Sun XH, Byna S, Chen Y. Server-based data push architecture for multi-processor environments. JOURNAL OF COM-
PUTER SCIENCE AND TECHNOLOGY 22(5): 641~652 Sept. 2007

Server-Based Data Push Architecture for Multi-Processor
Environments

Xian-He Sun®? ($p¥XF1), Surendra Byna!, and Yong Chen! (4)

! Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois 60616, U.S.A.
2 Computing Division, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, U.S.A.

E-mail: {sun, sbyna, chenyon1}@iit.edu
Received March 19, 2007; revised July 4, 2007.

Abstract Data access delay is a major bottleneck in utilizing current high-end computing (HEC) machines. Prefetch-
ing, where data is fetched before CPU demands for it, has been considered as an effective solution to masking data
access delay. However, current client-initiated prefetching strategies, where a computing processor initiates prefetching
instructions, have many limitations. They do not work well for applications with complex, non-contiguous data access
patterns. While technology advances continue to increase the gap between computing and data access performance,
trading computing power for reducing data access delay has become a natural choice. In this paper, we present a server-
based data-push approach and discuss its associated implementation mechanisms. In the server-push architecture, a
dedicated server called Data Push Server (DPS) initiates and proactively pushes data closer to the client in time. Issues,
such as what data to fetch, when to fetch, and how to push are studied. The SimpleScalar simulator is modified with a
dedicated prefetching engine that pushes data for another processor to test DPS based prefetching. Simulation results
show that L1 Cache miss rate can be reduced by up to 97% (71% on average) over a superscalar processor for SPEC
CPU2000 benchmarks that have high cache miss rates.

Keywords performance measurement, evaluation, modeling, simulation of multiple-processor system, cache memory

processors and data access, ultimately to increase the
sustained system performance.

1 Introduction

The emergence of chip multiprocessing (CMP) ar-

Divergence
chitectures has increased the peak CPU performance 25
significantly. High end computing (HEC) machines 0k — Peak
with Petaflops of computing power is in the near hori- % sk -¥- SSP
zon. However, disparity among processors, storage, =
memory, network, and applications causes a gap be- 5 101
tween peak performance and sustained system perfor- < 50
mance, and this gap is growing rapidly!! (see Fig.1). ‘T!"_'—_T'—’H

1996 2000 2003 2006

While CMP technology is becoming the driving tech-
Years (Actual to 2003 ~2006 Estimate)

nology in increasing computing power, it does not pro-
vide any direct solution to reduce the gap rather than

R Fig.1. “Divergence problem”—Increasing gap between peak
accelerating the enlargement of the gap. HEC ma- .
. \ performance and sustained system performance (SSP)
chines’ sustained performance is a low single digit per- (Source: [1])

centage of their peak performance is common. Multi-
core concurrent processing often achieves lower perfor-
mance than expected, due to poor utilization of addi-
tional processing cores. With technology advances, es-
pecially with the emergence of CMP technology, com-
puting power is no longer the bottleneck of sustained
system performance, but the data access performance
is. In this study, we introduce a server-push data archi-
tecture, which trades computing power with data ac-
cess delay to reduce the performance disparity between

The advance of computing and memory technolo-
gies is unbalanced. Following the Moore’s law, CPU
performance has been improving rapidly (52% until
2004 and 25% since then[2]), while memory perfor-
mance only has been improved 7% per year on av-
erage during the last 20 years. This leads to the
so called “memory wall”[3l. Caching and prefetching
are the commonly used methods to mask the perfor-
mance disparity between computing and data access

Regular Paper

This research was supported in part by the National Science Foundation of U.S.A. under NSF Grant Nos.

CNS-0406328, CNS-0509118, and CCF-0621435.

EIA-0224377,

642

performance. Caching holds data temporarily, while
prefetching fetches the data to a cache closer to the
computing processor before it is requested. Various
prefetching strategies have been proposed and deve-
loped during the years!*~®. However, their perfor-
mance varies largely from application to application,
and is generally poor on HEC computers. The poor
performance of current prefetching technology may be
due to different reasons. One noticeable reason is
that current prefetching is based on client-initiated
prefetching, where the computing processor initiates
prefetching. While letting a computing processor
prefetch required data sounds to be a straightforward
solution, client-initiated prefetching has many limita-
tions. For instance, predicting what data to fetch re-
quire computing power, aggressive (accurate) predic-
tion algorithms require more computing power, which
leads either to untimely prefetching (poor prefetch-
ing accuracy) or to degrade computing process perfor-
mance. In some cases, predicted prefetching instruc-
tions are given lower priority than original load/store
instructions. This again leads either to untimely
prefetching or to wastage of computing power spent on
predicting future accesses. In chip-level multiprocess-
ing, multiple cores share cache memories and memory
bandwidth, which puts even more pressure on data ac-
cess if multicore concurrent processing is conducted.
These limitations have to be overcome to improve the
effectiveness of aggressive prefetching algorithms.

