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ABSTRACT

Semantic indexing is a popular technique used to access and
organize large amounts of unstructured text data. We describe an
optimized implementation of semantic indexing and document
search on manycore GPU platforms. We observed that a parallel
implementation of semantic indexing on a 128-core Tesla C870
GPU is only 2.4X faster than a sequential implementation on an
Intel Xeon 2.4GHz processor. We ascribe the less than
spectacular speedup to a mismatch in the workload characteristics
of semantic indexing and the unique architectural features of
GPUs. Compared to the regular numerical computations that have
been ported to GPUs with great success, our semantic indexing
algorithm (the recently proposed Supervised Semantic Indexing
algorithm called SSI) has interesting characteristics — the amount
of parallelism in each training instance is data-dependent, and
each iteration involves the product of a dense matrix with a sparse
vector, resulting in random memory access patterns. As a result,
we observed that the baseline GPU implementation significantly
under-utilizes the hardware resources (processing elements and
memory bandwidth) of the GPU platform. However, the SSI
algorithm also demonstrates unique characteristics, which we
collectively refer to as the “forgiving nature” of the algorithm.
These unique characteristics allow for novel optimizations that do
not strive to preserve numerical equivalence of each training
iteration with the sequential implementation. In particular, we
consider best-effort computing techniques, such as dependency
relaxation and computation dropping, to suitably alter the
workload characteristics of SSI to leverage the unique
architectural features of the GPU. We also show that the
realization of dependency relaxation and computation dropping
concepts on a GPU is quite different from how one would
implement these concepts on a multicore CPU, largely due to the
distinct architectural features supported by a GPU. Our new
techniques dramatically enhance the amount of parallel workload,
leading to much higher performance on the GPU. By optimizing
data transfers between CPU and GPU, and by reducing GPU
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kernel invocation overheads, we achieve further performance
gains. We evaluated our new GPU-accelerated implementation of
semantic document search on a database of over 1.8 million
documents from Wikipedia. By applying our novel performance-
enhancing strategies, our GPU implementation on a 128-core
Tesla C870 achieved a 5.5X acceleration as compared to a
baseline parallel implementation on the same GPU. Compared to
a baseline parallel TBB implementation on a dual-socket quad-
core Intel Xeon multicore CPU (8-cores), the enhanced GPU
implementation is 11X faster. Compared to a parallel
implementation on the same multi-core CPU that also uses data
dependency relaxation and dropping computation techniques, our
enhanced GPU implementation is 5X faster.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming

Keywords
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1. INTRODUCTION

The emergence of General Purpose Graphics Processing Units
(GPGPUs) is fueling acceleration of a wide range of highly
parallel and compute-intensive workloads. Programmability of
GPUs was limited to APIs such as OpenGL that were designed for
graphics workloads. In recent years, new programming
frameworks for GPGPUs, such as Nvidia’s Compute Unified
Device Architecture (CUDA) [9][10], AMD’s Brook++ [12], etc.
have eased the difficulty of programming the highly parallel GPU
platforms. However, the process of developing efficient GPU
implementations is highly application dependent. While some
applications are inherently data parallel, there are many that
require significant re-structuring of the algorithms and programs
to realize high performance on GPUs. In this paper, we focus on
parallelizing Supervised Semantic Indexing (SSI) [1], a popular
Recognition and Mining (RM) workload.

SSI is used to rank documents in a corpus or database based on
their semantic similarity to a given text query. The algorithm
searches for a direct association between the words contained in a
document and its similarity score, taking into account correlations
between words due to synonymy and polysemy. SSI has been



demonstrated to have state-of-the-art performance in searching
large datasets such as Wikipedia with very good accuracy [1][3].

