeling capacity while avoiding
over-fitting [11]. For each document, its relevant documents
are automatically labeled according to the links provided

Figure 3. The computation structure of GLVQ training and its dependency
analysis.

by Wikipedia (a document is relevant to all the other
documents to which it has links). The relevant document, r,
is randomly picked from the corpus. The TFIDF vector for
each document is computed in a pre-processing step before
the training process. While N is large and thus U is large as
well, not all rows of U are accessed in each iteration due to
the sparsity of words in q, d and r. In fact, of the 30,000 rows
in U , only those that correspond to nonzero components
in q, d and r are used to compute the semantic vectors in
the forward propagation. Moreover, it is exactly the same
rows in U that are updated in the backward propagation,
should the relevancy comparison determine that backward
propagation is necessary. Training is organized into epochs
— in each epoch, U is trained by 10,000 tuples of q, d
and r. At the end of each epoch, error is measured using
another set of 10,000 tuples of q, d and r. A testing instance
is regarded as successful if sq · sd > sq · sr. Accuracy is
calculated as the number of successful instances divided by
the total number of testing instances. Tuples used for testing
are different from those used for training.

B. Eye Detection Using GLVQ
GLVQ [26], [30], [28] is a supervised learning algorithm

that classifies an input vector into one of a pre-specified
number of categories or classes. It operates by measuring
the distances from the input vector to a set of trained
reference vectors. Each reference vector belongs to one of
the classes, while each class may have multiple reference
vectors associated with it. Given a set of trained reference
vectors, classification of new input vectors is performed by
just choosing the class that has the closest reference vector.

In the training process, reference vectors are learned using
labeled training vectors. Figure 3 illustrates the computations
involved in two consecutive iterations of the GLVQ training
algorithm. In each iteration, a training vector is processed
to update reference vectors in three steps:

1) The distances between the training vector and all
reference vectors are calculated.

2) Two reference vectors are picked for update: one is
the closest reference vector R1 in the same class as
the labeled training vector; the other is the closest
reference vector R2 among the reference vectors of
all other classes.

3) R1 and R2 are updated such that R1 moves closer to
the training vector, and R2 moves further away from
it.

In the application of the GLVQ algorithm to eye detection,
we are given an image segment (typically cropped from a
larger image), and need to determine whether it contains
an eye or not. Training and Testing vectors are computed
from the given images as histograms of gradients, where
each vector has 512 dimensions. The two categories, eye
and non-eye, have 64 reference vectors each. In the training
process, pre-labeled eye and non-eye images are used to train
the reference vectors. The reference vectors are initialized to
random training vectors in their corresponding category. The
training vectors are fed to the GLVQ training algorithm in
a randomized order. Once the training process is completed,
the model (reference vectors) may be used for classifica-
tion. Classification accuracy is calculated by dividing the
correctly classified image segments by the total number of
testing image segments.

III. MOTIVATION

In this section, we analyze the performance of the SSI and
GLVQ applications on an 8-core platform and show that they
exhibit poor performance scalability, motivating the domain-
specific parallelization technique proposed in this work.
While we use these two applications for demonstration, the
same principle applies to other RM workloads with similar
characteristics, as discussed further in Section V.

A. Parallel Scalability of SSI
We analyze the computational structure of the SSI training

algorithm to identify opportunities for parallelization, and
then discuss the measured performance of a conventional
parallel implementation on an 8-core platform.

As Figure 2 illustrates, consecutive iterations may have
RAW and WAW dependencies if they select two sets of
documents that share some common words — in such cases,
the previous iteration may update some rows of U that will
be used in the next iteration for calculating the semantic
vectors, and these rows may be modified again. Therefore,
training iterations have to be computed sequentially. It may
appear that there is still sufficient parallelism within the
most time-consuming phases (i.e., forward propagation and
back propagation in each training instance). However, as
shown next, this parallelism does not translate to significant
performance improvement on an 8-core platform.

We developed a parallel implementation of the SSI appli-
cation using Intel’s TBB, and evaluated it on the Dell Pow-
eredge 2950 8-core platform. We explored different ways of
parallelizing the SSI training algorithm. Both forward prop-
agation and backward propagation can be parallelized. At a
higher level, the computation of sq , sd, and sr during for-
ward propagation can be performed in parallel. In addition,
the calculation of each semantic vector can be parallelized
across different rows of U . The backward propagation for
each feedback gradient vector can be parallelized across
different rows of U as well. However, this conventional
parallel implementation results in poor scaling, as shown in
Figure 4(a) (only 1.3X speedup is achieved using 8 threads).

In order to determine the cause of the poor performance
and scalability, we used Intel’s VTune performance ana-
lyzer [32] to profile the training process as it executed
on the 8-core platform. We measured the breakdown of
processing cycles between the application and the run-
time overheads (TBB, the threading library). The results
in Figure 4(b) shows that the proportion of time spent
in run-time overheads increase from 17% to 50% as the

application scales from 1 thread to 8 threads 2. Besides
run-time overheads, SSI’s performance also suffers from
limited memory bandwidth. Due to the random selection
of documents from the large corpus and the large size of
the model, the memory requirements are quite high, and
only increase with larger numbers of threads. Using VTune,
we illustrate in Figure 4(c) that the bus utilization increases
beyond 50% with 6 threads 3. Moreover, a significant portion
of the bus bandwidth is consumed by the run-time libraries.

