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Abstract—Parallel applications are usually able to achieve high
computational performance but suffer from large latency in I/O
accesses. I/O prefetching is an effective solution for masking the
latency. Most of existing I/O prefetching techniques, however, are
conservative and their effectiveness is limited by low accuracy
and coverage. As the processor-I/O performance gap has been
increasing rapidly, data-access delay has become a dominant per-
formance bottleneck. We argue that it is time to revisit the “I/O
wall” problem and trade the excessive computing power with
data-access speed. We propose a novel pre-execution approach
for masking I/O latency. We describe the pre-execution I/O
prefetching framework, the pre-execution thread construction
methodology, the underlying library support, and the proto-
type implementation in the ROMIO MPI-IO implementation in
MPICH2. Preliminary experiments show that the pre-execution
approach is promising in reducing I/O access latency and has
real potential.

I. MOTIVATION

Parallel applications can benefit greatly from massive com-

putational capability, but their performance usually suffers due

to large latency in I/O accesses [13] [19] [22] [25] [27] [30].

Microprocessor performance has increased rapidly, and the

multi-core/many-core architecture has become the trend for

future high-performance processor chips. In the meantime,

disk performance has been increasing very slowly, causing a

huge processor-disk performance gap, as known as the I/O
wall problem. This gap has become a critical issue that limits

the sustained performance of parallel applications. Although

file-system level parallelism (i.e., parallel file systems such

as Lustre [4], PVFS [12] and GPFS [23]) and disk-level

parallelism (usually in the form of RAID) can greatly increase

the I/O throughput, they are not capable of reducing the I/O

latency effectively, especially in the case of a large number of

isolated or small accesses.
Several previous studies [9] [22] of I/O accesses on

distributed-memory systems have shown that many I/O re-

quests are small and exhibit irregular patterns. Madhyastha et

al. [18] and Smirni et al. [25] studied scalable I/O applications

and also concluded that many parallel I/O accesses are small,

non-contiguous and irregular. Although numerous studies have

been conducted and several well-known strategies, such as

collective I/O and data sieving [28] [22], have been proposed

and used to combine small I/O requests into large ones,

many small I/O requests cannot be eliminated due to the

inherent nature of the applications. I/O prefetching is another

effective latency-hiding solution in these scenarios and has

been widely used [5] [8] [19] [20] [21] [22]. However, the

traditional prefetching strategies, such as file-system level

approaches, are conservative. As the processor technology

evolves, the cost of computing power has been decreasing

rapidly. Computing power is plenty but data access is the

bottleneck. This trend provides the need and possibility to

conduct more comprehensive and aggressive data prefetching

to reduce I/O access latency efficiently. In the mean while,

the traditional concerns with prefetching strategies, such as

increased memory pressure, buffer cache pollution and in-

creased communication congestion, have been remedied well

by new technologies such as much larger memory at low cost,

dedicated memory portions for buffer cache, and much higher

I/O bandwidth and disk-level buffer cache.

Considering all these new technology trends and observa-

tions, we propose a novel pre-execution prefetching approach

to improve the I/O access performance of parallel applications.

This approach is able to explore parallel I/O concurrency

further in addition to existing approaches within MPI-IO, file

system, and disk levels. It avoids the limitation of traditional

prediction-based prefetching approaches that must rely on

perceivable patterns among I/O accesses, and is applicable for

many kinds of applications, including those with unknown

access patterns and random accesses. The proposed pre-

execution prefetching idea itself is general and also applicable

to sequential applications and POSIX I/O, but we investigate

this approach specifically for parallel I/O because parallel

applications are of more interest in terms of high performance

and high throughput I/O.

The rest of the paper is organized as follows. Section II

introduces the proposed pre-execution approach framework.

Section III and Section IV discuss the pre-execution thread

construction methodology in detail. Section V discusses the

library support for the proposed approach. Section VI presents

the preliminary experimental results and performance analysis.

Section VII compares our work with others, and we conclude

our discussions in Section VIII.

II. PRE-EXECUTION I/O PREFETCHING FRAMEWORK

The essential idea of the proposed approach is to overlap

the computation and I/O accesses via speculative prefetching.