Recognizing the limitation of client-initiated
prefetching and taking advantage of the abundant
computing power of chip multiprocessors have led to
several recent proposals of new prefetching strategies
on multi-core processors!®~16l. The main idea of these
approaches is to let a helper thread run ahead of
the program main thread on a separate core to ini-
tiate load cache misses in a multicore machine. Pre-
execution can be run on a core close to the program’s
main thread, which is called pull-based pre-execution,
or on a memory processor, which is called push-based
prefetching17l, The former fits the current multi-
core chip architecture well. The latter requires special
hardware support but is more efficient in masking data
access delay and implements decoupling of data access
from computing['8].

In this study we extend the concept of decoupling
of computing and data access even further. We pro-
pose a design for data access server, named Data Push
Server (DPS), which is dedicated to predict data ac-
cess pattern and push data closer to computing pro-
cessors in time. Here the term “push” means that,
unlike traditional client-initiated prefetching, DPS is-
sues prefetching instructions on behalf of computing
cores. DPS does not execute any computing related in-
structions. Its whole purpose is to provide data push

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

service and to prefetch based on data access predic-
tion. This further separation of computing and data
service has several benefits. First, a dedicated server
can adapt to complex prediction algorithms for more
aggressive prediction and can push data into multi-
ple computation threads or cores. This is especially
beneficial for HEC, where parallel processing is of-
ten achieved with the Single Program, Multiple Data
(SPMD) modell'!. Second, DPS is flexible to choose
strategies dynamically to predict future accesses based
on data access history. Instead of looking for a single
algorithm to predict all data access patterns, which
does not exist, DPS can adaptively choose a prediction
method based on the history of accesses and compiler
hints. This, again, is very beneficial to HEC where
few of the so called “grand challenge applications”,
which often run repeatedly. Third, DPS uses temporal
data access information to predict when to push data.
This gives an opportunity to modify prefetch distance
adaptively and to avoid costly synchronization needed
for pre-execution strategies to initiate prefetching in
time. Lastly, using a dedicated server for push-based
prefetching gives an opportunity for using hints from
previous execution of an application. All these bene-
fits make push-based prefetching a viable method for
masking data access cost more effectively.

DPS can be implemented at various levels of a
memory hierarchy??/. DPS for multicore computer is
designed carefully and presented in this study. We ad-
dress technical issues, such as what data to prefetch,
when to fetch, and how to push. A new data ac-
cess prediction algorithm is also introduced. The
SimpleScalar simulator!?!) is modified to include DPS
prefetching engine. While the simulation results are
preliminary, results on benchmarks and compact ap-
plications show that DPS has merits and has a real
potential.

The organization of this paper is as follows. In
Section 2, we present the structure of DPS and dis-
cuss the functionality of various components of DPS.
In Section 3, we present our initial performance re-
sults. In Section 4, we discuss related work, followed
by conclusions and future work in Section 5.

2 Data Push Server

Fig.2 shows the structure of Data Push Server
(DPS). The goals of DPS are to predict data access
patterns of applications and to push the predicted data
from main memory to a cache closer to processor. Its
three primary components are: pattern detection man-
ager, prefetch engine, and management engine. The
Pattern Detection Manager (PDM) collects history
of data accesses in spatial and temporal dimensions.
Data access information in spatial dimension includes

Xian-He Sun et al.: Server-Based Data Push Architecture for Multi-Processor Environments 643

the strides between successive accesses. Information
in temporal dimension refers to the time of accesses,
either in clock cycles or inter-reference distance. The
PDM then classifies patterns of those data accesses!?2!.
The prefetch engine is responsible to predict future ac-
cesses and the timing. It in turn has three subcompo-
nents: prefetch strategy selector, prefetch predictor,
and request generator. The Prefetch Strategy Selec-
tor (PSS) adaptively selects an appropriate method
to predict future accesses based on the pattern infor-
mation. The prefetch predictor of the prefetch engine
decides what data to fetch and the request generator
decides when to push data so that the prefetched data
arrives at its destination in time. Here by “in time”,
we mean that data is pushed from its source to desti-
nation within a window of time before it is required,
and where it does not replace other data blocks from
cache falsely. By moving data into a cache too early,
it may replace data blocks that would be accessed in
the near future. Our strategy aims to avoid such neg-
ative effects. The management engine is responsible
to issue instructions to push data. The prefetch re-
quests are kept in a prefetch queue and data propeller
in the management engine issues a signal to push the
data to its destination. The source of data in multi-
core processor environment is main memory, and the
destination is cache memory. In the following subsec-
tions, we discuss the functionality of DPS components
in detail.

Prefetch Engine

Data Access Pattern

»|Detection -
History Manager |Paftern

Adcess| Prefetch Strategy
Selector

!

Prefetch |Prefetch| Request
» . >]
Predictor [Decision| Generator

Access
Pattern

Management
Engine

Prefetch
Queue

D:I:I Prefetch

Request

Data
Propeller

Y
Prefetch
Signal

Fig.2. Components of Data Push Server.

