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Abstract 
 

Multi-core processors have changed the 
conventional hardware structure and require a 
rethinking of system scheduling and resource 
management to utilize them efficiently. However, 
current multi-core systems are still using conventional 
single-core memory scheduling. In this study, we 
investigate and evaluate traditional memory access 
scheduling techniques, and propose a core-aware 
memory scheduling for multi-core environments. Since 
memory requests from the same source exhibit better 
locality, it is reasonable to schedule the requests by 
taking the source of the requests into consideration. 
Motivated from this principle of locality, we propose 
two core-aware policies based on traditional bank-first 
and row-first schemes. Simulation results show that the 
core-aware policies can effectively improve the 
performance. Compared with the bank-first and 
row-first policies, the proposed core-aware policies 
reduce the execution time of certain NAS Parallel 
Benchmarks by up to 20% in running the benchmarks 
separately, and by 11% in running them concurrently.  
 
 
 
 
 
 

1. Introduction 
 

Chip multiprocessing (CMP) technology with the 
help of thread-level parallelism (TLP) and data-level 
parallelism (DLP) have been driving processor 
technology to increase computing power substantially. 
Multi-core processors reduce power consumption by 
using multiple simpler cores and packaging them 
together on a single die. However, memory access 
latency is a troubling performance issue. Due to the 
so-called memory-wall problem [11], i.e. the enlarging 
gap between CPU performance and memory 
performance, data access is a recognized dominant 
performance bottleneck. Competition for data access 
and transferring data among cores may increase the stall 
time of cores and lead to a substantial performance loss 
of multi-core processors.  

Reorganizing data accesses of multiple cores is an 
effective solution in tackling the memory performance 
bottleneck. However, in a multi-core system, data 
access scheduling is performed by a shared memory 
controller that is integrated onto the same multi-core 
chip, which provides limited or no control to 
programmers over its data access scheduling.  The 
controller is the single point for accessing memory, and 
its effectiveness has a great impact on the overall 
performance. Realizing that data access requests from 
each core often come from one thread and have a better 
memory locality, we believe a multi-core memory 
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access scheduling could be improved by considering 
the source of the requests. Data access scheduling is a 
very important issue. Simply adopting traditional 
single-core scheduling is not a wise approach. It is 
necessary to thoroughly investigate and design memory 
access scheduling policies for multi-core processors.  

Multi-core memory access is quite different from its 
single-core counterpart. In a multi-core system, each 
core has its own running thread that might exhibit 
better locality among its own memory accesses than 
interleaved memory accesses from multiple cores. In 
addition, when running scientific parallel applications, 
while most of the cores are concurrently working on 
one application, the operating system also performs 
various housekeeping functions, which generates 
access requests to memory controller as well. These 
application-unrelated memory requests may interfere in 
exploiting the locality of application related accesses. It 
is necessary to separate them and give higher priority 
to application related memory requests.  

Conventional memory access scheduling approaches 
suggest that memory operations should be reordered 
based on hardware features [9][10], such as the internal 
memory structure, to increase the throughput. They are 
efficient and sufficient for single-core architecture. 
However, these methods are direct extensions of 
sequential scheduling policies, which merge all 
requests from different cores into one queue and apply 
existing sequential scheduling policies directly on this 
request queue. They are not aware of the source of the 
memory requests and do not work well for multi-core 
systems.  

This study investigates two traditional single-core 
memory scheduling policies, bank-first policy and 
row-first policy, in a multi-core environment. We then 
propose two novel core-aware memory access 
scheduling policies and analyze the effect of different 
memory scheduling policies. We show that the 
proposed core-aware memory access scheduling 
schemes are capable of reducing memory access 

latency significantly and improving the overall 
performance of applications.  

The rest of this paper is organized as follows: 
Section 2 reviews related work in memory access 
scheduling. Section 3 introduces the proposed 
core-aware memory access scheduling schemes. 
Section 4 discusses experimental setup and Section 5 
presents performance evaluation and analysis results. 
We conclude our discussion in Section 6. 