This approach speculatively pre-executes a fragment of code

on each process to identify future I/O references and generate

prefetch requests. The speculative execution deals only with
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I/O related operations and the computations that are critical

to the I/O access address. Since we assume that the compu-

tational capability is enormous and I/O is the performance

bottleneck, the computing power spent on pre-executing I/O

related operations is negligible and the overall performance is

improved. An underlying library collects and processes the

speculated I/O references identified and proactively fetches

data into a buffer cache near client nodes. The cached data

can be retrieved by the MPI-IO library to serve requests from

regular computation processes instead of stalling the process

and fetching data from the low-level storage. Therefore, the

process stall time on I/O accesses can be effectively masked.

Fig. 1. Pre-execution Parallel I/O Prefetching

Fig. 1 illustrates a high-level view of the proposed pre-

execution parallel I/O prefetching. The pre-execution is con-

ducted via a helper thread or prefetching thread/pre-execution
thread for each parallel process. Each original process forms

a main thread or computation thread. The prefetching thread

is composed of only I/O related operations of the original

process and is attached to each main thread to prefetch data

in advance. The original parallel application source code

is transformed either with the programmer’s intervention or

with a source-to-source pre-compiler to obtain the prefetching

thread. The prefetching thread shares certain resources with

the main thread, such as MPI file handles and process rank.

It runs ahead of the main thread because it only contains the

essential computation for data address calculation, and thus

is able to produce effective prefetches for the main thread.

The prefetching thread is supported by an underlying prefetch

function call library that provides the prefetch counterparts of

normal I/O function calls. It collects speculated future refer-

ences, generates prefetch requests, and schedules prefetches.

The prefetch library can also track function-call identifiers to

synchronize the prefetching thread and the computation thread

I/O calls, and to force the prefetching thread to run properly.

The cache buffer resides on the client side (in contrast, the

source data resides on the server side) and serves as the

prefetch destination. A caching library manages the actual

fetching of data to the buffer cache. The regular MPI-IO

library is enhanced to take advantages of the prefetched data

residing in the buffer cache.

As Fig. 1 demonstrates, the logical flow is that the prefetch-

ing thread communicates with the prefetching library, specu-

lates future requests, and fetches data into buffer cache through

the caching library. The computation thread is thus able to

access the cached data via the enhanced MPI-IO library and

mask the process stall time. The caching library and the regular

MPI-IO library talk to the underlying file system and perform

actual data transfer.

The proposed prefetching approach has many technical chal-

lenges that include generating accurate future I/O references,

guaranteeing expected program behavior, constructing the pre-

execution thread efficiently, synchronizing the pre-execution

thread with the main thread as necessary, and performing the

prefetching and caching with the library support. We address

these challenges in the following sections.

III. PRE-EXECUTION PREFETCHING THREAD

CONSTRUCTION METHODOLOGY

In this section, we analyze the pre-execution thread con-

struction problem in detail and present design considerations

of various aspects. An efficient method of extracting the I/O

related code to construct the pre-execution thread is discussed

in the following section. This section addresses the challenges

in generating accurate future I/O references, preserving correct

program behavior, and handling necessary synchronizations.

A. Design Considerations

The pre-execution thread runs at the same time with the

main thread, but usually ahead of the main thread to trigger I/O

operations earlier and warms up the underlying buffer cache

with prefetched data to reduce the access latency for the main

thread. This approach essentially tries to overlap the expensive

I/O access with the computation in the main thread as much

as possible.

The main design considerations include two aspects: cor-
rectness and effectiveness. Correctness means that the prefetch-

ing must not compromise the correct behavior of the main

computation thread. Since the prefetching thread shares certain

resources with the main thread, such as memory address

space, process identification, and opened file handles, an

inconsiderate design of the pre-execution prefetching might

result in unexpected results. We discuss in detail our design

to guarantee that the prefetching does not disturb the main

thread with regards to memory, communication, and I/O be-

havior. The design provides a systematic way to perform pre-

execution prefetching effectively and generate accurate future

I/O references.

B. Dealing with Memory Behavior

A straightforward design to guarantee the correct behavior

of the main thread is to perform store removal within the

pre-execution thread. After removing the potential writes to

shared variables between the main thread and the prefetching



thread, we prevent the possibility that the prefetching thread

can change the memory state of the main thread. Note that

store removal does not need to apply to automatic variables

(stack variables) because these variables are on the stack and

are private to each thread. This approach is widely used in

existing memory-level pre-execution prefetching work [7] [14]

[32]. The limitation of this approach, however, is that it affects

the accuracy of the pre-execution thread. This inaccurate

pre-execution behavior will not affect the correctness of the

program though. It merely decreases the accuracy of the

prefetching, and thus affects the effectiveness.