2.1 Data Access Pattern Detection

In research literature, there are many strategies
to predict future data references. However, no single
strategy accurately predicts all data access patterns.
Sequential and strided strategies can predict regular

constant and varying strided accesses, while another
set of strategies try to chase pointers and data struc-
ture traversals?®~?5 that require compiler and user
provided hints. Pre-execution based approachesl!!:26]
often use a helper thread to run slices of code to pre-
dict future accesses. Complexity of these strategies
varies. Using simple strategies cannot capture com-
plex patterns and complex strategies suffer from high
overhead in predicting simple access patterns. An ac-
curate prefetching mechanism should support various
prediction strategies and should adapt to data access
patterns of an application at runtime.

In DPS, the Pattern Detection Manager (PDM)
detects data access patterns, and the prefetch stra-
tegy selector selects an appropriate prediction strategy
based on the detected pattern. To detect whether a
pattern is formed by simple strides or complex vari-
able strides, the PDM observes the distances (spatial
and temporal strides) between consecutive data ref-
erences. We classify data access references into con-
tiguous, non-contiguous, and combinations of contigu-
ous and non-contiguous patterns/?2/. We divide these
patterns further based on repetition of occurrence of
each pattern and on variation of strides between non-
contiguous patterns. Based on this classification, the
PDM characterizes a pattern and passes that informa-
tion to the prefetch strategy selector.

2.2 Predicting Future Data References

The prefetch strategy selector (PSS) chooses a pre-
diction strategy based on initial information regard-
ing a pattern. Data access patterns can be regular
or random. Regular patterns can be simple strided
or complex combinations of nested strides. Complex
regular strided patterns usually exist in accessing ar-
rays of structures, where variables of structures are of
multiple basic data types. Some data access patterns
are accessed only once, while other access patterns ap-
pear repeatedly. Such repeating patterns are common
when loops or functions execute repeatedly. Many
strategies exist to predict future references with con-
stant strides or patterns of strides*%8!. However, pat-
terns with variable strides and repetitions need more
analysis to find regularity among them. With dedi-
cated machine, as computing power is available for
prediction, we introduce a new method that predicts
regular patterns with constant stride as well as vari-
able stride accesses and repeating patterns. This pre-
diction strategy is based on a finding “what number
comes next’ in the context of number sequences?7].
This method forms a difference table of depth d, which
we call multi-level difference table (MLDT). Exist-
ing strided prefetching*%! and distance prefetching/®]
methods use the distances (strides) between successive

644

block numbers up to one level to find regularity. In
MLDT scheme, we extend finding distances for more
than one level. Each entry of the difference table is the
difference between the two entries just above it (in the
sense “right entry minus left entry”).

Fig.3 shows a pattern of successive data references.
The first differences (d = 1) are the strides between the
right reference minus the left reference. If these strides
are different, differences among these strides are cal-
culated. Second differences (d = 2) in Fig.3 are equal
to a constant value of 2. After a constant difference is
found, the next entry of second differences above can
be predicted to be the same. As shown in Fig.3, third
entry of second differences is predicted as 2 (predicted
entries are marked in bold face font). This is added to
the third entry of the first differences, i.e., 7+ 2 = 9.
This value is added to the fourth entry of references
to find the fifth reference, i.e., 16 +9 = 25. The future
references are predicted (36, 49) in the above example.

References 1 4 9 16 25 36 49
. AT S
First Differences 3 5 7 9 11 13
: IV Y
Second Differences 2 2—> 22— 27— 2
Fig.3. Multi-level Difference Table for variable stride non-

contiguous pattern.

In the example above, we have shown finding the
address of next data block. We have worked out to
find polynomials to predict the next k-th reference in
a reference sequence. In Fig.4, we show a three-level
difference table. The references are represented by A;
(i = 0 to n). The first differences are B; (i = 0 to
n — 1), second differences are C; (i = 0 to n — 2), and
third differences are D; (i = 0 to n — 3). We present
these polynomials up to the depth of three, which can
be extended further.

n 0 1 2 3 4 5 [§
References Ay Ay A A3 Ay As Ag
First Differences By B B> B3 B4 Bs
Second Differences Co Ci C, Cs Ca

Third Differences Dy D D, D3

Fig.4. Example of multi-level difference table (MLDT).

If the depth of a difference table is 1 and if a con-
stant value can be found among the first differences,
i.e., in Fig4, B; (where i = 0 to n — 1) is the constant
B, value of the k-th reference from reference A, can
be found with the following formula.

Apin = A, +k x B.

For a difference table of depth 2, where second dif-
ferences are constant, value of the k-th reference from
reference A, can be found with the following formula.

kx(k+1)

C.
2 X

Ar+k =A, +kx B, +

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

For a difference table of depth 3, where third differ-
ences are constant, value of the k-th reference from
reference A, is:

Ex(k+1)

Ayk=A+kxB,._1+ X Cr_o + MpD.

Here My, = k/6x(k—1)x(k—2)+k?, where k = 1,2.. ..