 

2. Background 
 

2.1 Memory access scheduling 

 
In a memory controller, the execution of a memory 

access instruction must adhere to the rules and timing 
constraints of the hardware to access data in a modern 
DRAM. As shown in Figure 1, modern DRAMs are 
three-dimensional memory devices with dimensions of 
bank, row and column. Thus, a location in the DRAM 
is identified by an address that consists of bank, row 
and column fields. The steps of accessing a location 
include a pre-charge, a row access, and then a column 
access. Due to the DRAM structure and its hardware 
implementation, sequential accesses to different rows 
within one bank have high latency, whereas accesses to 
different banks or different words within a single row 

Figure 1.  DRAM architecture [9] 



have low latency [9].  
Memory access scheduling can effectively reduce 

the average memory access latency and improve 
memory bandwidth utilization by reducing cross-row 
data access. For example, prioritizing memory requests 
to the same bank and the same row can improve 
performance. Suppose there is a memory request 
sequence that accesses different rows of the same bank, 
and the sequence is A-B-A-B-A-B. This request 
sequence will cause five row misses, and each row 
miss between A and B requires a pre-charge, row 
access and column access operations. The row-first 
policy reorders the access sequence to A-A-A-B-B-B. 
The reordered sequence only causes one row miss, and 
leads to a much smaller latency. This technique 
effectively improves the memory system performance 
[13].  
 
2.2 Memory scheduling schemes 
 

Many memory scheduling policies have been 
proposed to improve the efficiency of memory accesses 
in the context of single-core processors. The key idea 
in these policies is to focus on reorganizing memory 
accesses by taking advantage of the internal memory 
structure, access history or the characteristics of 
application.  

Rixner et al. [9] proposed a memory access 
scheduling scheme within memory controller, called 
bank-first scheduling, to improve the performance of a 
memory system. Their approach reorders memory 
accesses to exploit the non-uniform access times of the 
“3-D” structure of banks, rows and columns of 
contemporary DRAM chips. In the bank-first scheme, 
memory operations to different banks are allowed to 
proceed before those to the same bank, thus increasing 
the access concurrency and throughput.  

The burst scheduling proposed by Shao et al. [10], 
also called row-first scheduling scheme, clusters 
outstanding accesses into bursts that would access the 
same row within a bank. Accesses within a burst, 

except the first one, are row hits and only require 
column access transactions. Data transfers of these 
accesses can be performed back-to-back on the data 
bus, resulting in a large payload and data bus utilization 
improvement. Increasing the row hit rate and 
maximizing the memory data bus utilization are the 
major design goals of burst scheduling.  

To consider the long-term effects of a scheduling 
decision, Hur et al. proposed an adaptive history-based 
memory scheduler [3], which tracks the access pattern 
of recently scheduled accesses and selects memory 
accesses matching the pattern of reads and writes. This 
technique uses three history-based arbiters, each with a 
history length of two. The arbiter uses such information 
to schedule operations to match some pre-determined 
mixture of reads and writes. 

Zhang et al. [12] proposed a fine-grain priority 
scheduling method, which splits and maps memory 
accesses into different channels and returns critical data 
first, to fully utilize the available bandwidth and 
concurrency provided by Direct Rambus DRAM 
system.  

To optimize the memory system of SMT 
architecture, Zhu et al. [13] proposed a thread-aware 
DRAM optimization technique. They concluded that 
increasing the number of threads tends to increase the 
memory access concurrency and thus raise the pressure 
on DRAM systems, whereas some exceptions do exist. 
The application performance is sensitive to memory 
channel organizations, e.g. independent channels may 
outperform ganged organizations by up to 90%. The 
DRAM latency reduction through improving row 
buffer hit rate becomes less effective due to the 
increased bank contentions.  