In this study, we use a code cloning or variable renam-
ing technique to increase the pre-execution accuracy while

guaranteeing the correctness in the meantime. This tech-

nique creates another separate variable (for the purpose of

speculative prefetching) whenever a variable is potentially

shared among the main thread and prefetching thread. It can

guarantee that the main thread’s memory state is untouched

while allowing the prefetching thread to run accurately. We

perform a source-level code cloning to realize the variable

renaming technique. The variable renaming, however, is not

free of cost. It consumes additional memory at runtime for

the prefetching thread even though it is safe to share the

memory region with the main thread. We assume that memory

space is not a factor in limiting performance considering

the trend of much larger memory at low cost. An advanced

technique, copy-on-write, can be used to reduce the memory

overhead. This technique tries to share the memory space as

much as possible and make extra copies only when necessary.

The copy-on-write technique is widely used in efficiently

constructing new processes (such as with the fork() system

call) by the operating-system kernel.

C. Dealing with Communication Behavior

In general, I/O related operations that constitute the pre-

execution thread of a specific process do not involve communi-

cation with other processes. If they do involve communication,

our design will preserve the correct communication behavior

for the main thread. The communication is in essence an ex-

change of memory state among multiple processes; therefore,

we can follow the memory-behavior handling to deal with

communication. It is possible to make the communication

among prefetching threads speculative (ignore certain sends

and receives) to accelerate the pre-execution. The drawback,

however, is similar to the store removal approach in the mem-

ory behavior handling, and can result in inaccurate prefetching

results. The approach we choose allows prefetching threads

to communicate with each other as normal, and uses special

message tags to isolate this communication from the commu-

nication in the main thread. We believe that a small commu-

nication overhead is justified for obtaining more accurate and

effective pre-execution results. This approach can be extended

to handle collective communication as well.

D. Dealing with I/O Behavior
To simplify the discussion and focus on the methodology

itself, we only deal with MPI-IO operations with individual file

pointers or with explicit offsets. The methodology, however, is

general and extensible for collective operations and operations

with shared file pointers.
1) MPI-IO Thread-safety: The underlying prefetching li-

brary provides prefetch counterparts of I/O functions to

support the proposed approach. MPI-IO function calls

(reads/writes) can be roughly classified into two categories,

one with hidden file pointer as the file offset and one with

explicit file offset. The one with explicit offset is thread-

safe because these functions use a specified offset to access

the file and do not rely on a hidden and shared file pointer

among multiple threads. The proposed approach employs a

separate thread to run ahead and prefetch data, and thus it

involves the thread-safety consideration. To solve this issue,

we introduce one more hidden file offset pointer, named

prefetch file pointer, within the opaque MPI file handle object

to track the prefetching thread file offset. The prefetch file

pointer is generally different from the normal file pointer,

and does not match with the system-level file pointer position

usually maintained in a MPI-IO library implementation. Note

that the prefetch version of the thread-safe functions does not

use the prefetch file pointer and they guarantee the thread-

safety naturally.
2) Dependence Considerations: The proposed pre-

execution I/O prefetching runs a fragment of code ahead

of the main thread to page in data into the buffer cache in

advance. It is possible that the pre-executed I/O operations

rely on previous reads/writes from the main thread. If we do

not resolve this issue carefully, we might break the sequential

semantics guaranteed by MPI-IO. This subsection discusses

the dependence considerations within a single process, and

Section III-D4 discusses preserving consistency semantics

among multiple processes.
Concurrent reads do not interfere with each other, but writes