A common feature of RM workloads, including the SSI
algorithm, is that they perform the same computation operation on
enormous amounts of data in an iterative fashion in order to
develop a model. Many studies have demonstrated that RM
workloads are highly data parallel, and can easily take advantage
of data parallel hardware such as GPUs. Although this claim is
true for many RM workloads, we show that straightforward
parallel implementations of the SSI algorithm do not take full
advantage of abundant parallelism offered by today’s GPU
platforms. In our previous work [7][8], we proposed best-effort
computing and data dependency relaxation to improve the
performance of parallel implementations on multicore CPUs. In
this paper, we expand the applicability of these strategies to
throughput-oriented manycore architectures such as GPUs, and
apply them to improve the parallel performance of SSI. We
describe how best-effort computing strategies can be customized
for GPU architectures, and believe that our approach can be
extended to other RM applications that demonstrate less-than-
optimal degrees of parallelism.

In section 2, we explain the SSI training algorithm. In section 3,
we describe a baseline implementation of SSI on GPUs and
motivate the problem of low utilization of the GPU’s hardware
resources, which leads to poor performance. Section 4 presents
the unique characteristics of SSI training and Sections 5, 6, and 7
propose techniques to improve the scalability of SSI on GPUs. In
section 8, we present the experimental results and evaluate
performance of the GPU implementation. In section 9, we discuss
related work and conclude in section 10.

2. BACKGROUND

The SSI training algorithm develops a model from TFIDF values
of each word in the dictionary. This model is used for searching a
given text query. TFIDF is the product of Term Frequency (TF)
and Inverse Document Frequency (IDF). TF is the number of
times a word occurs in the document divided by the total word
count of the document, and IDF is the reciprocal of the ratio of all
documents in the corpus that contain the word (thus IDF reduces
the importance of commonly occurring words).

Suppose there are N words in the dictionary. A query or document
in a corpus of documents contains a subset of words in the
dictionary. Since documents only contain a small fraction of all
possible words in the dictionary, if we represent a document with
a vector, each vector is sparse and contains non-zero elements
only for the words that appear in the document. The training
phase of SSI learns an internal weight matrix U that translates the
presentation of each document from a lengthy and sparse TFIDF
vector to a short and dense semantic vector. The semantic vector
represents the likelihood of a document in a number of machine-
learned conceptual categories (C). The dot products of the
semantic vectors are then used to calculate the semantic similarity
between their corresponding documents.

When the developed model is used for document search,
documents are ranked and retrieved based on their similarity with
the query document. We now give more details on how the model
is learned.
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SSI training model is learned in a similar way to an artificial
neural network (ANN). The input nodes are the TFIDFs of all
words, each connected directly to all output nodes that represent a
predefined number of conceptual categories to be learned. The
ANN can be represented as a bias vector b with a length of C and
a weight matrix U sized N X C, where N is the number of words in
the vocabulary and C is the number of conceptual categories. The
i column of U stores each word’s weight in contributing to the
classification of the i" conceptual category.

The model is refined iteratively, where each training iteration
involves three TFIDF vectors representing a query document (Q),
a labeled relevant document (d), and an irrelevant document (r).
Figure 1 provides pseudo-code for the algorithm involved in SSI
training. There are three operations in each training iteration:

Input: A corpus of documents with their TFIDF values,
learning rate ( &), error threshold, margin criteria
(m)

Output: A weighted matrix (U) sized NXC.

Algorithm:
Test error = 1.0
Initialize U with random float values
While (Test error > error threshold)
Randomly select a query (q), a relevant document (d),
and an irrelevant document (r) from the corpus
[* Forward propagation:*/

S, =q'U+b’
s, =d"U +b’
s, =r'U+b’

If (4.4 — S¢-Sr) <M
/* If similarity score between q and d, is not greater
than a specified margin criteria m, then calculate gradient
vectors to modify the model /*
gq =S¢~ 5,
Ja = sq
gr = _Sq
End If
Ifgy>00rgg>0o0rg,>0
/* Backward propagation */
U=U+e(gxg, +dxgg +rxg;)
b=b+g(gq +gd +gr)

End If
End While

Figure 1: The pseudo-code of the SSI algorithm

1. Forward propagation calculates of three semantic vectors,
each of which is calculated as a weighted sum of TFIDFs for
each conceptual category using one of the three documents
(q,d, and r).