Mutlu et al. [8] proposed a Stall-Time Fair 
Memory scheduler (STFM) to provide quality of 
service to different threads sharing the DRAM memory 
system. This scheme can significantly reduce the 
unfairness in the DRAM system while also improving 
system throughput (i.e. weighted speedup of threads) 
on a variety of workloads and systems. The goal of the 



proposed scheduler is to “equalize” the DRAM-related 
slowdown experienced by each thread due to 
interference from other threads, without hurting overall 
system performance. 

The existing studies, except the STFM approach, 
were not designed specifically considering the features 
of a multi-core processor. In addition, the purpose of 
STFM scheduler was to keep the fairness between 
threads on multiple cores and did not focus on 
facilitating an application running on a multi-core 
processor. The major limitation of other studies is that 
they did not take the source of memory requests into 
consideration. As the number of cores within one 
processor increases gradually, the role of memory 
requests from different cores is distinct and of 
significant importance. It is necessary to distinguish the 
source of memory requests and make an optimal 
scheduling based on their importance. We compare and 
enhance bank-first and row-first schemes with core 
awareness in this study, because bank-first scheme is 
usually taken as an evaluation bench for memory 
request scheduling [3][10], and row-first scheme was 
proposed most recently with good performance [10].  

 

3. Core-aware Memory Access Scheduling 
 
In this section, we introduce a novel core-aware 

memory access scheduling specifically designed for 
multi-core processors, while keeping the merits of 
classic memory scheduling schemes.  
 
3.1 Core-aware memory scheduling 
 

Figure 2 shows general memory architecture of 
multi-core processors, where memory controller is 
shared by multiple cores. In this architecture, when 
multiple applications are running, requests from the 
same application have a great possibility of accessing 
the same row in the same bank, due to the principle of 
locality and due to the large size of each row in one 
bank (up to the page size, 8 KByte). The premise 

behind our core-aware access scheduling scheme is to 
optimize memory accesses by considering its source 
and to improve the performance of applications. L2 
cache can be shared by multiple cores or private to one 
specific core (as shown in Figure 2). In either case, 
memory controller and memory are shared.  

The proposed core-aware memory scheduling 
algorithm for memory controller is shown in Figure 3. 
The essential idea of the core-aware scheduling is to 
classify outstanding requests from the same core and 
issue them together according to their source (which 
core they are coming from). Core-aware scheduling 
gives the highest priority to the requests from the same 
core, because it is more likely that these requests 
exhibit data locality. To prevent from starvation of 
memory requests from other cores, we set a threshold 
for the maximum number of continuous requests from 
one core. A threshold register is used in the memory 
controller to record the number of issued requests from 
the same core, which is indicated by n in our algorithm. 
If the number of continuous requests from current core 
exceeds the preset threshold value, the scheduling 
policy stops serving the requests from the current core, 
and gives the highest priority to the requests from 
another core. The selection of the next core is done in a 
round-robin manner.  

The main requirement of core-aware policy is to 
retrieve the identification of the core that is sending a 

Figure 2. Multicore architecture 
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memory request to memory controller. While hardware 
support for passing the identification of the source of 
memory requests is trivial. We assume that each core 
has a unique core identifier, and if a core issues a 
request, the core identifier is recorded in the memory 
request. The core id information can be stored in the 
lowest address bits of a cache request, because these 
bits are useless for a cache request. For example, the 
lowest six address bits could be used in a 64 byte cache 
controller. This design provides a straightforward but 
effective approach to passing down the core identifier 
to memory controller.  
 