can potentially conflict with other reads/writes. Therefore, to

preserve the correct dependence and consistency among I/O

calls and not disturb the main thread I/O behavior, the simplest

solution is converting write operations as synchronization

points when generating the pre-execution thread. To preserve

data integrity, only the main thread performs writes and

not the pre-execution thread. This approach is analogous to

partitioning a program into many segments delimited by write

operations. The pre-execution prefetching is available and safe

within each segment, but not across segments. Obviously,

the downside of this approach is that it limits the degree of

prefetching to explore the computation and I/O concurrency

because not all writes need to be immediately visible to the

process. Therefore, it is possible to speculatively perform

prefetching for the future reads if they are not conflicting with

prior writes.
We propose a delayed synchronization approach to tackle

this issue. The rationale of the approach comes from the

fact that only the RAW (Read After Write) dependency is



a true dependency, and only its corresponding writes need to

be visible to the reads. This approach allows the prefetching

thread to record the write byte ranges when encountering a

write and to continue to run ahead without synchronizing with

the main thread. This byte range is termed dirty range and

indicates the region of data that is supposed to be written

with new data from the main thread. However, as long as

the future reads do not need this data region, it is safe to

allow the prefetching thread to run ahead and page in required

data. When the prefetching thread encounters a read, it always

performs a boundary check with the current dirty range. If

the read region falls into or overlaps with the dirty range, we

perform a delayed synchronization to wait for the data from the

main thread to be written into the disk. The synchronization

is implemented by forcing the prefetching thread to wait until

the specified function is performed from the main thread. A

dependency analysis table is maintained to map the byte range

and the function identifier of the writes that contribute the dirty

range. This mapping is used to look up the function call that

needs to be synchronized for a certain dirty range. The dirty

ranges can be combined or split as the I/O reads, writes and

synchronizations go on.

3) Prefetch Conversions: Prefetch conversions are required

for the proposed pre-execution prefetching, either with the

programmer’s intervention or with an automatic tool such as

the pre-compiler discussed in the next section. The general

rules are to convert reads, writes, and seeks to prefetch coun-

terparts as supported by the prefetching library (reads/writes

are handled with the previous dependence analysis, and seeks

simply change the prefetch file pointer), and add in necessary

synchronization handling. This handling includes converting

file open/close operations and MPI File sync() and file at-

tribute modification operations (such as setting file size or

deleting a file) as synchronization points. The MPI file handles

are transformed to global variables to make them shareable

between the main thread and prefetching thread (different

from the memory behavior handling). The MPI initialization

is converted to MPI Init thread for thread support if that is

not the case.

4) Preserving MPI-IO Consistency Semantics: Pre-

execution prefetching also preserves MPI-IO consistency

semantics among multiple processes. As the MPI-2 standard

[33] indicates, MPI-IO provides weak consistency by default,

and for stronger semantics, users need to take explicit actions,

such as setting the atomic mode, closing and reopening

the file, or using MPI File sync() and MPI Barrier() to

prevent two concurrent overlapping writes. In all these

cases, the MPI-IO consistency semantics are preserved with

the prefetching methodology because the required locking

for the atomicity mode is performed for the prefetching

thread, MPI Barrier() semantic is also preserved, and the file

closing and opening, and MPI File sync() are turned into

synchronization points as required to preserve the consistency

semantics.

IV. AUTOMATING PRE-EXECUTION THREAD

CONSTRUCTION WITH PROGRAM SLICING

It is possible to follow the construction methodology and

utilize the caching library, prefetching library and enhanced

MPI-IO library to construct the prefetching thread manually

to benefit from pre-execution prefetching. The manual con-

struction, however, is tedious and error-prone. In this section,

we present the design of a prototype source-to-source pre-

compiler to address the challenges of constructing the pre-

execution thread automatically and efficiently.

A. Mapping Pre-execution Thread Construction to Program
Slicing

We use the program slicing technique [29] to automatically

construct a pre-execution prefetching thread. The program

slicing technique was originally proposed for debugging and

studying program behavior. It is a family of program decom-

position techniques based on extracting statements relevant to

computation within a program. Program slicing relies on Pro-

gram Dependence Graph (PDG) analysis [6], a combination of

control dependence and data dependence analysis of programs.

It takes the source code as input and computes a slice (a

subset of the original program) based on the slice criteria,

the variables or statements of interest. The construction of the

pre-execution thread can be mapped to the program slicing

problem because the pre-execution thread is essentially a sub-

set of the original program, where I/O variables and statements

are of interest. If we slice the original program with all I/O

function calls and their arguments as slice criteria, we obtain

all I/O related operations, that is, I/O operations and the critical

computations that might affect those I/O operations.