MLDT works similar to existing stride based
prefetching strategies that predict constant stride pat-
terns. In addition, this method finds sets of repeating
differences, and ultimately finds the actual pattern in
accessing structures with variable strides data access
pattern. When the depth of a difference table is 1, ref-
erences have a constant stride. Existing stride-based
prefetching strategies are effective for this special case.
Strides similar to Fig.3 can be seen in image render-
ing applications. For variable strided patterns, MLDT
searches for regularity among data references by find-
ing deeper difference table. We extend this method to
find repeating sets of strides (e.g., 4, 8, 4, 4, 8, 4, 4, 8,
4, ...) at each level of difference table. These repeating
sets of patterns are common in accessing user-defined
datatypes (e.g., structures). For patterns with various
strides among multiple variables, the prefetch predic-
tor requires more time to learn data access patterns.
This can be extended to time series analysis such as
ARIMA models?®! to make complex pattern predic-
tions.

Identifying data access pattern of irregular ac-
cesses is complex, which may be impossible to pre-
dict the addresses of future accesses. The overhead
during pattern learning phase of such data accesses
can be reduced by utilizing compiler hints and applica-
tion support!2425]. Most of current compilers perform
highly sophisticated data dependence analysis. From
this analysis, compilers can generate hints to derive
data access patterns. Similarly, the application de-
velopers can provide hints regarding the data access
pattern in their applications. Runtime profiling of the
application also provides such hints. In this paper,
we limit the scope to find regular, complex regular
and repeating patterns. Dynamic selection of multiple
strategies based on compiler and user-provided hints
is left as future research work.

2.3 Predicting the Time to Prefetch

The issue of when to prefetch in the existing meth-
ods is limited by the occurrence of an event such as
a cache miss or a page fault (prefetch on miss) or
the first access to a data block (tagged prefetch) etc.
However, these strategies do not guarantee that the
prefetched data will reach its intended destination “in
time”’ to overlap the processor stall time. The effi-

ciency of prefetching in time depends on three factors

Xian-He Sun et al.: Server-Based Data Push Architecture for Multi-Processor Environments 645

(Fig.5): the time to predict future accesses (Tpred),
the latency of initiating and transferring data from
its source to destination (7}.t), and the gap between
current time and the next data reference that would
cause a demand cache miss (Ta) when no prefetching
is applied. If T, denotes the penalty caused by a
cache miss, prefetching can take place in the following
situations.

To
T T miss
-
>
- B il B
- Ll | »
Tpred T1at

Fig.5. In time prefetching.

e Case 1. If (Tyrea + Tiat) > (Ta + Timiss), the
prefetching is completely useless.

o Case2. If (Tyred+Tiat) > Ta and (Tpred+That) <
(Ta + Thiss), there is a partial gain of perfor-
mance improvement based on how much of Tiyjss
is overlapped.

o Case 3. If (Tprea + Tiat) = Ta, the prefetching is
in time and the prefetching is the most effective
(Fig.5).

o Case 4. If (Tpreda + Tiat) < Ta, there are two
cases.

A. If the destination of prefetched data has
empty space to accommodate, the prefetch-

ing has no negative effect.
B. If the destination of prefetched data is full, a

victim cache line has to be replaced based on
replacement policies. This negative effect of

prefetching may result in extra cache misses.
To benefit from prefetching, a prefetching strategy

has to be adaptive to decide if a prefetch would be use-
ful or not. A useless prefetch increases traffic of the
bus, and may pollute a location on the destination of
that prefetch. This necessitates the prediction of T
to make a decision whether to prefetch or not.

In DPS (Fig.2), the request generator decides when
to prefetch. The request generator varies the value of
k (from Subsection 2.2) based on the detected spatial
and temporal data access history of a cache. Temporal
history contains clock ticks of processing core to recog-
nize its timing pattern. The request generator predicts
T and adjusts the value of k so that (Tpred + Tlat) is
approximately equal to Ta. We assume that only one
application runs on a processing core at a time, since
it is complex to observe temporal pattern of data ac-
cesses when multiple tasks are running on the same
core. We currently use MLDT method to identify tem-
poral pattern in order to predict Ta. In the future we
plan to use ARIMA models to predict temporal access

patterns.

2.4 Pushing Data

The data propellor component of DPS delivers data
to processing units. After predicting the addresses
of future references by the prefetch engine, the data
at these addresses has to be delivered to appropriate
processing units. In traditional hardware prefetching
strategies, prefetching instructions are issued by the
same processing unit that executes a program. In
DPS strategy, the predicted future data references are
stored in a prefetch queue. The prefetch engine sends
this prefetch queue to the data propellor, and the
data propellor issues prefetching (push) instructions
to move the data from the memory to processing units
that need data. Special hardware support is needed to
issue instructions to push data.

2.5 Suggestions for Architectural Support

In order to implement DPS and to obtain the ben-
efits of aggressive prediction strategies, special hard-
ware is needed to support the implementation of DPS
on multi-core processors. DPS requires to collect data
access information from processor cores in order to rec-
ognize their data access pattern. For instance, in a
multicore processor, DPS core collects data access his-
tory of the processing cores. A likely implementation is
shown in Fig.6, where a Data Access History buffer is
located on each core. This buffer is similar to Prefetch
History Table of Intel Core microarchitecture!??!, but
with more fields to support in time prefetching. DPS
requires hardware support to access this DAH buffer
to analyze the history to predict future accesses. DPS
also requires hardware support to push data from
memory to upper level cache of the processing cores.