ALGORITHM: CASA /*core-aware scheduling algorithm*/

INPUT: Random sequence of memory access requests 

from m cores 

OUTPUT: Core-aware scheduled sequence of requests to 

memory controller 

BEGIN 

k ← 0; /* k indicates the core id */ 

While true 

n ← q;/*q is the number of requests to be scheduled*/

succeed ← 0; 

Repeat 

cid ← k mod m; 

Select s = min(p, number of outstanding requests 

from core cid) requests from core cid, and enqueue them 

to the issue_queue; /* p is the size of issue_queue */ 

n ← n - s; 

If (n = 0 OR (k mod m = 0) ) Then succeed ← 1; /* 

2nd condition prevents starvation and guarantees requests 

are issued within at most one iteration */ 

k ← k+1; 

Until succeed = 1 

End While 

END 

The core-aware scheduling can effectively give 
higher scheduling priority to the accesses from 
applications in favor of better locality in application, 

and thus reduces the waiting time of requests from 
applications. Using the proposed scheduling, a core 
with intensive accesses will get more opportunities to 
process requests, and it is more apt than a regular 
round-robin manner for a multi-core environment. In 
addition to the hardware requirement to pass core 
identifier information to the memory controller, the 
proposed scheduling scheme requires a core-aware 
selection process to determine which requests can enter 
the issue-queue, but does not need any modification on 
modern memory hierarchy. This core-aware selection 
process can be achieved in many ways. For instance, 
one way is to have a larger outer-queue and then select 
core-aware requests from the outer-queue to the 
issue-queue. These hardware cost is negligible, 
whereas the memory access performance can be 
significantly improved as demonstrated from the 
simulation experiments.  
 
3.2 Core-aware scheduling scheme 
 

With the idea and the algorithm of taking the 
request source into consideration, we enhance two 
conventional scheduling policies, bank-first and 
row-first policy, with core-awareness. We explore and 
compare four memory scheduling policies, including 
bank-first policy, row-first policy, and two new 
policies, namely core-aware bank-first policy and 
core-aware row-first policy, in this study. We give a 
concrete example to demonstrate how these four 
policies schedule access requests differently. We 
assume that a sequence of memory requests is stored in 
a memory queue. Each request has its bank, row and 
core identifier as shown in Table 1. We will discuss the 
scheduled result of each scheduling scheme.  

Table 1. A sequence of memory requests 

Sequence A B C D E F G H I J

Bank 1 1 2 3 5 4 3 4 3 1

Row 1 1 2 1 3 4 1 4 1 1

Core 1 2 1 2 1 3 1 1 2 1

Figure 3.  Core-Aware Scheduling Algorithm 



3.2.1 Bank-first policy 
Bank-first policy [9] arranges all memory requests 

by banks, and schedules them in a round-robin manner 
according to the bank identifier. This policy is 
beneficial because the requests to different banks can 
be carried out simultaneously. For the request sequence 
shown in Table 1, the sequence of issued requests by 
the bank-first policy will be A-C-D-F-E-B-G-H-J-I.  
3.2.2 Row-first policy 

Row-first policy gives the highest priority to the 
access to the same row of the same bank [10]. The 
row-first policy essentially enhances the bank-first 
policy by grouping the accesses to the same bank and 
same row together. This optimization is beneficial in 
reducing row misses. For the request sequence shown 
in Table 1, the sequence of issued requests by the 
row-first policy will be A-B-J-C-D-G-I-F-H-E.  
3.2.3 Core-aware bank-first policy 

The core-aware bank-first policy applies core-aware 
scheduling into bank-first policy. It gives higher 
priority to accesses from the same source and for data 
from the same bank. This policy first arranges accesses 
according to the destination bank, and then groups all 
accesses from the same core together. In essence, this 
policy is in favor of those accesses from the same 
thread while still allowing concurrent bank accesses for 
a high throughput. The core-aware bank-first policy 
schedules application related memory requests firstly 
and is of importance when a variety of applications 
running simultaneously on a multi-core environment. 
For the request sequence shown in Table 1, the 
sequence of issued requests using the core-aware 
bank-first policy will be A-C-D-F-E-J-I-H-B-G. 
Request A and J access the same bank and come from 
the same source, thus J is scheduled before B. The 
same scheduling happens to request G and I.  
3.2.4 Core-aware row-first policy 

The core-aware row-first policy applies core-aware 
scheduling into row-first policy, which gives a higher 
priority to accesses from the same core in the same row. 
It enhances the row-first policy by taking consideration 

of the request source. For the requests shown in Table 
1, the sequence of issued requests by this policy will be 
A-J-B-C-D-I-G-F-H-E. The difference between the 
result of this policy and the result of the row-first 
policy resides in the distinction in handling of requests 
A, B and J. According to the core-aware row-first 
policy, since request A and J have the exactly same 
source core and destination bank and row identifiers, 
they are scheduled first and together, followed by 
request B, which is distinguished from the scheduling 
sequence of A-B-J according to the row-first policy.  
 