B. Program Slicing with Unravel

We employ a well-implemented open-source program slic-

ing toolkit, Unravel [15] [36], for our prototype pre-compiler

development. To compute program slices, Unravel parses the

source program and represents it as a flow graph of nodes

annotated with lists of variables and directed edges indicating

control flow. For each node, the annotation maintains a defined

variable set, a referenced variable set, and an active variable

set - the set of variables that the slicing criteria depend on

just before program execution reaches that node. The slicing

computation starts with all the active sets initialized to be

empty, except that the active set for the slicing criterion

statement is initialized to the criterion variable. The slice is

computed by propagating the active sets across the entire

flow graph until no changes occur to the active sets. The

computation of the active set for an arbitrary node is controlled

by comparing variables defined at that node with the active sets

of immediate successor nodes by slicing rules [15].

Fig. 2 illustrates the structure of the Unravel toolkit. Unravel

is composed of three main components: a source code analy-

sis component, a link component, and a slicing component.

Source files are transformed to a representation independent

of source language called language independent format (LIF)

by the analyzer. The analyzer is similar to a compiler with



a scanner to break the source code into tokens that are

recognized by a parser, but instead of generating object code,

it produces LIF code. The LIF files for a given program are

bound together by the linker into a single link file. The link

file is fed into the slicer, and the slicer outputs sliced code for

different slicing criteria.

Fig. 2. Unravel Structure Overview

C. Slicing for Pre-execution I/O Prefetching

The overview structure of our prototype pre-execution code

generation pre-compiler is shown in Fig. 3. The pre-compiler

is built upon Unravel and uses the Unravel analyzer and slicer

components to compute slices of I/O related codes based on

each individual I/O function call statements. The complete pre-

execution code is built via merging these slices and performing

necessary prefetch conversions with the LIF files and link file

support. The output of the pre-compiler is an optimized code

with pre-execution prefetching enabled, and the optimized

code uses the underlying library support to accomplish the

prefetching work.

Fig. 3. Pre-execution Code Generation Pre-compiler

The basic slicing algorithm for pre-execution is shown in

Fig. 4, where S<m,v> denotes the slice computed for the slice

criterion, variable v at statement m. The algorithm considers

all predecessor statements n in the PDG. If statement n does

not assign a value to the variable v, it is omitted from the slice,

and we recursively evaluate S<n,v>. Otherwise, if statement

n assigns a value to the variable v, it is included in the

slice for criterion < m, v >, and we recursively evaluate the

program slice for all referenced variables x used to compute v

at statement n (the second term), as well as the program slice

for all referenced variables y at all statements k that control

the execution of statement n, denoted by req(n) set (the third

term). The second term within the algorithm deals with the

data dependence among statements, while the third term deals

with the control dependence and includes necessary statements

into the slice.

Fig. 4. Basic Slicing Algorithm for Pre-execution

In addition to the basic slicing algorithm, we also use Un-

ravel features to support advanced analyses, such as arrays and

structures analysis, pointer analysis and procedure analysis to

provide more fine-grain dependence information and improve

the quality of the slice [15]. For instance, Unravel keeps

track of pointer assignments and references, and analyzes each

level of indirection when generating slices. It also supports

inter-procedural analysis to construct slices across procedure

boundaries. The basic algorithm and these advanced features

are sufficient for our purpose in building the pre-execution

thread construction pre-compiler. Some existing studies of data

flow analysis specifically for MPI programs [26] also provide

useful experiences for our study.

D. Effectiveness of Pre-execution Prefetching Thread

The prefetching thread is able to run ahead of the main

thread and is effective in fetching data in advance to overlap

the computation and I/O accesses for the following reasons. As

the previous discussion illustrates, the code not relevant with

I/O operations is sliced away, which makes the prefetching

thread contain only the essential I/O operations and the code

on the critical path to these operations. Therefore, the prefetch-

ing I/O thread is not involved in enormous computations and

runs much faster than the main thread. Secondly, the prefetch

version of I/O calls are used within the pre-execution thread

to replace normal I/O calls. These prefetch calls avoid the

cost of making an extra memory copy to the user buffer.

They can also be implemented with non-blocking accesses

to accelerate the prefetching thread. Other techniques, such as

delayed synchronization, also contribute to the fast execution

of the prefetching thread, and allow the prefetching thread

to speculate as far as allowed and generate accurate I/O

references. When the prefetching thread happens to lag behind

the main thread, the underlying library implementation makes

it able to detect that to skip prefetch calls and catch up with

the main thread.