2. Comparing Relevancy: The similarity scores of d and r to q
are calculated as s;.Sq and Sg.S;, respectively, where “.”
denotes the dot product. The similarity score between the
relevant document (d) and the query document (q) is



supposed to be greater than that between the irrelevant
document (r) and the query (q). If s4.8¢ is not greater than
Sq-Sr by a specified threshold, then, the model has to be
adjusted. To adjust the model, three feedback gradient
vectors (gq, Ja, and gy) are calculated.

3. If the gradient vectors are non-zero, weight matrix (U) and
bias vector (b) are modified using g, d, r, and the gradient
vectors. Each document’s TFIDF vector is multiplied by the
corresponding gradient vector to generate a gradient matrix,
which is scaled according to a predefined learning rate &,
and added to U.

There are two types of dependencies among successive iterations
if documents in successive iterations share the same indices of
any non-zero TFIDFs. A Read-after-Write (RAW) dependency
exists if data updated during the former iteration is read in the
forward propagation of the latter iteration. A Write-after-Write
(WAW) dependency exists between two successive update
operations on same data.

The SSI training converges when specified threshold accuracy is
achieved. The training algorithm tests accuracy after a certain
number of iterations, called an epoch (typically 10,000 iterations).

In this study, we use the Wikipedia corpus [3] consisting of 1.8
million documents to train the model. The number of words in the
vocabulary (N) is 30,000 and the number of conceptual categories
(C) is 200. This number of categories is sufficient for this model
[1]. Related documents are automatically labeled according to the
links provided by Wikipedia: a document is tagged as relevant to
all documents to which it has links, and it is assumed to be
irrelevant to the remaining documents. A pre-processing step
calculates TFIDF values for each word.

2.1 GPU Memory Hierarchy

We briefly introduce the memory hierarchy of the Nvidia Tesla
C870 GPU that we used in our study.

Figure 2: Memory Hierarchy of Nvidia GPUs [21]

Figure 2 shows the memory hierarchy in Tesla GPUs. The
registers are local to each thread. The shared memory is shared by
all the threads running on a single multiprocessor. A read-only
constant memory is shared by all the threads in the texture
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processing cluster (TPC), which contains two multiprocessors in
the Tesla C870 GPUs. A read-only texture cache is also shared by
all the threads in the TPC. The C870 GPU has 1.5GB global
memory with a theoretical peak memory bandwidth of 77 GB/s.
More details of the GPU memory hierarchy and computation
capabilities can be found in [21].

3. MOTIVATION

In this section, we illustrate the performance of SSI training on
the GPU, where the forward and backward propagation operations
in each training iteration are parallelized. We then analyze
performance and show that this implementation does not utilize
full potential of the GPUs.

3.1 Baseline Implementation on the GPU

In the baseline SSI implementation on the GPU, the weight matrix
resides in the GPU memory and queries are sent to the GPU for
performing forward and backward propagation. We first transfer
the large U matrix (22.5 MB) that contains the initial values of the
model to GPU global memory. Document vectors (g, d, and r) are
transferred into the constant memory of the GPU for each training
instance. Accesses to the constant memory have a small latency of
1 cycle. Since the document vectors ¢, d, and r are sparse vectors,
in the forward and backward operations, although the weight
matrix (U) is as large as N X C, only a few rows that correspond
to non-zero TFIDFs in the queries are accessed and/or modified.
The remaining values are untouched since the result of
multiplication with zero values in the documents is a zero and
does not affect the weights in the U matrix.

Following the original implementation of the SSI training
algorithm (as shown in Figure 1), the forward and backward
propagation operations are performed sequentially, but each
contains computations that may be parallelized sequentially. We
parallelize the three multiplications between sparse vectors and
the dense matrix (U) in the forward propagation. These
multiplications are different from the sparse matrix-vector
multiplications [22][23], where the matrix is sparse. In SSI
training, the vectors are sparse, and the weight matrix is dense.
Each vector is split into multiple parts that are distributed to
multiprocessors of the GPU. The partial vector-matrix
multiplication results corresponding to each multiplication are
reduced into one dot product. The intermediate results of the
forward propagation, the semantic vectors, are brought to the host
CPU for comparing relevance values, i.e., dot products of s; and
Sg, and Sq and s,. If non-zero gradient vectors are generated on the
CPU, they are transferred to the constant memory of GPU. and
the backward propagation is then performed on GPU.