4. Experimental Setup 
 

Without vendor’s effort, it is not possible to modify 
the internal structure of an integrated memory 
controller to test the proposed scheduling policies. 
Instead, we used a simulator with an accurate 
representation of multi-core processors. We have 
conducted experiments to simulate and evaluate the 
four scheduling policies discussed above. The 
experiments focused on whether and how the proposed 
policies could improve the performance of parallel 
applications in a multi-core environment.  

 
4.1 Simulation Environment 

 
We adopted Simics [6] and Wisconsin Multifacet 

General Execution-driven Multiprocessor Simulator 
(GEMS) [7] as our architecture simulator. Simics 
provides a full-system functional simulation 
infrastructure. The GEMS is a set of timing simulator 
modules for modeling the timing of the memory system 
and microprocessors. It is capable of characterizing and 
evaluating the performance of multiprocessor hardware 
systems. The default memory scheduling in the GEMS 
adopts the bank-first policy to reorder memory requests. 
We have enhanced the current GEMS implementation 
by modifying the memory controller component and 
integrating the other three policies. In our experiments, 
we set the threshold value of the maximum number of 



continuous requests from one core as 16 to prevent 
from starvation. Our experimental observations 
confirmed that this number is a proper threshold.  

We configured the simulator to represent Sun 
SPARC processor architecture with Solaris 10 as target 
operating system. The summary of configuration for 
the simulated multi-core system is shown in Table 2. 
The memory parameters are set by referring to current 
main memory technology [14] and experiments in 
related research [10][13]. Please notice that Solaris 10 
has its core scheduling schemes to schedule application 
and system tasks to different cores. We have not 
changed the task scheduling. We have only modified 
the memory access scheduling.  
 
4.2 Benchmarks 

 
We selected NAS Parallel Benchmarks (NPB) 3.2 

OpenMP version for our experiments. NPB suite was 
developed for the performance evaluation of highly 
parallel supercomputers. [2]. We chose the following 
five classic kernel benchmarks to study the effect of 
memory access scheduling policy [1][4]. Each kernel 
benchmark was tested with size Class W.  

EP: An embarrassingly parallel kernel, which 
generates pairs of Gaussian random deviates according 
to a specific scheme and tabulates the number of pairs 
in successive square annuli. It provides an estimate of 
the upper bound of achievable floating-point 
performance.  

DC: A Data Cube benchmark. This benchmark is 
based on a data mining application and builds RB-tree 
to sort tuples from a dataset.  

CG: A conjugate gradient method benchmark. This 
benchmark is used to compute an approximation of a 
large, sparse and symmetric positive definite matrix.   

MG: A simplified multi-grid kernel. It tests short 
and long-distance data communication.  

FT: A 3-D partial differential equation solution 
using FFTs. This kernel performs the essence of many 
“spectral” codes.  