Load 1P Data Access
Buffer Data Access History | History to DPS
Addvass (DAH) Buffer ’

| T hm

L1 Data Cache Unit |St;me l Tag |'Ba§l§- A dﬂmslelackJ

|

To/From L2
Cache

Fig.6. Data Access History collection for DPS.

DPS sends prefetch signal to main memory to push
data into L1 level cache of the processing cores. Exist-
ing multicore processor architectures do not have such

646

support to perform these two operations directly. The
current cores of processors can issue prefetch instruc-
tions to fetch data closer to their own core, which sup-
ports client-initiated prefetching. To implement DPS,
support to push data for other cores is required.

When data is moved closer to a processing core,
prefetched data is validated if it is already in the cache
memory. Duplicate copies need to be discarded, which
is necessary to maintain coherence if data has already
been modified. We propose to use a separate prefetch
cache, which can be accessed concurrently with L1
cache. A separate prefetch cache to store prefetched
cache lines is not new. Among current processors,
UltraSPARC-IIIi and IV provide a 2KB data prefetch
cachel3® . Such provision reduces replacement of data
from L1 or L2 caches. From CPU’s memory reques-
tion, after physical address mapping from TLB is ob-
tained, L1 cache and prefetch cache tags are compared
simultaneously. As the processor core searches data
cache and prefetch cache in parallel, the server-based
data push model benefits more by reducing data cache
misses further. With the potential of DPS, we suggest
that provision of hardware support benefits the overall
performance.

Emerging chip-level multiprocessors show prospect
to implement DPS. There are numerous announce-
ments for developing processors with more than 1000
cores. The cores of an IBM Cell processor®! have
an internal bus, which can be used for observing pat-
terns of their local memories and for pushing data di-
rectly to their local memory. Newly proposed mul-
ticore and manycore architectures support heteroge-
neous core design, where computing cores have dif-
ferent functionality. DPS can be implemented as one
of such specialized core, that performs prefetching for
other computing cores. The rapid growth of field-
programable gate arrays (FPGA) and reconfigurable
computing is also promising for developing specialized
cores such as DPS.

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

3 Experimental Results
3.1 Simulation Methodology

We evaluate performance of DPS using an extended
version of the SimpleScalar toolset V4.02'). The base-
line simulator configuration consists of a four-issue dy-
namic superscalar cores similar to that of Alpha 21264,
with configuration shown in Table 1. To apply strided
prefetching, we modified the sim-outorder simulator
using a 512 entry reference prediction table (RPT) and
prefetch instructions are triggered when a cache miss
occurs. The prefetch distance is constant and set as
8 for strided prefetching. Although prefetch distance
of 8 is not optimal for all applications, Puzak et al.[3?]
suggest that prefetch distance above 5 branches ahead
shows better performance and prefetch distance be-
yond 10 branches has little benefit. To analyze data
access history collected in Data Access History buffer
on processing core (Fig.6), we use a Data Access His-
tory (DAH) table structure. The DAH table has a
tag, count, tail and head pointer fields (Fig.7). Tag
field records the instruction address. Each entry is a
doubly linked list, which is a queue and keeps track of
data access addresses and the time of occurrence (in
cycles) of the corresponding entry instruction. Fig.7
illustrates a constant stride is detected for instruction

Table 1. Simulator Configuration

Issue Width 4
Load Store Queue 64 entries
RUU Size 256 entries

L1 D-Cache 32KB, 2-way set associative, 64-byte line,
2-cycle hit time
L1 I-Cache 32kB, 2-way set associative, 64-byte line,

1-cycle hit time

1MB, 4-way set associative, 64-byte line,
12-cycle hit time

120 cycles

512 entries

512 entries

L2 Unified-Cache

Memory Latency
DAH Size
Prefetch Queue

Tag Count | Head | Tail Tag Count | Head %WFSUOU I n|
403C20 1
Null Null | Null | Null = —

DAH — Initial Status

DAH — After One Load Instruction

403C20| 4

o & n = —-—"'_._'_._'_-_._._-_'_-_._____-——_-_-_‘_‘_-_-_-_‘_‘_'_"—-—
Tag _|Count|Head| Tail- [freFrsooc] 3T [7FFF8008 | ¥ rrrrsood] Tt rrrrsooal 4
===

B
[1100004D4] 3T 10000400 [3T [100003FE[3T [100003FA] I T100003F8[1

4010D8| 5

DAH — After Multiple Entries

Fig.7. Data Access History (DAH) table.

Xian-He Sun et al.: Server-Based Data Push Architecture for Multi-Processor Environments 647

address 403C20 and a variable stride (a pattern with
depth 2) is detected for instruction address 4010D8.
This design makes DAH capable of capturing more
history of recent accesses instead of only two latest ac-
cesses as in RPT, thus makes it possible to capture
multi-level difference table of length n.