To further validate our conclusion, we changed the num-
ber of conceptual categories (to a very small value - 8,
and a large value - 800), and measured the performance
of the parallel implementation. The results are reported in
Figure 4(a). We observe that performance improvement from
parallelization is higher when the number of conceptual
categories (C) increases, which essentially gives each paral-
lel thread more workload and increases the computation-
to-memory-access ratio. However, increasing the number
of concepts beyond 200 increases the overall execution
time of the algorithm significantly without any noticeable
improvement in accuracy. In effect, we are creating a more
scalable workload by performing useless computation! We
expect scaling of the workload to be primarily in terms
of the size of the input data set (number of documents
in the corpus), and not the model (number of conceptual
categories). Therefore, we cannot expect future scaling of
the workload to mitigate the poor parallel scalability of the
SSI application.

B. Parallel Scalability of GLVQ
We first analyze the computational structure of the GLVQ

training algorithm to identify opportunities for conventional
parallelization that can be exploited using frameworks such
as OpenMP [4], Intel’s TBB [21], etc.

Figure 3 indicates that training vectors have to be pro-
cessed sequentially since there are read-after-write (RAW)
dependencies: the two reference vectors updated by the
previous training vector are used in the distance calculation
of the next training vector. There may also exist write-
after-write (WAW) dependencies should the next training
vector update the same reference vector(s) as the previous
training vector. Nevertheless, the major component of the
algorithm — the distance calculation between a training
vector and all reference vectors — can still be parallelized
across reference vectors or even across dimensions. In the
case of eye detection using GLVQ, distance calculation can
be parallelized across the 128 reference vectors each with a
dimensionality of 512. This parallelism may seem sufficient
to achieve speedup on an 8-core platform, however, as we
show below that is not the case.

We implemented the GLVQ-based eye detection appli-
cation described above in C++ and parallelized it based
on the distance calculation between each training vector
and the reference vectors. The parallel implementation was
developed using Intel’s Threading Building Blocks (TBB)
framework [21]. We considered a data set of 2400 images
of eyes and 3000 images of non-eyes for training. Images
were selected from the Yale face database [23] in grayscale
with a cropped size of 48 × 48. The parallel eye detection
application was evaluated on a Dell Poweredge 2950 8-core
machine (2-way SMP system with Intel Xeon E5320 quad-
core CPUs) with 12 GB memory running RedHat Enterprise
Linux 5.

2We use the same code for the single-threaded and multi-threaded
versions, so even the 1 thread case incurs a small overhead due to initializing
TBB.

3For the given multi-core platform, 60% utilization is the empirical limit
beyond which memory latencies increase drastically [24].

0 2 4 6 8
0

500

1000

1500

2000

Number of threads over 8 cores

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

8 concepts, accuracy=93.2%
200 concepts, accuracy=94.0%
800 concepts, accuracy=94.3%

(a) Parallel scalability (b) Run-time overheads with 200 concepts (c) Bus utilization with 200 concepts

Figure 4. Performance analysis of a conventional parallel SSI implementation

Figure 5(a) presents the performance of the parallel imple-
mentation as the number of threads varies from 1 to 8 (we
stop at 8 threads since the underlying hardware platform
is an 8-core system and further increase does not improve
performance). We present results for two scenarios - when
each class has 16 reference vectors (total of 32 reference
vectors), and when each class has 64 reference vectors (total
of 128). In the case of 64 reference vectors per class, we
observe that the parallel implementation improves perfor-
mance by only 1.6X from one to eight threads. Figure 5(a)
also suggests that the fewer the reference vectors there are,
the less scalable the performance is. Although this might
lead us to suggest that increasing the number of reference
vectors (beyond 64 per class) could lead to better scalability,
in reality this only increases the overall workload and does
not gain more accuracy due to the phenomenon of model
over-fitting [11].

Further analysis of the parallel implementation using
VTune [32] suggests that bandwidth is not the scaling bot-
tleneck of GLVQ — as Figure 5(c) shows, the bus utilization
is below 20% even with 8 threads. We further breakdown
GLVQ’s overall execution time in Figure 5(b). We observe
that the proportion of time spent in run-time overheads
increases from 4% to 54% as the application is scaled from 1
thread to 8 threads. The data suggest that the poor scalability
is because the granularity of parallelism is too small to be
profitably exploited on the given platform — each parallel
task generated by the application represents only a relatively
small amount of computation, and the run-time library and
thread management overheads are significant compared to
the task execution times.

C. The Scaling Bottlenecks
Analysis has shown that not all RM applications demon-

strate parallel scalability over a larger number of cores.
By partitioning the limited workload within every train-
ing instance, each parallel thread is frequently assigned a
small amount of computation. Such a fine-grained parallel
implementation leads to significant run-time overheads in
the threading library. Moreover, the increase in the number
of concurrent threads also results in more data requests
within the same period of time. Consequently, the band-
width demand may increase drastically and eventually limit
scalability. We identified several properties that relates to
the forgiving nature of RM workloads which entitle us to
address these bottlenecks.

IV. DOMAIN CHARACTERISTICS

The previous section shows that RM workloads such as
SSI and GLVQ demonstrate poor scalability on multi-core

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

5

10

15

20

25

Basis points (0.01%) of distinct words in the dictionary of 30,000 words

Pe
rc

en
ta

ge
 o

f d
oc

um
en

ts
 in

 a
ll

co
rp

us
(%

)

Distribution of the No. of distinct words in documents

Figure 6. Distribution of number of distinct words in the documents used
for SSI training, reflecting the fraction of the model updated in each training
iteration. This does not illustrate the likeliness that subsequent iterations
update the same part of the model, which will be shown in Figure 7(a).

platforms through conventional parallelization techniques.
In this section, we describe the characteristics of these
algorithms that form the basis for the proposed approach.