Table 2: Machine Configuration 

Component Parameters 

CPU  16 Sun SPARC processor cores, 

each core is 2GHz 4-way issue 

L1 I-cache 16 KB, 4-way L1 cache on each 

core, 64 bytes cache line 

L1 D-cache 16 KB, 4-way L1 cache on each 

core, 64 bytes cache line 

L2 cache 256 KB, 4-way cache on each 

core, 64 bytes cache line 

Cache Coherence 

protocol 

Directory and MESI protocol [2] 

FSB 64 bit, 800MHz (DDR)  

Main Memory 4GB DDR2 PC2 6400 (5-5-5), 64 

bit, burst length 8 

Memory page is 4 KB 

Channel/Rank/Bank 2/4/4 (a total 32 banks) 

SDRAM Row Policy Open Page 

Address Mapping Page Interleaving 

Memory Access Pool 32 queues for each bank, each 

queue size is 16 entries 

OS Solaris 10 

 
We have tested our proposed schemes with three 

sets of experiments, as shown in Table 3. The first set 
evaluates single application with single thread, which 
represents conventional single thread application 
running on multi-core environment. The simulated 
Solaris OS issues monitoring requests, which are not 
related to applications. In the first set of applications, 
memory requests compete with these OS related 
requests. Separating application related requests and 
giving them higher priority is expected to be beneficial 
to improve performance. The second set tested an 
application with multiple threads, and the third set 
evaluated multiple applications running concurrently in 
the system. In the third set, we randomly selected four 
benchmarks and ran with one thread and four threads 
respectively. In the last two sets of tests, multiple 



threads compete in accessing memory with each other 
while competing with OS related requests.  

Table 3: Experiment Configuration 
Set Benchmarks 

Single application 

with single thread  

ep-1: EP running with one thread 

dc-1: DC running with one thread 

cg-1: CG running with one thread 

mg-1: MG running with one thread 

ft-1: FT running with one thread 

Single application 

with multiple  

threads  

ep-4: EP running with four threads 

dc-4: DC running with four threads 

cg-4: CG running with four threads 

mg-4: MG running with four threads 

ft-4: FT running with four threads 

Multiple 

applications 

mix-1: dc-1, cg-1,mg-1 and ft-1 

running concurrently 

mix-4: dc-4, cg-4,mg-4 and ft-4 

running concurrently 

 

5. Performance Evaluation and Analysis 
 
We compare the performance of memory scheduling 

policies by analyzing the total number of memory 
requests and the waiting latency. We compare the 
number of memory requests, the latency of requests, 
and the execution time of benchmarks for four 

memory-scheduling policies: bank-first (bank), 
row-first (row), core-aware bank-first (core-bank) and 
core-aware row-first (core-row) policy. We take 
bank-first as the base scheme and normalize the results 
of other scheduling schemes according to the 
performance of bank-first scheme.  

 
5.1 Analysis of the number of memory requests  

 
Figure 4 shows the number of memory requests 

issued to DRAM for the first set of experiments and 
Figure 5 shows those of the second and third sets of the 
experiments. Note that these numbers are normalized to 
the numbers of bank-first policy. From these figures, it 
can be observed that the number of memory requests 
under core-aware bank-first is the lowest for EP, CG 
and FT, for both single-thread and four-thread 
executions. The core-aware row-first scheme achieves 
the lowest number of memory requests for DC and MG 
for these two executions. 

The reason for these trends is that all memory 
requests of these applications are issued by some cores 
with good memory locality. These requests get grouped 
and are scheduled in bunch by using the core-aware 
bank-first and core-aware row-first schemes. Therefore, 
the overall efficiency is improved and fairness is 

Figure 4.  Number of memory requests for single 

application with single thread. All values are 

normalized to bank-first scheme. 
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maintained. The same reasoning applies to the results 
of the case with multiple applications, where 
core-aware bank-first and core-aware row-first 
schemes produced less memory requests compared 
with bank-first and row-first schemes when DC, CG, 
MG and FT ran concurrently with one thread/four 
threads.  

Figure 4 and Figure 5 demonstrate that the row-first 
scheme produced fewer memory requests than the 
bank-first scheme when DC, MG and FT were 
executed with one thread or four threads, because the 
row-first scheme gives higher priority to the request 
hitting the same row if the application has good locality. 
There exist two exceptions: the row-first scheme 
produced more memory requests than the bank-first 
scheme when EP and CG were tested with one thread 
or four threads. We believe that this is because the 
row-first scheme does not distinguish memory requests 
by core information and treats requests from different 
cores equally, which results in that more requests from 
OS are scheduled by row-first schemes compared with 
bank-first scheme.  