V. PRE-EXECUTION I/O PREFETCHING LIBRARY SUPPORT

This section discusses the design of the underlying library

support for the proposed pre-execution parallel I/O prefetching

strategy [3], as well as the prototype implementation with

ROMIO [35] and MPICH2 [34].



A. MPI-IO Caching Library

To implement I/O prefetching, a cache closer to the com-

puting node is needed. Several research projects have been

working on MPI-IO caching libraries. Ma et al. proposed

active buffering [16] [17] and Liao et al. proposed collective

caching [10] [11]. Instead of reinventing a new caching library,

we chose the collective caching code [10] [11]. This code

is implemented within ROMIO [35] and maintains a global

buffer cache among multiple processes at the client side. Fig.

5 demonstrates the high-level view of the collective caching

design. Each client contributes part of its memory to construct

the global cache pool, and the high-speed interconnect network

enables the rapid transfer of cached data among clients.

A specialized cache-coherency protocol is used to maintain

consistency among cache copies in the cache pool. We have

customized the collective caching implementation for our

purpose, such as disabling write caching and enabling read

caching only. In addition, we utilize speculative execution

results to direct caching policy. For instance, if the speculated

future I/O references are already cached, these data blocks are

given a higher priority to stay in the cache buffer instead of

being replaced.

Fig. 5. Collective Caching

B. MPI-IO Prefetching Library

The prefetching library provides the implementation of

prefetch counterparts of MPI-IO read/write function calls.

The handling of writes for the pre-execution thread is as

discussed in Section 3. Fig. 6 shows the flow graph of the

general algorithm of the prefetching read library design and

implementation. The syntax and semantic of the prefetching

reads are quite similar to the existing MPI-IO library design,

but there are several key differences [3]. First, the prefetching

library calls do not have a user-specified buffer parameter. This

distinction is straightforward because the data fetched by pre-

execution calls are stored in client-side buffer cache and are

not supposed to return data to the user’s buffer. The second

difference is that the prefetching library does not update the

normal file pointers. It maintains a prefetch file pointer for

the pre-execution thread and always uses this file pointer to

access data blocks. Another difference is that the prefetching

reads perform a boundary check over the current dirty range

and performs necessary delayed synchronization as discussed

previously. The last difference is that, unlike ordinary MPI-

IO library calls, prefetching function calls are silent: they do

not return errors in general. The errors or exceptions caused

by prefetching are generally discarded, and previous states are

restored.

Fig. 6. Flow Graph of MPI-IO Prefetching Library Functions

Fig. 7. Flow Graph of Enhanced MPI-IO Regular Library Functions

C. MPI-IO Regular Library

To benefit from prefetching, the regular MPI-IO library

implementation is modified to be able to access the buffer

cache for requested data in addition to satisfying the requests

directly from the file system when the data is not found in the

cache. The flow graph shown in Fig. 7 describes the algorithm

of the general modifications to the existing implementation.

The algorithm divides the I/O request into blocks and checks

whether each block already resides in the buffer cache or not.

If the block is cached, we copy the block from buffer cache

to user’s buffer via memcpy(). If the block does not appear in

the buffer cache, we perform direct I/O reads from underlying

file system. This step is exactly the same as what the existing

ROMIO implementation does.



(a) NFS (b) PVFS

Fig. 8. PBench Results on NFS and PVFS with Pre-execution Prefetching

(a) NFS (b) PVFS

Fig. 9. Aggregate Sustained Bandwidth on NFS and PVFS with Pre-execution Prefetching

VI. PRELIMINARY EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS

We have carried out preliminary experiments to verify the

benefits of the proposed pre-execution prefetching for parallel

I/O applications. This section discusses the experimental setup

and experimental results. We evaluate the results with two ma-

jor metrics, execution time reduction and sustained bandwidth

improvement, that are widely used in common practice.

A. Experimental Setup

Our experiments were conducted on a 17-node Dell Pow-

erEdge Linux-based cluster. This cluster is composed of one

Dell PowerEdge 2850 head node, with dual 2.8 GHz Xeon

processors and 2 GB memory, and 16 Dell PowerEdge 1425

compute nodes with dual 3.4 GHz Xeon processors and 1 GB

memory. The head node has two 73 GB U320 10K-RPM SCSI

drives. Each compute node has a 40 GB 7.2K-RPM SATA hard

drive. The experiments were tested on both NFS and PVFS file

systems. PVFS [12] was configured with one metadata server

node, the head node, and 8 I/O server nodes. All compute

nodes were used as client nodes. The cache page size of the

collective caching was set as 64 KB and the buffer cache size

at each client was set as 32 MB.