Table 1: Experimental Setup

CPU GPU
Model Intel Xeon E5420 | Tesla C870
Cores 8 (two sockets) 128
Frequency 2.5 GHz 1.35 GHz
Memory size 12 GB 1.5 GB
Threading Pthreads, TBB CUDA 2.3
API
Compiler gee -03 nvee 2.3 -03
0S 64-bit Linux 2.6.18-164.el5




We tested various ways to split the document vectors and we
achieved the best performance when the vectors are split into 8
parts. Since we have three “matrix — sparse vector”
multiplications in both forward and backward propagations, when
we split each vector into 8 parts, we start 24 blocks on the 16
multiprocessors of C870 GPU. Each block contains 64 threads.
We tested the training implementation on a heterogeneous
workstation consisting of an Intel Xeon quad-core CPU and a
Tesla C870 GPU. Table 1 shows the details of the architecture.

3.2 Performance of Baseline Implementation

Figure 3 compares the performance of a sequential
implementation of the training algorithm on the CPU and the
baseline implementation on the GPU for executing 100 epochs
(an epoch is 10,000 iterations of training). In the legend, C
denotes CPU, and G denotes GPU. C—G represents the data
transfer from the CPU to the GPU and G—C represents the data
transfer from the GPU to the CPU. We use the same notations
throughout the paper to show the CPU to GPU data transfers and
vice versa. The CPU version of SSI is implemented in C and the
GPU version with CUDA 2.3. We saw that the GPU

implementation was only 2.4X faster than the CPU
implementation. The results after each epoch for both
implementations are numerically equivalent. Upon further

investigation of the relatively modest performance improvement
on the GPU, we noticed that the GPU was only utilizing 20% of
its peak memory bandwidth. Moreover, the parallelism available
within a forward propagation of a training iteration is often very
low, which depends on the number of non-zero elements of the
documents fed to the iteration. The computation to data transfer
ratio is often close to 1, which is very low for oftloading tasks to
GPUs. In other words, all the processor cores of the GPU were
kept busy, but for a very short time, which is often less than the
data transfer time. For documents with less than 50 words, the
GPU kernel invocation overhead is also higher than the
computation time on the GPU.

400.00 -
350.00 - M Backward+Update
® Backward_C->G
« 300.00 -
2 Forward_G->C
§ 230.00 1 H Forward
wv
‘f, 200.00 ® Forward_C->G
= 15000 —
100.00 -
50.00 -
0.00 -

CPU

GPU (Base)

Figure 3: Performance of Conventional Implementation on
CPU and GPU.

From these results, it is clear that there is scope for further
performance optimization. Parallelization within an iteration is
limited by the number of non-zero values in the sparse vectors.
For iterations that have very few non-zero values, the GPU is not
utilized and the overhead in kernel invocations and data transfer
calls dominates, causing significant performance degradation. To
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improve the performance of GPU implementation, we apply
various techniques that are described in the following subsections.

4. UNIQUE WORKLOAD
CHARACTERISTICS OF SSlI

Many RM applications follow a pattern of computation in which a
model is iteratively refined based on a sequence of input training
instances. Conventional parallel implementations usually exploit
parallelism only within each iteration due to data dependencies
across iterations, which results in poor parallel scalability when
each training instance consists of few data elements. This is
because the performance gains benefited from parallel execution
cannot sufficiently offset the overheads in setting up the parallel
computation. In other words, the problem size for parallel
execution is not large enough for scalable performance. Ideally,
the problem size for data parallelism should scale according to the
number of training instances in RM algorithms. However,
iterative RM algorithms such as SSI limit the problem size of data
parallelism within each training instance due to potential
dependencies between iterations. For instance, in the case of SSI
algorithm, there are RAW and WAW dependencies. To study this
issue, we discuss three features that we observe in SSI.

Write Sparsity: One of the characteristics of SSI that can be
leveraged to improve the available parallelism is the sparsity of
writes in individual iterations. After the first few iterations, only
28% of the iterations perform any updates at all in the backward
propagation operation, i.e., there are only 28% of iterations that
need to run serially. This feature is important since it offers the
potential for concurrent execution of multiple iterations.