To simulate DPS core, we modified the sim-
outorder simulator to add another core. All the com-
ponents of DPS prefetching engine run on this core.
Operation of this core does not affect the cycles or
instructions of the processing core. We added the
prefetching to the main components of SimpleScalar
simulator to observe data access patterns of process-
ing core and to predict future references. A pattern de-
tection manager (PDM), a DAH table, and a prefetch
queue, similar to the ready queue structure of sim-
outorder simulator, are implemented. The PDM col-
lects data into DAH table. The prefetch strategy se-
lector chooses either simple strided prefetching strat-
egy or the MLDT strategy based on the pattern in-
formation provided by the PDM. The DPS core trig-
gers a prefetch when there are prefetch requests in the
prefetch queue. We modified the memory module of
the DPS core to introduce an instruction to prefetch
data into the L1 cache of processing core. We modi-
fied the cache manager of processing core to support
data push by the DPS core. We also have modified the
simulator to include a bus to support collecting DAH
buffer information and pushing data into L1 cache of
the processing core. This bus dedicates part of its
bandwidth for prefetching while the rest for normal
operations.

3.2 Experimental Setup

As a first assessment of the potential of server-
based data push model, we constructed a set of sim-
ple and complex regular strided pattern benchmarks.
For these benchmarks, we analyzed the cache per-
formance. We then verified the performance im-
provement of SPEC CPU2000*3! benchmarks that
have poor L1 cache performance. Table 2 lists mi-
crobenchmark kernels that are crucial components of
well-known benchmarks such as BLAS (Basic Lin-
ear Algebra Subroutines)[34], STREAMP3! and SPEC
CPU2000 benchmarks. 2D-matrix transpose and 2D-
matrix multiplication are important matrix operations
in scientific applications. These two operations ex-
ist in many benchmarks that test the performance
of computer architectures including BLAS, CPU2000
benchmarks. Struct kernel is taken from CPU2000
benchmarks, which has complex regular pattern. Fig.8
shows another nested strided pattern, which accesses
a 3-dimensional matrix. This pattern contains repeti-
tion of three different strides. The fist stride contain

accessing two contiguous elements of 1-dimensional ar-
ray. The second and third accesses contain accessing
two 1-dimensional and 2-dimensional arrays, respec-
tively, with different strides.

Table 2. Benchmark Kernels

Kernel Operation Access Pattern
2D-Matrix for (i=0;i< N;i++) y: Contiguous
Transpose for (j=0;7<N,j++) z: Non-Conti-

ylill] = 2Ll guous
2D-Matrix for (i =0;i< N;i++){ a: Contiguous
Multiplication for (j =0; j < N; j + +){ b: Non-Conti-

t=0; guous

for (k=0; k < N; k+ +){ c: Contiguous

t+ = ali][k] * b{EI]

}

clifil=t}}
Struct for (1 =0;1 < N; i+ +){ type_a: Non-
Accesses type_a[i]—> longvall=al]; Contiguous,

type_a[i]—> longvald = b[i]; Irregular Stri-
type_a[i]—> longval8 = c[i]; de of Repeating
} 1, 64 and 64, a,

b, c: Contiguous

Fig.8. 3-dimensional nested strided data access Innermost stride
to access 1-D array, second strided pattern to access 2-D array,

and the outermost strided pattern to access 3-D array.

We select these benchmarks, as they represent data
access patterns found in real codes and to explain
how DPS prefetching works. For instance, Matrix
transpose and multiplication operations are classic ex-
amples of noncontiguous (strided) accesses that con-
tribute to high cache miss rates when the data size
exceeds the cache size. These algorithms have been
the targets of numerous cache performance improve-
ment studies. A struct is a user-defined datatype in
C language. These struct accesses represent variable
strided data accesses, when they are defined with dif-
ferent basic data types or with other user defined data
structures. These accesses increase the cache misses
when the stride between successive accesses is larger
than a cache line.

We compare the L1 cache miss rates of all bench-

648

marks for three cases: without prefetching (base case),
with strided prefetching, and with DPS prefetching
strategy. In the base case (without prefetching), the
cache misses include compulsory, capacity and conflict
misses. The strided prefetching strategy predicts the
next stride based on the history of recent accesses and
a prefetch instruction is issued only on the occurrence
of a cache miss. These programs were compiled with
gce V3.2.3 with optimization flags turned off to ex-
clude the effect of compiler optimizations. We use the
SimPoint!3®! toolset to select a representative starting
point beyond a program’s initialization phase.

We also evaluate the performance of SPEC
CPU2000 benchmarks. We selected five benchmarks
that have high L1 cache miss rate. These programs
were compiled with gcc V3.2.3 using “—03-static”.
Each program is simulated for 200 million instructions
after fast forwarding past the initialization phase se-
lected by the SimPoint toolset.