B. Experimental Results

1) PBench Experimental Results: We have followed the

PIO-Bench framework [24] and developed a parallel I/O

benchmark, named PBench. PBench emulates a regular par-

allel application’s computation and I/O access behavior of

many small and non-contiguous accesses. The computation is

emulated with floating-point calculation, and the I/O accesses

are emulated with accessing huge two-dimensional double-

precision matrices. The difference between the PBench and

PIO-Bench is that PBench characterizes both computation and

I/O accesses, whereas PIO-Bench characterizes I/O behavior

only. PIO-Bench is usually used for measuring the peak I/O

performance with different access patterns, while PBench is

suitable for studying the sustained performance and the impact



of different optimization techniques, MPI-IO implementations,

and file systems.

We have conducted three sets of experiments with the

PBench on NFS and PVFS respectively. In each set, we tested

PBench with three settings: accessing a 4K by 4K, 8K by 8K,

and 16K by 16K matrices. In each test, every I/O access is

random, but the average request size is the row size. We flush

the buffer cache before every run. The total accessed data was

128 MB, 512 MB, and 2 GB, respectively. The computation

was configured as 1M iterations calculation of the accessed

data.

Fig. 8 shows the experimental results with 1, 2, 4, 8, and 16

processes on NFS and PVFS respectively. Each reported result

is the average of at least three runs. In each figure, the first bar

of every column represents the original execution time, and the

second bar represents the execution time with pre-execution

prefetching. The execution time was significantly reduced in

almost all cases. The execution time reduction was up to

37.92%, and the average reduction was 29%, 33%, and 26%

respectively in three cases when tested on NFS. When tested

on PVFS, the execution time reduction was up to 32.45% and

the average reduction was 23%, 24%, and 26%.

Fig. 9 shows another view of these results. It illustrates the

aggregate sustained bandwidth when testing PBench with a

16K by 16K matrix on NFS and PVFS. The sustained band-

width improved considerably with the pre-execution prefetch-

ing, and the bandwidth was much higher on PVFS than NFS.

Since the proposed approach is on top of existing optimization

techniques in MPI-IO or the file system, it complements the

existing approaches and can reduce I/O access latency further

when combined with them.

Fig. 10 demonstrates the performance of caching optimiza-

tion only with the PBench benchmarks. Since we disable write

caching, we have relatively large cache buffer for reads. The

caching improves the performance, but the improvement is

not very substantial due to several reasons. One reason is that

read caching can perform well if large amount of data reuse

exists. If there is no much data reuse, the read caching may

not perform as well as expected. In addition, caching might be

best for optimizing write intensive application performance,

while caching plus prefetching is best for optimizing read

performance. The proposed pre-execution prefetching is a

complementary technique to caching and an effective solution

for further improving I/O performance on top of caching.

Combining the prefetching with caching, the I/O performance

can be improved substantially as Fig. 8 demonstrates.

2) Tile 2D-convolution Experimental Results: Tile 2D-

convolution is a real application to conduct two-dimensional

convolution on paired tile images. Each process is responsible

for the 2D-convolution of two tiles. Each tile is composed of

N elements in both X and Y dimension. The size of each

element varies (e.g., 1 KB or 2 KB). The 2D-convolution uses

Fast Fourier Transform (FFT) as its kernel. It first takes a 2D-

FFT of each tile, then performs a point-wise multiplication

of the intermediate results from the 2D-FFT, followed by an

inverse 2D-FFT. A 2D-FFT can be performed by using a 1D-

FFT routine and performing the 1D-FFT N times along rows

followed by N times along columns. The procedure of 2D-

convolution can be described as following:

A = 2D − FFT (tile1)
B = 2D − FFT (tile2)
C = MM Point(A,B)
D = Inverse − 2DFFT (C)

Fig. 11 illustrates the experimental results of the tile 2D-

convolution application on PVFS. The first set of experi-

ments were conducted with 25 processes, where each process

performs the 2D-convolution of two tiles. The number of

elements was set as 100 and 200, and the element size was

set as 1KB and 2KB, respectively. The total accessed data was

256 MB, 512 MB, 1 GB and 2 GB, respectively. With pre-

execution prefetching, the sustained bandwidth improved by

up to 20.58% and the average improvement was 18.37%. The

second set of experiments used 100 processes; the number of

elements was set as 50 and 100, and the element size was set

as 1 KB and 2 KB respectively. The total accessed data was

the same as in the previous set of experiments. The sustained

bandwidth increased by up to 20.32%, and the average im-

provement was 14.71%. Both sets of experiments verified that

the pre-execution prefetching achieved considerable execution

time reduction and sustained bandwidth improvement.