Both the algorithms described in Section III follow a
computational template wherein a model or intermediate
result is iteratively refined based on provided input training
or testing data. The reads and writes to the model introduce
data dependencies between successive “iterations”. In con-
ventional parallel implementations, iterations are therefore
executed serially, and only parallelism within each iteration
is exploited.

To further exploit parallelism beyond conventional tech-
niques, we leverage the key domain characteristic of RM
applications — their inherent forgiving nature. Most RM
applications accept input data that is noisy and redundant,
they perform computations that are statistical in nature, and
they can produce a large number of numerically distinct
solutions that are all considered equivalent or acceptable.
These properties imply that numerical equivalence between
the parallel and sequential implementations is not manda-
tory; different implementations are equivalent as long as
they produce similar results of similar quality (classification
accuracy, similarity scores, etc.). This enables us to improve
performance beyond what can be achieved by conventional

0 2 4 6 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of threads over 8 cores

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) 16x2 ref. vectors, accuracy=88.69%

64x2 ref. vectors, accuracy=90.43%

(a) Parallel scalability (b) Run-time overheads with 64 × 2 reference
vectors

(c) Bus utilization with 64× 2 reference vectors

Figure 5. Performance analysis of a conventional parallel implementation of GLVQ.

parallelization techniques.
We hypothesize that judiciously relaxing or ignoring some

of the data dependencies between iterations, thereby exploit-
ing parallelism across iterations, will lead to significant
improvements in parallel performance, without adversely
impacting the output quality.

To justify this hypothesis, we empirically analyze SSI
and GLVQ applications to demonstrate three characteristics:
write sparsity for an individual training iteration, low spa-
tial locality of writes between training iterations, and the
inherent error tolerance of the application.

A. Write Sparsity for Individual Iterations
Both SSI and GLVQ algorithms demonstrate write spar-

sity — each training iteration only updates a small portion
of the model. For SSI, some training iterations will not
update the model at all — for all epochs after the 10th
epoch, only 28% of the training instances actually trigger
backward propagation. Even for those training instances, the
number of updated rows in U depends on the total number
of distinct words with nonzero TFIDFs in the training doc-
uments (q, d, r). Figure 6 shows the distribution of number
of distinct words that are present in the documents in the
Wikipedia database. The figure shows that most documents
use only a tiny part of the entire vocabulary. The number
of distinct words in a document directly corresponds to the
portion of the model (U) that may be updated when the
document is used as training data in an iteration. On average,
a training instance composed of three documents updates
only 3.6% of the rows in U during backward propagation.
In the case of eye detection using GLVQ, only two out of 128
reference vectors (or about 1.6% of the model) are updated
in each iteration.

This write sparsity suggests that only a small part of data
modifications in the next iteration depends on the values
written in the previous iteration. It also suggests a possibility
that consecutive iterations are not likely to update the same
part of the model, which we then characterize quantitatively
as the spatial locality of writes across iterations.

B. Low Spatial Locality of Writes Across Iterations
Write sparsity suggests that each iteration updates only

a small part of the model. However, sparsity will not in
itself be useful if consecutive iterations update exactly the
same parts. Therefore, we need to study the locality of
model updates across consecutive iterations. From a different
perspective, when data dependencies are relaxed and training
iterations are parallelized, the application may be subject to
data races that would undermine output quality.

2 4 8 16
0

20

40

60

80

100

Batch Size
Pe

rc
en

ta
ge

 o
f d

at
a

up
da

te
d

pe
r b

at
ch

 (%
)

data written 2~3 times per batch
data written 4~7 times per batch
data written 8~15 times per batch
data written > 15 times per batch (negligible)

(a) SSI: Percentage of the model subjected to
data races vs. Number of training iterations exe-
cuted in parallel.

(b) GLVQ: Percentage of updates due to data races vs.
Number of training iterations executed in parallel.

Figure 7. Characterizing spatial locality of writes across iterations.

In SSI, we estimate the number of potential data races
by measuring the number of rows in U that are updated
simultaneously by multiple threads 4. According to the
number of parallel threads, training iterations are batched
and each batch is distributed across threads in parallel.
The percentage of model updates subjected to data races
is calculated by dividing the number of data races by the
total number of updated rows in U for a given batch. Data
is estimated using a trace of row numbers updated in each
training iteration, generated using sequential code. When we
hypothetically scale the number of parallel iterations to 8,
only 32% of the rows updated by a batch may be subjected to
data races. Figure 7(a) breaks down the percentage of rows
updated by an average batch according the degree of data
races they incur. We observe that even with eight threads,

4This is a worst-case value, since some of these potential data races could
result in no numerical difference to the model if the timing of updates results
in the same order as the sequential case.

very few rows (<7% of updated rows in U , or <1.3% of
U) are updated by more than four threads.

For eye detection with GLVQ, we characterize the number
of data races that could potentially occur if a batch of
training instances is executed in parallel. Data is collected
from a sequential execution trace, which is then used to
measure the number of times that a reference vector is
updated more than once within a given batch size. This
number is divided by the total number of reference vector
updates to compute a bound on the fraction of model
updates that can be incorrect due to data races. Figure 7(b)
illustrates the trend of percentage of model updates due to
data races with the number of iterations executed in parallel,
i.e., window size. Clearly, larger windows expose greater
parallelism across iterations, but also lead to more data races
and potential for degradation in the quality of the result. The
fraction of updates impacted by data races stays below 30%
even with a window of 10 iterations. While this seems like a
large number, as we show in the next sub-section, the errors
due to these data races are easily absorbed by the inherently
error resilient nature of the application, e.g., the errors may
be rectified by subsequent training iterations.