Low spatial locality of writes among iterations: Iterations that
perform back-propagation rarely update the same part of the
model and therefore data races would be rare if they are
parallelized. This is because the g, d, and r vectors are sparse and
their non-zero TFIDFs spread across the vocabulary of 30,000
words. Our trace-based characterization shows that on average,
only 3.6% of U is visited in one iteration, and every four
iterations overlap only 23% of their updates.

Error Tolerance: As mentioned earlier, RM applications exhibit a
forgiving nature in their execution. For example, after 10,000
iterations, the learned models of two implementations may be
numerically different. However, they are both acceptable if their
resulting accuracies similar. From another perspective, we can
always continue to train the model until a desired accuracy is
achieved. Therefore, we can measure the time it takes for
different implementations to reach the desired accuracy and select
the implementation that takes the least time to reach the desired
accuracy. As long as the algorithm is converging faster, the
occasional inaccuracies introduced in a portion of the model are
acceptable.

We now discuss the techniques that we used to exploit these
inherent features of SSI and utilize the parallelism offered by the
GPUs.

5. DEPENDENCY RELAXATION

As discussed earlier, there are dependencies between successive
iterations of the SSI algorithm. In our baseline GPU
implementation, we exploited parallelism only within each



iteration. If we assume that there are no dependencies, we can run
multiple training iterations concurrently. This increases the
number of threads running on the GPUs, which will keep the
processor cores busy performing computation operations.
However, we cannot blindly drop dependencies. We use the
unique characteristics of SSI we described earlier, such as Write
Sparsity and Low locality of updates, to judiciously drop
dependencies. We call this strategy dependency relaxation.

The goal of dependency relaxation is to run as many iterations as
possible concurrently with an insignificant accuracy loss. Figure 4
illustrates the idea of dependency relaxation. On the left, we show
the conventional method of running SSI, where iterations are
executed serially and the model is being modified by each
iteration. By relaxing dependencies, multiple (K) iterations run
concurrently and modify the model. Because of the Low spatial
locality feature of multiple iterations, the chance of modifying the
same location of data by concurrent iterations is low. This
strategy utilizes the computing power of parallel hardware more
efficiently and achieves significant performance gains. Although
the reordered updates resulted from parallelizing the iterations
lead to a model that is not numerically equivalent to that obtained
from the conventional method, there is hardly accuracy loss due
to the error-tolerate nature of SSI.

[ lteration I ] [
Iteration Iteration
i+k+1 i+k+1

Iteration

Iteration
i+1

i+k

Iteration
i+2k

Time

Iteration
i+2
(—

Iteration
i+3
=

Figure 4: Relaxing dependency to run multiple iterations
concurrently

The number of training iterations that we can run concurrently is
limited by various architectural features of the GPUs. When we
implemented the data dependency on multicore CPUs [8], the
limitation was the number of cores, memory bandwidth, and
cache coherence traffic. In the case of GPUs, which have are
many data parallel (SIMD) cores and have very small read-only
cache memories, the limitations vary. We observe that the error
tolerance, memory bandwidth due to more data accesses when
multiple iterations are executed concurrently, and the requirement
for constant memory with more concurrent iterations are GPU
specific limitations. As we increase the number of concurrent
training iterations, the possibility of overlapping modifications to
the model increases. The write operations on GPUs are much
more costly than on CPUs because there are no cache memories
and have to be written back to the memory. The amount of
constant memory, where we place the document vectors for faster
access is also another limiting factor. More concurrent iterations
require more document vectors and if they do not fit in the
constant memory, they have to be placed in the GPU memory and
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the cost of accessing the memory is 100 times slower than
accessing data from the constant cache.

6. DROPPING COMPUTATION

As mentioned earlier, RM applications do not require different
implementations to be numerically equivalent after each iteration.
Even if an implementation requires more iterations than others to
reach the same accuracy, as long as a certain threshold accuracy is
achieved in less time than others, the approach is still preferable.
We exploit this feature by dropping some non-critical
computation that have less impact on the model constructed by
the SSI training algorithm.