Compared with row-first scheme, the core-aware 
row-first scheme reduced memory requests by 5% on 
average for five benchmarks running with four threads, 
as shown in Figure 5. This is mainly due to the 
core-aware row-first scheme improving the row-first 
policy by taking the request source into consideration.  

 
5.2 Analysis of waiting latency 
 

The waiting latency of memory request is the 
waiting time due to blocked memory requests. 
Different scheduling schemes produce different waiting 
sequences of blocked requests, and these sequences 
decide the waiting time.  

Figure 6 illustrates the waiting latency under various 
scheduling schemes, where all values are normalized to 
the numbers of bank-first scheme again for the first set 
of experiments. Figure 7 shows those results for the 
second and third sets of experiments. When EP and CG 
were executed with one thread or four threads, the 
core-aware bank-first scheme had the smallest waiting 
latency. As shown in Figure 7, compared with the 
bank-first scheme when EP and CG ran with four 
threads, the core-aware bank-first scheme decreases the 
latency by up to 17% and 20%, respectively. The 
traditional row-first scheme performed well in reducing 
waiting time because it schedules all requests accessing 
the same row together. However, if counting the effect 
of requests from the operating system, the row-first 
scheme may not perform well. The core-aware 
bank-first scheme can reduce the waiting latency by 
decreasing the total number of requests. It decreased 
the number of requests by 5% and 6% respectively, 
compared with the row-first scheme when EP and CG 

Figure 6.  Waiting latency for single application 

with single thread. All values are normalized to 

bank-first scheme. 
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Figure 7.  Waiting latency for single application 
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were executed with four threads, and achieved the 
smallest waiting latency in EP and CG experimental 
tests as shown in Figure 5. 

When DC, MG and FT were executed with one 
thread or four threads, the core-aware row-first scheme 
had the smallest waiting latency. As shown in Figure 7, 
when DC, MG and FT ran with four threads, the 
core-aware row-first decreased the latency by up to 
25%, 22% and 23% compared with the bank-first 
scheme, and by up to 10%, 5% and 5% compared with 
the row-first scheme. The core-aware row-first scheme 
adapts to the row-first scheme, except when requests 
access the same row and the same bank, where the 
policy schedules them by giving higher priority to 
those requests with the same source.  

In the case of running multiple applications 
concurrently, i.e. case mix-1 and mix-4, the core-aware 
row-first scheme had the smallest waiting latency. The 
latency is decreased by up to 16% and 10% compared 
with the bank-first scheme, as shown in Figure 7.  
 
5.3 Analysis for execution time 

 
Figure 8 demonstrates the execution time analysis 

with various scheduling schemes for the first set of 
experiments, where all values are normalized to the 
performance of bank-first scheme. Figure 9 shows the 
execution time analysis for the second and third sets of 

experiments. Both figures demonstrate that the 
core-aware schemes outperformed the bank-first and 
the row-first schemes for all benchmarks.  

The core-aware bank-first scheme had the best 
performance when EP and CG were executed with one 
thread and four threads. As shown in Figure 8, when 
CG ran with one thread, the core-aware bank-first 
scheme reduced the execution time by 19% compared 
with the bank-first scheme, and by 15% compared with 
the row-first scheme. The reason is that all memory 
requests from CG were scheduled in bunch. For EP test 
with one thread, the execution time reduction by 
core-aware bank-first scheme was 12% compared with 
the bank-first scheme.  

For DC, MG, and FT experiments with one thread 
and four threads, the core-aware row-first scheme had 
the best performance. In Figure 9, for DC, MG, and FT 
running with four threads, the execution time reduction 
by core-aware row-first scheme are 16%, 17% and 
20%, respectively, compared with the bank-first 
scheme. The performance gain is 13%, 5% and 7%, 
respectively for DC, MG, and FT compared with the 
row-first scheme. The reason is that the core-aware 
row-first scheme has the smallest waiting latency.  