We note that the locality of updates is dependent on
the order in which training vectors are processed. For the
experiments described above, we did not alter the order
in which training data was presented to the algorithms by
the serial implementation of the applications. However, in
Section VII, we describe how this can be leveraged to
further mitigate the impact of data races due to dependency
relaxation.

C. Tolerance to errors - the forgiving nature of RM algo-
rithms

As described earlier in the paper, RM applications have
an inherently forgiving nature due to a variety of reasons
including redundancy and noisiness of the input data and
statistical nature of the constituent computations. We attempt
to characterize this forgiving nature by examining (i) how
errors in the model due to data races impact a single
iteration, and (ii) how subsequent iterations correct any
residual errors resulting in a self-healing behavior.

We characterize the self-correcting behavior of the SSI al-
gorithm by disturbing the updated rows of U in the 10000th
training iteration, and measuring the application-level error
rate (accuracy of the model in identifying similar documents)
after allowing varying number of training iterations to “cor-
rect” the error. The results are presented in Figure 8(a). We
observe that the effects of model perturbation are hardly
noticeable until the error magnitude reaches 128 times the
average change in model updates. Moreover, even errors of
such large magnitude can be eventually corrected by later
iterations.

In the case of eye detection using GLVQ, we observed
that the reference vectors are updated with an average offset
of 0.135 and a standard deviation of 0.006 (for a sequential
implementation). We perturb the reference vectors during
training by a range of magnitudes at the beginning of an
iteration and computed the probability that the iteration
would pick an incorrect reference vector to update as a result
of the perturbation. Figure 8(b) shows the results of this
experiment, and indicates that an iteration will rarely pick an
incorrect reference vector to update, unless the disturbance
to the current reference vector is more than 128 times larger
than normal changes in model updates. We note that in
practice, the “errors” introduced in a model due to data races
are unlikely to be so large due to the “converging” nature
of the model values. As a result, the occasional inaccuracy

0 2 8 32 128 512 2048 8192
13

14

15

16

17

18

19

of iterations after error injected

C
la

ss
ifi

ca
tio

n
er

ro
r (

%
)

Self−correcting nature of SSI

no disturbance
magnitude=16
magnitude=64
magnitude=128
magnitude=256

(a) SSI: Application-level error rate due to per-
turbation of the model vs no. of iterations after
the perturbation.

100 101 102 103 1040

1

2

3

4

5

6

Perturbation to reference vectorspr
ob

ab
ili

ty
 o

f p
ic

ki
ng

 in
co

rr
ec

t r
ef

er
en

ce
 v

ec
to

rs
 (%

)

Error tolerance of GLVQ iterations

(b) GLVQ: Probability of picking an incorrect
reference vector in an iteration for different mag-
nitudes of perturbation.

Figure 8. Characterizing error tolerance.

introduced to a portion of the model due to data races is not
likely to propagate to other parts of the model.

D. Comparing sequential and parallel implementations
The characteristics identified in this section suggest that

for the considered application domain, we could explore
parallel implementations that do not preserve numerical
equivalence with the sequential implementation. We argue
that this is perfectly acceptable for RM applications, where
there is often no “golden” result. For example, providing
input data in a different order leads to a different result even
for the sequential implementation. This provides a natural
tolerance range within which all outputs could be considered
equivalent.

Our objective is to show that proposed method improves
performance for comparable quality. Our paper compares
sequential and parallel implementations in two different
ways:

• Quality of solutions must be identical: performance
comparison between different methods are not based
upon time spent for a fixed amount of work, but time
spent to achieve a fixed accuracy (Section VI). This
is possible since many applications (including the two
considered in this paper) iteratively refine the model
until a specified accuracy is achieved. Under this com-
parison scenario, the proposed techniques may slightly
increase the number of iterations that the algorithm
needs to execute; however, this increase is significantly
outweighed by the greater efficiency in executing each
iteration.

• Quality of solutions is comparable: performance com-
parison between different methods are based upon time

spent for a fixed amount of work, with the precondition
that error in the output falls within a small tolerance
range (Section V and VII). The tolerable range of error
is obtained empirically from the sequential implemen-
tation.

V. DATA DEPENDENCY RELAXATION
The discussions in Section IV demonstrate that data

dependencies among iterations are sparse and can be relaxed
without significantly impacting the accuracy of the resulting
model. Therefore, we propose an alternative approach to
parallelizing RM algorithms that creates and exploits paral-
lelism across iterations through data dependency relaxation.
By allowing each thread to process different training in-
stances independently rather than process only a fraction
of a training instance, we create parallelism at a coarser
granularity with minimal communication and synchroniza-
tion overheads.

Although we demonstrate this approach on two examples,
we believe that our technique is applicable to a broader class
of applications, and it is most effective under the following
circumstances:

• When the training instances are small or sparse (e.g.
SSI), or when the size of the model is small (e.g., eye
detection using GLVQ), parallelizing the processing of
a single training instance cannot be profitably exploited
on current multi-core platforms using conventional par-
allel implementations.

• When the number of training instances is large, relaxing
the dependency among them may increase the granu-
larity of parallelism significantly.

• Each training instance updates only a small portion of
the model therefore error is less likely to accumulate
and can be self-corrected by later iterations.

Therefore, we believe that the same principles have po-
tential for application to other RM algorithms such as multi-
layer neural networks [29], Support Vector Machines [10],
and Hidden Markov Models [14].