The words in vectors that have low TFIDF weight are non-
critical. Many document vectors contain most commonly used
words in vocabulary, such as “the”, “of”, “and”, “a”, “in”, etc.,
which have no discriminative value and hence do not skew the
model if dropped from the training computations. To ensure that
these words have some representation in the model, we start
dropping these words after a few initial iterations.

Our tests show that dropping these computations has negligible
impact and the additional number of iterations required to reach
the same accuracy as the original algorithm is minimal. On the
other hand, the performance improvement achieved due to this
computation dropping is significant. While this strategy is
application dependent, its impact on the performance of SSI is
non-trivial.

Dropping some of the words in document vectors facilitate storing
more documents in the constant memory. As we mentioned in the
previous section, the constant memory is very limited on the
GPUs, and limits the number of concurrent iterations that can be
executed. With fewer words, we can run more iterations
concurrently.

7. OPTIMIZING DATA TRANSFERS

In GPU based heterogeneous computing, the GPU is typically
connected to the host CPU using the PCI Express bus. They work
in different physical memories and address spaces. Therefore, to
offload any computing to the GPU, the host CPU has to first
allocate and transfer data used by the GPU to the GPU memory
and then invoke GPU computation kernels. The GPU results have
to be transferred back to the CPU, if the CPU needs the results.
The cost of these data transfers is not negligible, and sometimes
dominates the computation time on the GPU. Hence, it is often
advisable to have a larger computation to communication cost
ratio to utilize the power of GPUs.

SSI training involves significant data transfer overhead. In the
training algorithm, we can transfer the initial weight matrix on to
the GPU once in the beginning and transfer it back to the CPU
after the threshold accuracy criteria is met. While these two
transfers are not costly, in each iteration, we also need to transfer
documents g, d, and r to the GPU and retrieve semantic vectors
after each iteration. We also observed that the cudaMemcpy call
itself has a constant overhead, which is often the dominant portion
of communication, especially when the document vectors are
sparse and of small size. In our experiments with the SSI
algorithm, we observe that the data transfer cost for 8 concurrent
forward propagation iterations (with data dependency relaxation)



in an epoch of 10,000 iterations is 84% of the total execution
time.

To counter this performance problem, we used a pack-and-
transfer strategy. During the pack phase, we reorganize the
vectors into a temporary buffer and attach the metadata
information at the beginning of the package. We send the packed
data to the GPU with one data transfer call. The GPU uses the
metadata to identify the boundaries of the documents in its
computations. Figure 5 illustrates an example for sending data for
running two forward propagation iterations concurrently. These
iterations require six documents in total. If they were transferred
from the CPU to the GPU individually, six cudaMemcpy calls are
required. Instead, if we pack them into one buffer, with metadata
as a header, then all the data can be sent to the GPU with one
cudaMemcpy call.

In our packing strategy, we consider data coalescing restrictions
of GPUs. Threads in these GPUs are executed in groups of 32,
called warps. The global memory bandwidth is used most
efficiently when the simultaneous memory accesses by threads in
a half-warp (first or second half of the threads in a warp) can be
coalesced into a single memory instruction of 32, 64, or 128
bytes. If data is coalesced, multiple threads can utilize data
fetched by one thread. Although the latest NVIDIA GPUs have
less stringent restrictions on data coalescing, the Tesla C870 GPU
we used has the restriction that the size of a vector has to be a
multiple of 64 or 128 bytes and the k™ thread in the half-warp
must access the k" word in the fetched data block. To
accommodate this, during our packing phase, we pad the
temporary buffer and the metadata specifies the boundaries of
useful data.

d1

d, I
r

9z

d, I

r [

Padded data:
\ q; d; 1 q2 d, [P

Metadata
Figure 5: Packing data to reduce the number of data transfer
calls

8. EXPERIMENTAL EVALUATION

We now analyze performance with various optimizations that we
proposed in the previous section. We first present the results for
SSI training with dropping non-critical computation and data
dependencies, and data access optimizations. In our SSI training
experiments, we use the same Wikipedia corpus as mentioned
earlier consisting of 1.8 million documents to train the model. The
number of words in the vocabulary (N) is 30,000 and the number
of conceptual categories (C) is 200. We set the desired output
error for the training process to be less than 1%. Since the error
rate fluctuates with training instances, we stop its execution when
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the error rate remains less than 1% for at least 10 consecutive
epochs.