3.3 Performance Comparison

Fig.9 shows L1 cache miss rates of the benchmark
We set N = 1024 in all the benchmark ker-
nels, where each loop iterates for N times. 2-D ma-

kernels.

trix transpose has one contiguous access pattern (ar-
ray y), and one non-contiguous access pattern (array
x). When data size is bigger than cache size, each
cache line is loaded into cache while accessing a ma-
trix column is flushed (with row-major order) before
it is reused in accessing the next column. The cache
miss rate without prefetching is 56.25%. Using strided

prefetching, the cache miss rate is reduced to 26% ©.
In accessing array z, there are two types of strides:
forward (positive) strides to access each element of a
column of the array, and a backward (negative) stride
after transposing a column fully. In strided prefetching
strategy, prefetches are initiated only on a cache miss.
With DPS strategy, the request generator adjusts tim-
ing to prefetch (i.e., prefetch distance is selected dy-
namically), where miss rate is reduced to 0.01%. These
misses occur during the data access pattern learning
stage. L1 cache miss rate of 2-D matrix multiplication
without prefetching is high due to the number of non-
contiguous accesses to array b (~50%). Here, arrays a
and c are accessed contiguously, but strides are differ-
ent. Array a is accessed in every iteration, while array
c is accessed once every N iterations. Each of these
arrays has reuse among the fetched cache lines, but ar-
ray b has no cache reuse, when data size is bigger than
cache size. The strided prefetching strategy reduces
the miss rate to 24%. For struct accesses benchmark,
the strides are set to 1, 64 and 64 and these strides

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

repeat. The L1 cache miss rate with base case is 55%.
In this case DPS prefetch strategy is able to predict
repeated sets of patterns. The request generator ad-
justs the value of k, as there is no reuse in accessing
type_a structure. With this strategy, most of the cache
misses are overlapped. Similarly, for 3-D access pat-
tern, DPS prefetching is able to predict repeated sets
of patterns, without requiring multiple learning stages
for each outer loop iteration.

Fig.10 shows L1 cache miss rates of CPU2000
benchmarks. With DPS prefetching, L.1 miss rates are
reduced significantly for all the benchmarks. These
five benchmarks have a large number of nested loops
that access user defined data types (struct), where data
access exhibit complex regular patterns. For ammp L1
miss rate reduction is 97.05%. For applu it is 48.9%, for
art it is 96%, for mcf it is 32%, and for mgrid bench-
mark it is 66.5%. These miss rates are 40% to 95%
less (66% on average) compared to strided prefetch-
ing. Fig.11 compares the number of L2 misses for these
benchmarks, which shows significantly reduced num-
ber of misses with DPS prefetching.

100
90{ [Base Case
80 Strided Prefetching
& 70 1 DPS Prefetching
£ 601 56.25 5.25
f 50 49.22 50 50
S 404
3 30 1 25.39 24.99 24.78
20 A
10 1
0 0.1 0.1 0.8 0.1
2-D 2-D Struct 3-D Access
Transpose Multiplication ~ Accesses Pattern
Potential of DPS Prefetching
Fig.9. Performance of Kernel benchmarks.
30

L1 Cache Miss Rate (%)
o

ammp applu art mcf mgrid

|0 Base Case ® Strided Prefetching 0O DPS Prefetching |

Fig.10. L1 miss rate for SPEC 2000 benchmarks.

D1n this experiment, compiler optimizations are turned off to verify the improvement of strided prefetching alone.

Xian-He Sun et al.: Server-Based Data Push Architecture for Multi-Processor Environments 649

The cost of aggressive prefetching algorithms could
be high. Fig.12 shows the values of IPC (instructions
per cycle) improvement for the above CPU2000 bench-
marks. The first bar shows the IPC improvement with
strided prefetching. The second bar represents the
IPC improvement when we implement DPS prefetch-
ing without a dedicated DPS core, i.e., DPS prefetch-
ing is implemented on the same processing core, where
benchmark code is running. The third bar represents
the IPC improvement, when we use a dedicated DPS
core for our prefetching strategy. Strided prefetching
improves IPC slightly, but degrades for applu bench-
mark. When DPS is implemented on the same pro-
cessing core, the IPC improvement is negative for all
benchmarks except for ammp benchmark. This shows
that, even though aggressive DPS prefetching is effec-
tive in predicting future references based on the history
of accesses, when it is implemented on the same pro-
cessing core, the overall performance degrades. With
the use of a dedicated memory server core, the IPC
values improve significantly, benefiting from aggressive
prefetching.

L2 Cache Miss Reduction =

=]
-
b i
=t
35 =] =
5 S
= 3.0 TS
—_ Py g
% 25 = =
P x =
3 2.0 =
Z
S 1.5 T
I“*—%I{‘.
2 1.0 g i
= e) 00 5 — 2 e
=] e O eny ‘f‘a‘_‘rl"'l o0 Ol =+
=3 05 Yol o] n L.~ o S+ WYY
O 9]_{{:;3‘ i B-o
0.0 -
ammp applu art mcf mgrid

[@ Base Case m Strided Prefetching CIDPS Prefetching

Fig.11. L2 misses for SPEC 2000 benchmarks.

300.0
24525 i
250.0 A, O Strided
B DPS (Without Dedicated Core)
& 2000
= 0 DPS (With Dedicated Core)
£ 150.0 ;
5
E 100.0 4 70.69
=
E 500
&}
& 0.0
=50.0
ammp applu art mcf mgrid
-100.0

Fig.12. IPC improvement with DPS prefetching.