Figure 9 presents data dependency relaxed versions
of the SSI and GLVQ algorithms using the iterative-
convergence programming template designed for RM
workloads [25]. The iterative-convergence template nat-
urally captures algorithms that perform a parallel com-
putation repeatedly until a specified convergence crite-
rion is reached. The parallel computation may be speci-
fied using constructs such as parallel_iterate and
parallel_reduce. In our implementation of the SSI
algorithm, the parallel_iterate represents one epoch
of training corresponding to 10,000 iterations, and is fol-
lowed by a parallel_reduce that computes the error on
a randomly selected testing set. The parallel_reduce
computation is straightforward to parallelize efficiently. Our
focus is on the parallel_iterate, which is difficult
to parallelize due to the dependencies between iterations
induced by the model updates. In the case of the GLVQ
algorithm for eye detection, the parallel_iterate rep-
resents the entire training algorithm, and the convergence
condition is specified to TRUE indicating that only one pass
is made through the training data.

For data dependency relaxation, the batch keyword is
used to specify that multiple iterations may be executed
in parallel while relaxing data dependencies between them.
The parameter to this keyword, the batch size, specifies the
maximum number of training instances that may be subject
to dependency relaxation.
A. Improvements in Performance Scalability

To justify our hypothesis that relaxing data dependencies
among training iterations improves performance scalability

while still generating acceptable accuracy, we implemented
dependency relaxed versions of both SSI and GLVQ al-
gorithms. We refer to this implementation as DR and the
conventional parallel implementation as Conventional. By
ignoring data dependencies, multiple parallel threads may
update the same part of the model simultaneously, resulting
in data races and it is not deterministic which value the
model will end up with. In all our experiments, each run is
repeated 5 times for SSI 5 and 100 times for GLVQ to even
out measurement errors introduced by run-time variability.

We consider the output model as acceptable if it falls
within a small, empirical error-tolerance range (less than
0.29%). The tolerance range is empirically obtained as the
variation in accuracy when the conventional implementation
is subjected to different orders in which input training
instances are considered. Note that the inherent nature of
RM algorithms is different from typical numerical algo-
rithms; even for the conventional implementation, there is
no “golden” result.

As a result of data dependency relaxation, SSI becomes
more scalable. Figure 10(a) compares the result of Con-
ventional and DR implementations. The speedup resulting
from the DR case with 8 threads is 3.1X instead of 1.3X
with the Conventional case. On the other hand, modeling
accuracy drops very minimally, from 93.95% to 93.84%.
Further analysis shows that while the run-time overhead is
drastically reduced and is no longer the bottleneck (Fig-
ure 10(b)), bus utilization increases close to 60% at six
threads, as shown in Figure 10(c). According to the VTune
Performance Analyzer, a bus utilization larger than 60%
leads to performance degradation, and it keeps SSI from
further performance scalability.

After data dependency relaxation, the eye detection appli-
cation using GLVQ shows significant improvement in per-
formance and parallel scalability. As Figure 11(a) shows, the
speedup resulting from 8 threads is 7.3X instead of 1.49X
for the Conventional case. The accuracy only decreases from
90.44% to 90.41%, which is negligible. As Figure 11(b)
demonstrates, the DR implementation overcomes the bot-
tleneck of run-time overheads that is caused by the small
amount of workload in each task in the conventional parallel
implementation. In the meantime, although the memory
bandwidth demand of GLVQ increases with more parallel
threads, the bus utilization for the 8-thread case is still well
below 60% (Figure 11(c)) and is far away from impacting
application scalability. As a result, the performance scaling
of the DR implementation is close to linear.

VI. COMPUTATION DROPPING FOR MEMORY- AND
COHERENCE- TRAFFIC REDUCTION

Data-dependency relaxation enables SSI to exploit more
parallelism and reduce run-time overhead. However, with 8
threads, the bus utilization approaches 60% in both Conven-
tional and DR, which indicates that bandwidth may penalize
performance and become the scaling bottleneck [24]. VTune
analysis reveals that DR scales better than Conventional also
because it dedicates almost all of the bus utilization to the
SSI algorithm, while in Conventional the run-time system
consumes a significant amount of bandwidth and the SSI
algorithm only utilizes 32.5% of the bus (Figure 4(c)). Yet,
although DR allows the bus to be solely utilized by the SSI
algorithm, it cannot go beyond this bandwidth limitation.

In our SMP system with two quad-core sockets, bus
utilization can be attributed to two factors: memory traffic
and coherence traffic. In fact, since the quad-core processors

5We performed fewer repetitions for SSI due to the significantly longer
execution time.

(a) Expressing Data-dependency Relaxation in SSI (b) Expressing Data-dependency Relaxation in GLVQ

Figure 9. Data-dependency relaxation can be easily expressed in both SSI and GLVQ using the best-effort programming template.

0 2 4 6 8
0

1

2

3

4

5

Sp
ee

du
p

Number of threads over 8 cores

Scalability Improvement for SSI

0 2 4 6 8
0

20

40

60

80

100

B
us

U
til

iz
at

io
n

(%
)

Conventional
DR
Ideal
Bus utilization

(a) Speedup vs No. of threads. The overall uti-
lization of DR is also shown

(b) Performance breakdown of DR (c) Bus utilization of DR

Figure 10. Performance analysis of a dependency relaxed parallel implementation of SSI. The training process takes 100 epochs each has 10,000 training
instances.