8.1 Dropping Noncritical Computation

We can drop the words in query (q), relevant (d), and irrelevant
(r) documents with TFIDF value less than a certain threshold.
This reduces the computation overheads on data that does not
significantly impact the quality of the model.

Figure 6 shows the performance of SSI training on GPU by
dropping words that have TFIDFs less than 0.05 (labeled GPU
(TFIDF < 0.05) in the figure) and those less than 0.09 (labeled
GPU (TFIDF < 0.09) in the figure). In our experiments, we
varied the threshold for dropping words from 0.01 to 0.10, in
increments of 0.01. In the figure we only present results for the
case where it has peaked (i.e., 0.05) and where the performance
degradation is significant (i.e., 0.09). 4.8% of the words were
dropped in each document query on average for the case where
TFIDFs are less than 0.05, and 8.3% of words were dropped for
the latter case (i.e. when TFIDF < 0.09). The performance
improvement over the GPU base case with TFIDF < 0.05 is 2X
and that with TFIDF < 0.09 case is 1.7X. The performance gain is
lower with the latter case because the number of training
iterations that is required is 6.2% (roughly 500 epochs) higher. In
other words, the performance gain per training instance with the
latter case is not substantial enough to offset the increased number
of iterations.
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M Backward_C->G

14000.00 -+

12000.00 - - Forward_G->C
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2 600000 ]
£

4000.00 -
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GPU Base GPU (TFIDF < 0.05) GPU (TFIDF < 0.09)

Figure 6: Performance Results with dropping non-critical
computation

8.2 Data Dependency Relaxation and Data
Access Optimization

While dropping computations and the associated data accesses
improves performance, it is also critical to ensure that sufficient
parallel threads are present to utilize the large number of cores in
GPUs and hide memory access latency. Because the pruned
training instances become smaller, more training instances can be
executed in parallel to saturate the GPU bandwidth. On top of
dropping non-critical computation, we create additional
parallelism in our implementation of SSI training by “relaxing”
data dependencies and running multiple training instances
concurrently.

Figure 7 shows the performance with running 2, 8, and 10 training
iterations concurrently (in addition to dropping computation), and



compares the results with the performance when computation is
dropped but no data dependency relaxation is performed. All the
bars in the graph represent experiments, where words with
TFIDFs less than 0.05 are skipped. We optimized data transfer by
packing multiple vectors related to the three documents and send
the data in one transfer. For instance, 6 documents need to be sent
to the GPU when two iterations are batched, 24 documents with a
batch size of 8, and 30 documents with a batch size of 10. We
pack these multiple documents into one data transfer with meta-
data at the header that tells the boundaries between documents.

7000.00 1 M Backward+Update
B Backward_C->GD
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Figure 7: Performance Results with dependency relaxation.
These results take into account the effect of dropping
computation, where words with TFIDFs less than 0.05 are
skipped. The improvement, compared with the baseline
implementation, is 3.1X with DR-2, 5.5X with DR-8, and 4.7X
with DR-10.

From the figure, we can see that performance peaks when the
number of concurrent training instances is 8. When we try more
than that, (e.g., 10 concurrent instances), not only the time for
forward and backward operations within each training instance,
but the number of instances required to reach the threshold error
also increases. We observed that the memory bandwidth reaches
its peak with the 8 concurrent instances case. When we batch
more instances to run concurrently, the GPU’s memory
bandwidth is overwhelmed and this causes some slowdown.
Moreover, with a batch size of 10 or more, the concurrent training
instances disrupt each other’s results so frequently that the error
tolerant nature of the algorithm is no longer able to self-correct
the error sufficiently fast. As a result, it requires far more
iterations to reach the threshold accuracy. With more than 10
concurrent iterations, all the documents do not fit in the constant
memory of the GPU. This results in storing documents in the
global memory. In our tests, we observe that running 12 iterations
concurrently performs worse than when no data dependency
relaxation was applied, (i.e. the case where only non-critical
computation was skipped).