For mix-4 shown in Figure 9, the core-aware 
row-first scheme achieves the best performance, and it 
decreases the execution time by up to 11% and 7% 

Figure 8.  Execution time for single application 

with single thread. All values are normalized to 

bank-first scheme. 
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Figure 9.  Execution time for single application 

with multiple threads and multiple applications. All 

values are normalized to bank-first scheme. 
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respectively, compared with the bank-first and 
row-first schemes.  

With core-aware bank-first scheme, the execution 
time has reduced by up to 17% and 10% on average for 
all five benchmarks running with one thread and four 
threads respectively, as shown in Figures 8 and 9. The 
performance improvement in the case with one thread 
is better than that of four threads. This phenomenon, 
we believe, is due to the impact of Solaris OS 
scheduling of threads. When an application is executed 
with four threads, the simulated Solaris OS randomly 
schedules the four threads to different cores. 
Depending on how the task is partitioned, each core 
may or may not have a better locality than the average 
of multiple cores. The core-aware schemes also 
schedule more requests from the cores running with OS 
daemon threads. Due to the increased system 
management of parallel processing such as maintaining 
consistency and synchronization, the performance 
improvement with one thread is better than that with 
four threads.  

To summarize the observed results in Figure 9, the 
proposed core-aware policies improve the performance 
for all five benchmarks. Compared with the bank-first 
and row-first policy, the core-aware row-first policy 
reduced the execution time by 14% and 5% on average 
for all five benchmarks running with four threads, and 
by 10% and 5% on average for the two cases with 
multiple applications running concurrently. These 
performance gains are under the current Solaris’ 
multi-core task scheduling, which is not designed with 
the consideration of memory access. We believe the 
newly proposed care-aware memory access scheduling 
strategy will achieve an even better performance if it is 
integrated into task scheduling.  

 

6. Conclusion and Future Work 
 
As multi-core architecture has become the norm of 

future high-performance processor chips, effective 
memory access scheduling has become timely and 

important for improving both application performance 
and overall system performance. Memory access 
scheduling in a multi-core environment is different 
from that of its single-core counterpart. This study 
investigated and evaluated various memory access 
scheduling techniques in a multi-core environment. We 
noticed that the source core of memory requests is an 
important factor in scheduling data access, and we have 
proposed novel core-aware memory access scheduling 
schemes, including the core-aware bank-first policy 
and the core-aware row-first policy, to consider 
core-awareness factor and to address the limitations of 
existing approaches.  

We have performed comprehensive experiments to 
evaluate existing scheduling policies and the newly 
proposed policies. Experimental results confirmed that 
memory scheduling policies have great influence on 
memory waiting latency, and the proposed core-aware 
scheduling schemes decreased the latency considerably. 
For instance, when FT is running with four threads, the 
core-aware row-first policy reduced the latency by up 
to 23% compared with the traditional bank-first scheme, 
and by up to 6% compared with the row-first scheme. 
Experimental results also revealed that the proposed 
core-aware schemes reduced the execution time 
considerably. Compared with the bank-first and 
row-first policy, the core-aware row-first policy 
reduced the execution time by up to 20% and 7% 
respectively for FT running with four threads, and by 
up to 11% and 7% respectively for one mixed 
benchmarks represented as multiple applications.  

The proposed core-aware memory access 
scheduling has a great potential. In this study, we have 
observed a considerable performance improvement. 
The performance can be improved further by making 
Solaris OS schedule threads on cores properly. In the 
current experiments, the OS schedules the threads 
without core-aware information. We expect vendors 
follow our idea and integrate core awareness into 
multi-core memory access scheduling in a physical 
memory controller. In the near future, we plan to 



further explore OS task scheduling schemes with 
core-aware information, and thus to improve the 
effectiveness of our core-aware schemes further.  
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