0 2 4 6 8
0

2

4

6

8

Sp
ee

du
p

Number of threads over 8 cores

Scalability Improvement for GLVQ

0 2 4 6 8

0

5

10

15

20

B
us

 U
til

iz
at

io
n

(%
)

Conventional
DR
Ideal
Bus utilization

(a) Speedup vs No. of threads. The overall uti-
lization of DR is also shown

(b) Performance breakdown of DR (c) Bus utilization of DR

Figure 11. Performance analysis of a dependency relaxed parallel implementation of GLVQ.

used (Intel Xeon E5320) are composed of two dual-core dies
integrated into the same package, some of the coherence
traffic between two cores on the same chip also goes through
the off-chip system bus. We investigate how each factor
(memory traffic and coherence traffic) affects SSI’s parallel
scalability by performing hypothetical sensitivity studies
regardless of the output accuracy. To remove the majority

of memory traffic, we use only a subset of training data
that would fit in the last level cache. This increases the
parallel scalability from 3.1X to 3.5X when 8 threads are
used. To further remove coherence traffic which is mainly
caused by modifying shared data, some local temporary
variables are modified instead of the shared model. This
results in a parallel scalability of 6.7X with 8 threads, which

indicates that while the bandwidth bottleneck is caused by
a combination of memory- and coherence-traffic, the latter
may be a more significant contributor.

To overcome this bandwidth bottleneck, the forgiving
nature of RM algorithms can be further exploited by selec-
tively dropping noncritical memory operations that consume
bus bandwidth. As a result, the limited bandwidth can be
dedicated to process data with more significance — in
the case of SSI, this would be words with larger TFIDFs.
Characterizations show that a significant number of words
have low TFIDFs between 0 and 0.01 while around 10%
TFIDFs can reach 0.06 or higher, as shown in Figure 12(a).

We propose DR-DropWrd that drops memory operations
and the corresponding computation associated with TFIDFs
below a threshold in both forward and backward propaga-
tion. In other words, given words with low TFIDFs in a
training document, their corresponding rows in the model
U are not fetched or updated, saving both memory- and
coherence-traffic.

To further reduce shared data modifications and save
coherence traffic during backward propagation, we attempt
to update an even smaller part of the model which cor-
responds to words with significantly large TFIDFs. This
technique is built upon DR-DropWrd and is named as DR-
DropCoh. Compared to DR, both DR-DropWrd and DR-
DropCoh produce models with less accuracy given the same
number of training instances, because fewer words are used
in each document. To achieve the same accuracy of 95%, the
required number of epochs is 121 on average for conven-
tional implementation, 148 for DR-DropWrd, and 167 for
DR-DropCoh. However, by iterating through more training
instances and processing each instance faster, both DR-
DropWrd, and DR-DropCoh can achieve the same accuracy
as DR in less amount of time.

We fix the accuracy that must be achieved by all methods,
and then compare the performance of various methods.
Figure 12(b) compares DR, DR-DropWrd and DR-DropCoh
with regarding to their execution time required to train a
model with 95% accuracy. In this experiment, DR-DropWrd
skips both forward and backward propagation associated
with TFIDFs lower than 0.01; DR-DropCoh skips words
with TFIDFs lower than 0.01 during the forward propaga-
tion and only update the rows in U that corresponding to
words with TFIDFs larger than 0.06. We show that both
DR-DropWrd and DR-DropCoh achieve the same accuracy
within less time than DR — both leads to around 36% per-
formance gains during sequential execution. DR-DropCoh is
more effective in reducing coherence traffic which in turn
benefits parallel execution, and it leads to larger performance
gains of 59% in the case of 8 threads compared to DR.
Using such a combination of data-dependency relaxation
and traffic reduction techniques, a speedup of 5.5X is
achieved compared to the conventional sequential execution.
Further analysis using VTune shows that with 8 threads,
DR-DropCoh is able to produce an identically accurate
model with 39% less bus transactions (Figure 12(c)) than
DR. While DR-DropWrd and DR-DropCoh are SSI-specific
optimizations, the same principle applies to other bandwidth
bounded applications with similar forgiving nature.

VII. ERROR MITIGATION

As discussed in Section V, relaxing data dependencies
incurs data races. This could impact the training algorithm
in the following ways:

• Partially written data structures.When multiple threads
update the same reference vector in GLVQ or the same
row of U in SSI, it is possible that these data structures

end up with some values computed from one thread and
other values computed elsewhere.

• Partially read data structures. For GLVQ, when one
thread writes to a reference vector while another reads
from it, the latter thread may read some obsolete values
and some updated values. The same thing may happen
to rows of U in the case of SSI.

• Conflicted learning. The rationale behind refining the
model in a sequential way is that each training instance
performs an expectation-maximization stage based on
the previously trained model. However, when several
training instances are processed in parallel, they may
attempt to refine the same previous model in different,
even contradictory, ways. Accumulating their updates
without precaution may cancel out their effects.

Embracing and exploiting the forgiving nature of RM
applications is the key basis for our work, therefore fully
eliminating the numerical errors that are caused by depen-
dency relaxation would be both unnecessary and excessive.
Instead, we introduce several strategies to partially mitigate
the aforementioned effects, with an objective to provide
different tradeoffs between performance and output qual-
ity. These techniques lie in between the two extremes of
conventional parallel implementations and fully dependency
relaxed implementations.

• Atomic write. Mutex locks are used to ensure that
all values within an individual data structure (e.g., a
reference vector in GLVQ or a row of U in SSI) always
conform to the updates by the same training instance.
If multiple threads attempt to update the same data
structure simultaneously, only one of them proceeds
and others have to wait.

• Atomic read. Mutex locks are used to ensure that
individual data structures are not partially written while
they are being read or vice versa.