Overall, for SSI training, we obtain 5.5X performance
improvement over the conventional parallel implementation on
GPUs and 14.2X over the sequential implementation on the CPU.
We applied the data dependency relaxation and dropping
computation strategies in implementing a parallel version on a
two-socket x86 based quad-core CPU (with 8 cores in total) [8].
We implemented the CPU version using Intel TBB. This achieved
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3.1X compared to the sequential implementation on the CPU.
Overall the best manycore GPU implementation performs 4.6X
faster than the best multicore CPU version.

9. RELATED WORK

Supervised Semantic Indexing [1] is relatively novel semantic
analysis algorithm and our implementation is the first on GPUs.
Supervised document search has been used in Supervised Latent
Semantic Indexing [19], but implementations have only been
reported on CPUs. A few studies exist that implement other
semantic document search algorithms such as Latent Semantic
Analysis (LSA) [14][15]. These implementations optimize
Singular Value Decomposition, the compute intensive part of the
LSA algorithm, by using CUBLAS [11] for matrix-vector and
vector-vector multiplication operations. As explained in the paper,
the characteristics of the SSI algorithm are quite different and
require different optimization strategies for GPU implementation.
In our work, we target SSI training, where we explore many novel
strategies based on the concept of best-effort computing to
improve available parallelism and reduce data transfer overheads.

GPUs have been used for other Machine Learning applications
[20]. However, our study exploits the unique characteristics of
SSI  application to improve its performance. Many
implementations of sparse matrix-vector multiplication with
optimized use of GPUs and auto-tuning have been proposed
[22][23][24]. In SSI training, the document vectors are sparse and
the weight matrix is dense. Our optimizations are designed to
span across multiple iterations instead of optimizing just one
sparse vector-matrix multiplication.

Chaotic relaxation [17] and asynchronous iterations [18] study
relaxing data dependencies in iterative stencil loops. These
techniques skip data exchanges across iterations that are used to
synchronize the iterations in order to reduce the synchronization
costs. The chaotic relaxation strategy has also been used on the
GPUs [16] to improve performance of stencil loops. In our data
dependency relaxation strategy, we address a different problem,
where we increase parallelism through letting any occasional data
races to modify the model. In addition to dependency relaxation,
we use dropping non-critical computing to exploit error tolerance
of the SSI algorithm and optimize data transfers.

Our prior work [7] proposed a best-effort, parallel computing
framework, and iterative-convergence programming model with
built-in mechanisms to specify best-effort computing strategies. In
[8], we proposed data dependency relaxation, computation
dropping, and error mitigation techniques for RM algorithms.
While all our prior work was proposed for improving utilization
of multicore CPUs, in this paper, we extended the best-effort
strategies for GPUs. We tuned these strategies specifically for
GPUs, where we considered the lack deep cache memory
hierarchies in the GPUs and optimized data transfers between the
CPU and the GPU.

10. CONCLUSIONS AND FUTURE WORK

In this paper we presented techniques for improving performance
of the SSI algorithm on GPUs. After finding that straightforward
CUDA implementation of SSI does not utilize the GPUs
efficiently, we studied the unique characteristics of the algorithm
and devised strategies for improving its performance. The unique



characteristics include — the amount of parallelism in each
training instance is data- dependent, each iteration involves the
product of a dense matrix with a sparse vector, and the algorithm
has a large degree of inherent error resilience. Exploiting these
application characteristics, we propose strategies for data
dependency relaxation, dropping computation, and for optimizing
data transfers between CPUs and GPUs. The application of these
strategies enhanced the performance of SSI on GPUs by a factor
of 5.5X compared to its straight-forward implementation. The
GPU optimized SSI, which utilizes optimizations tuned
specifically for the GPUs, also performs 5X faster compared to an
implementation on multicore CPUs wusing the best-effort
techniques. We are exploring the atomic operation support
provided by CUDA in the latest GPUs to increase the number of
concurrent training iterations while avoiding race conditions.
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