VII. RELATED WORK

I/O prefetching techniques can be classified into two cat-

egories in general: heuristic prediction based and speculative

execution based [19]. The heuristic approach predicts future

accesses based on observed patterns among past access his-

tories. However, it only works if applications follow regular

and perceivable known patterns. When application accesses are

random, unknown, or lack regularity, the heuristic approach

cannot help. Speculative execution prefetching provides a

more general approach. Theoretically, it works for every appli-

cation and has high accuracy in discovering future references.

The proposed pre-execution approach in this study is such a

prefetching solution to reducing I/O latency.

Some other speculative execution approaches have been

proposed recently, such as Chang and Gibson’s SpecHint

[1], Patterson and Gibson’s informed prefetching TIP [21],

and Yang’s AASFP approach [31]. Both SpecHint and TIP

approaches demonstrate that it is fully feasible to speculate

future I/O accesses in time and reveal this information to

the underlying file system to fetch data in advance. However,

their approaches are conservative and only utilize idle cycles

to perform speculation. The AASFP approach provides an

application-level speculative execution solution. This approach

is light-weight and effective, but it is only designed for sequen-

tial applications. Our proposed approach is targeted for parallel

applications and has the merits of existing approaches. The

aggressive pre-execution approach is also being studied exten-

sively to reduce memory access latency to attack the “memory

wall” problem [2] [7] [14] [32]. Those approaches also usually

involve source code transformation and prefetching injection.
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Fig. 10. PBench Results on NFS and PVFS with Caching
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Fig. 11. Aggregate Sustained Bandwidth of Tile 2D-Convolution on PVFS

In addition, they generally assume certain hardware support

for fast pre-execution thread initialization and execution on a

SMT/CMP machine. The processor’s L1 cache is usually the

prefetching destination. However, none of existing approaches

investigate the pre-execution approach for the parallel I/O

latency problem yet. This study has proposed a pre-execution

prefetching system for parallel I/O to attack the “I/O wall”

problem, and has presented the design details. Our approach is

a purely software solution, and does not rely on any hardware

assumptions. The high disk latency and fast processor speed

can tolerate the overhead for initiating and executing the pre-

execution thread of a software approach. To the best of our

knowledge, this is the first work in this direction.

There are several recent efforts in hiding data access latency

in other directions, such as providing a caching layer on

the MPI-IO level. Collective caching [10] [11] and active

buffering [16] [17] are such examples. Collective caching

is an effective solution and can benefit both read and write

accesses. We have utilized the global buffer cache maintained

by collective caching as our prefetching destination in this

study. Our proposed approach is a complement to existing

caching approaches and can improve I/O access performance

further.

VIII. CONCLUSION

As the disk performance lags far behind the processor

performance, the long disk access delay has a severe impact

on parallel-application performance. In this study, we address

this issue by hiding disk access delay via a pre-execution
prefetching strategy. The main contributions of this study are

the following: (1) We argue that, as technology evolves, it

would be beneficial to utilize enormous computational capabil-

ity to perform comprehensive prefetching to reduce I/O access

latency; (2) We have proposed an innovative pre-execution

approach for trading computing power for more effective I/O

accesses. This approach can explore computation and I/O

concurrency well and hide the data access delay effectively; (3)

We have presented the system and underlying library design



[3] in detail and a prototype implementation with collective

caching, ROMIO, and MPICH2; (4) We have presented careful

design considerations for constructing the pre-execution thread

and an automatic construction pre-compiler that uses program-

slicing technique. The pre-execution prefetching is a promising

latency tolerance technique that uses helper threads running

with computation threads to trigger long-latency I/O accesses

early, hence overlapping the computation and I/O operation

latency. The preliminary experimental results have confirmed

that the proposed approach is beneficial and has real potential

to hide I/O access delay, and in turn reduce the execution time

and improve the sustained performance.
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