• Conflict detection and recovery. Parallel training iter-
ations are instrumented with the capability to detect
when they attempt to update the same part(s) of the
model. When this happens, only one of them proceeds;
others are aborted and re-scheduled for execution at
a later time. Since the conflicting update is detected
before the model is written, rollback is unnecessary for
aborted instances. Note that this reduces but does not
eliminate conflicted learning. Conflicts are not detected
if two parallel instances write to the same part of the
model at separate times — in such cases, the updates
of one training instance will overwrite the updates from
the other instance.

In Figures 13 and 14, DR-Atomic refers to the imple-
mentation where individual data structures are guaranteed
to be read and written atomically; conflicting accesses are
queued and resolved later. DR-Reschedule refers to the
implementation where conflicting updates are detected and
entire training iterations are aborted and restarted later. In
GLVQ, parallel training instances seldom update the same
reference vectors simultaneously, therefore conflicts rarely
take place and this justifies the use of DR-Reschedule. On the
other hand, characterization of SSI in Section IV-B shows
that two training instances are likely to update some common
rows in U , although the conflicted rows account only for a
small portion of updates. In such cases, the DR-Reschedule
implementation does not improve performance since it tends
to serialize all training instances similar to the Conventional
case (therefore, it is not shown in Figure 13).

In the case of GLVQ with 64 reference vectors for each
class, the DR-Atomic, DR-Reschedule, and DR implementa-
tions achieve almost the same accuracy since the accuracy
of DR is already close to the Conventional case. Figure 14

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

TFIDF values

Pe
rc

en
ta

ge
 o

f w
or

ds
 (%

)

(a) Distribution of TFIDFs

0 2 4 6 8
0

2

4

6

8

Sp
ee

du
p

Number of threads over 8 cores

Conventional
DR
DR−DropWrd
DR−DropCoh
Ideal

(b) Performance scaling when data-dependency
relaxation is combined with the traffic reduction
technique.

(c) Reduction in total number of bus transactions

Figure 12. Performance analysis of traffic reduction.

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5

Number of threads over 8 cores

Sp
ee

du
p

Conventional
DR−Atomic
DR

(a) Performance scaling (b) Accuracy tradeoff

Figure 13. Performance scaling and accuracy tradeoff in SSI resulting from relaxing data dependency

0 2 4 6 8
0

1

2

3

4

5

6

Number of threads over 8 cores

Sp
ee

du
p

Conventional
DR−Atomic
DR−Reschedule
DR

(a) Performance scaling (b) Accuracy tradeoff

Figure 14. Performance scaling and accuracy tradeoff in GLVQ resulting from relaxing data dependency. Each class has 16 reference vectors.

shows the results when we reduce the number of reference
vectors per class from 64 to 16 in GLVQ. While DR-Atomic
and DR-Reschedule exhibit similar performance scalability
to the DR case, they reduce the error rate from 12.7% to
12.1%. Figure 13 demonstrates the same phenomenon for
SSI; once again, DR-Atomic and DR-Reschedule tradeoff
performance scalability for more modeling accuracy. We
expect that the proposed error mitigation techniques will be
useful in guarding against potential accuracy losses due to
more aggressive data dependency relaxation, when scaling
to platforms with larger numbers of cores (e.g., GPUs).

VIII. RELATED WORK

RM workloads that have abundant parallelism have been
parallelized in conventional ways using different program-
ming models, including OpenMP [22] and MapReduce [9].
These workloads can also benefit from massively paral-
lel platforms such as Graphics Processors (GPUs) [5],
[7]. Application-specific algorithmic optimizations have also
been exploited for better parallel implementation [18], [13].
However, these techniques do not address the poor perfor-
mance scalability of those RM workloads that learn a small
model or exhibit sparsity in training.

Speculative multi-threading [3], [27] extracts parallelism
by out-of-order execution of the original thread. It relaxes
control dependencies only and it may increase the overall

workload if speculation fails. Data speculation [19] and
value prediction [16] do not break data dependencies as
well — the result is numerically unchanged and the order of
writes has to be preserved to be the same as the sequential
code. By exploiting the forgiving nature of RM workloads,
we are able to break this bottleneck to gain further scalabil-
ity.

Relaxing data-dependency has only been used previously
in iterative stencil loops [6], [15], [31] where data exchanges
across iterations are sometimes skipped to reduce synchro-
nization overhead, and obsolete data copies may be used
instead. Our technique addresses a different problem where
we reduce the run-time threading overhead by using data-
dependency relaxation to restructure the parallel computa-
tion and partition the workload on a coarser granularity in
spite of occasional data races. This also differentiates our
work from transactional memory where accuracy is guaran-
teed by rolling back upon data races [20]. Our software-
based implementation is also much simpler than that of
transactional memory.

IX. CONCLUSIONS

Recognition and Mining are expected to be ubiquitously
used in a wide range of future computing applications, mak-
ing it critical to ensure that they can scale in performance
on multi-core and many-core computing platforms. While
some RM workloads do scale very well with increasing
number of cores, others do not, due to a variety of factors
including limited granularity of parallelism, and overheads
of synchronization/communication/off-chip bandwidth. In
this paper, we presented a domain-specific approach to
parallelize a class of Recognition and Mining algorithms.
Our approach leverages the unique characteristics of RM
applications, and hence goes beyond conventional paral-
lelization techniques that focus on numerical equivalence of
the parallel implementation and the sequential implementa-
tion. The proposed technique creates parallelism at a coarse
granularity by judiciously relaxing data dependencies across
iterations to reduce run-time overheads. We demonstrated
that this approach does not significantly alter the quality of
the final output, and presented techniques to mitigate any
degradation in output quality. Finally, for RM workloads
whose scalability is limited by the bandwidth bottleneck,
their performance and scalability can be further improved
by selectively dropping non-critical memory operations that
contribute significantly to memory- and coherence- traffic.

Acknowledgments: We would like to thank several mem-
bers of the Machine Learning Department at NEC Labs
America, notably Bing Bai, Hiroyoshi Miyano, Jason We-
ston, and Ronan Collobert, and Hans Peter Graf for provid-
ing us the applications used in this work.

REFERENCES

[1] Wikipedia page for TF-IDF. http://en.wikipedia.org/wiki/
Tf-idf.

[2] Bing Bai, Jason Weston, Ronan Collobert, and David Grang-
ier. Supervised semantic indexing. In ECIR, pages 761–765,
2009.

[3] Anasua Bhowmik and Manoj Franklin. A general compiler
framework for speculative multithreading. In SPAA, pages
99–108, 2002.

[4] OpenMP Architecture Review Board. OpenMP application
program interface. http://www.openmp.org/mp-documents/
spec30.pdf, May 2008.

[5] B. C. Catanzaro, N. Sundaram, and K. Keutzer. Fast sup-
port vector machine training and classification on graphics
processors. ICML, 2008.

[6] D. Chazan and W. Miranker. Chaotic relaxation. Linear
algebra and its applications. 2(2):199–222, 1969.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of general purpose
applications on graphics processors using CUDA. JPDC,
2008.

[8] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim,
S. Kumar, V. W. Lee, A. D. Nguyen, M. Smelyanskiy, and
M. Smelyanskiy. Convergence of Recognition, Mining, and
Synthesis Workloads and Its Implications. Proc. of IEEE,
96:790–807, 2008.

[9] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu,
Gary R. Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-
Reduce for Machine Learning on Multicore. In NIPS, pages
281–288, 2006.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995.

[11] Tom Dietterich. Overfitting and undercomputing in machine
learning. ACM Comput. Surv., 27(3):326–327, 1995.

[12] Pradeep Dubey. A Platform 2015 Workload Model: Recog-
nition, Mining and Synthesis Moves Computers to the Era of
Tera. White Paper, Intel Corporation, 96, 2008.

[13] I. Durdanovic, E. Cosatto, and H.P. Graf. Large-scale parallel
implementations of SVMs. Large Scale Kernel Machines,
2007.

[14] Shai Fine and Yoram Singer. The hierarchical hidden markov
model: Analysis and applications. In MACHINE LEARNING,
pages 41–62, 1998.

[15] A. Frommer and D. B. Szyld. On asynchronous iterations. J.
Comp. Appl. Math., 213(1–2):201–216, Nov 2000.

[16] Freddy Gabbay and Avi Mendelson. Using value prediction to
increase the power of speculative execution hardware. ACM
Trans. Comput. Syst., 16(3):234–270, 1998.

[17] R. Gleim, A. Mehler, and M. Dehmer. Web Corpus Mining
by instance of Wikipedia. Web as Corpus, 2007.

[18] Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic,
and Vladimir Vapnik. Parallel Support Vector Machines: The
cascade SVM. In NIPS, pages 521–528, 2005.

[19] Lance Hammond, Mark Willey, and Kunle Olukotun. Data
speculation support for a chip multiprocessor. SIGOPS Oper.
Syst. Rev., 32(5):58–69, 1998.

[20] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structures. ISCA,
21(2):289–300, 1993.

[21] Intel Corporation. Intel Threading Building Blocks. http:
//www.threadingbuildingblocks.org.

[22] A. Jaleel, M. Mattina, and B. Jacob. Last-level cache (LLC)
performance of data-mining workloads on a CMP–A case
study of parallel bioinformatics workloads. In HPCA, 2 2006.

[23] David Kriegman and Peter Belhumeur. The Yale face
database. http://cvc.yale.edu/projects/yalefaces/yalefaces.
html.

[24] R. K. Malladi. Using Intel VtuneTM Performance Analyzer
Events/Rations and Optimizing Applications. White Paper,
Intel Corporation, 2009.

[25] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan.
Best-effort parallel execution framework for recognition and
mining applications. IPDPS, 2009.

[26] Nikhil R. Pal, James C. Bezdek, and Eric C.-K. Tsao. Gen-
eralized clustering networks and Kohonen’s self-organizing
scheme. Neural Networks, IEEE Transactions on, 4(4):549–
557, Jul 1993.

[27] Carlos Garcı́a Qui nones, Carlos Madriles, Jesús Sánchez,
Pedro Marcuello, Antonio González, and Dean M. Tullsen.
Mitosis compiler: an infrastructure for speculative threading
based on pre-computation slices. In PLDI, pages 269–279,
2005.

[28] Atsushi Sato, Hitoshi Imaoka, Tetsuaki Suzuki, and Toshinori
Hosoi. Advances in face detection and recognition technolo-
gies. NEC Journal of Advanced Technology, Winter 2005.

[29] Murray Smith. Neural Networks for Statistical Modeling.
John Wiley & Sons, Inc., 1993.

[30] Katsuhiko Takahashi and Daisuke Nishiwaki. A class-
modular GLVQ ensemble with outlier learning for handwrit-
ten digit recognition. In ICDAR, page 268, 2003.

[31] Sundaresan Venkatasubramanian and Richard W. Vuduc.
Tuned and wildly asynchronous stencil kernels for hybrid
cpu/gpu systems. In ICS, pages 244–255, 2009.

[32] Alexander Wolfe. Toolkit: Intel’s heavy-duty dev tools.
Queue, 2(2):12–17, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