Cache pollution is a negative effect of aggressive

prefetching. The cache replacement rate reflects cache
pollution and it increases if data is not pushed in
time. Fig.13 shows the replacement rates for the above
CPU2000 benchmarks. It can be observed that the
cache pollution effect is none for all the benchmarks
with our aggressive DPS prefetching strategy. For
strided prefetching, the data is prefetched only when
there are regular strided patterns among data accesses,
which does not increase cache pollution and cache per-
formance improvement is also low. With aggressive
DPS prefetching, cache performance improvement is
higher, while keeping cache pollution low.

These performance results illustrate the potential
of using a dedicated DPS core for prefetching. In ac-
tual implementation, the observation of data access
patterns at processing cores may involve some over-
head. The use of a DPS core reduces the actual
prefetching overhead at processing cores and the per-
formance gain would supercede the overhead involved
in observing the patterns. We plan to study these costs
in the future. Moreover, DPS has flexibility to choose
prediction strategies adaptively, to prefetch data in
time and to serve multiple clients. These functionali-
ties of DPS broaden the impact of CMP architectures
and in bridging the divergence gap of High-end Com-
puting.

L1 Cache Replacement Rate

30.0

%* 25.0
2 200
15.0

10.0 -

Replacement Rat

o
o

e U Il

applu art mcf mgrid

0.0 -
ammp

[o Base Case ® Strided Prefetching O DPS Prefetching ‘

Fig.13. Effect on replacement rate with DPS prefetching.

4 Related Work

Data prefetching is a well studied research area
of computer architecture. Traditional hardware data
prefetching strategies on single core processors range
from simple sequential prefetch strategies to com-
plex Markov prefetching, and to using compiler hints
in prefetching and chasing pointers. Sequential
strategies®37] prefetch next k lines of data, while
strided strategies!*6~838] predict future strides based
on past accesses. These strided strategies propose to
issue prefetching instructions during some event (i.e.,
on cache miss, on each memory access, on accessing

650

prefetched data, on branch). However, with the in-
creasing complexity of these methods, the benefits of
prefetching diminish in the traditional client-initiated
prefetching. Software-controlled prefetching®®! gives
control to a developer or a compiler to insert prefetch-
ing instructions into programs. Many processors pro-
vide support for such prefetching instructions in their
instruction set. However, software-controlled prefetch-
ing puts burden on developers and compilers, and
is less effective in reducing memory stall time on
ILP processors due to late prefetches and resource
contention !

With the emergence of multithread support in
processors, many thread-based solutions have been
proposed to deal with the complexity issue. These
methods can be roughly classified into two cate-
gories: pre-execution based and prediction based. Pre-
execution based methods often use a helper thread
to run slices of code ahead of main thread. A small
list of various proposals using pre-execution include
Luk et al’s software controlled pre-execution!™, Liao
et al.’s software-based speculative precomputation!*3!,
Zilles et al’s speculative slices'®], Roth et al.’s data-
driven multithreading'®!, Annavaram et al’s data
graph precomputation(?3, and Hassanein et al’s data
forwarding!*!). Many of these methods often rely on
compiler support to select slices of code to pre-execute
and to trigger execution of that code. Collins et al.['"]
suggest using hardware to select instructions for pre-
computation. Zhou*!! and Ganusov et al.[26] pro-
posed utilizing idle cores of a CMP to speed up single
threaded programs. Zhou’s dual-core ezecution (DCE)
approach uses idle core to construct large, distributed
instruction window and Ganusov et al’s future exe-
cution (FE) uses idle core to pre-execute future loop
iterations using value prediction. In contrast to pre-
execution approaches, DPS resides on a dedicated data
server and adaptively chooses future data prediction
strategies aggressively. DPS is designed to serve mul-
tiple processing cores simultaneously, where as DCE
and FE are tightly coupled to one core. DPS predicts
temporal pattern to provide in-time prefetching, while
pre-execution approaches require synchronization to
achieve that.

Prediction based multi-threaded strategies use
helper threads to predict future references based
on history of past accesses. Solihin et al.[*?l pro-
pose memory-side prefetching (similar to push-based
prefetching), where a memory processor is designed to
reside within main memory. This memory processor
observes history L2 cache misses and predicts future
accesses. This scheme uses stride-based and pair-based
correlations among past L2 cache misses and pushes
predicted data to L2 cache. Our DPS strategy sug-
gests using a dedicated server outside the main mem-

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

ory to observe data accesses at L1 cache level and to
push predicted data to L1 and L2 caches. Based on
these data accesses, DPS has flexibility to choose pre-
diction strategy and to serve multiple processing cores.
DPS also predicts when to push data based on tem-
poral pattern of data accesses for in-time prefetching.
Hassanein et al.l'!! also use memory-side prefetching
and suggest to forward data to either L1 cache or di-
rectly into CPU registers, but their scheme is based on
pre-execution.

Among the above related works, there are many
prediction algorithms that are more aggressive than
simple strided prefetcher, which can improve predic-
tion of future accesses based on history of accesses.
However, as we have shown in Fig.12, the complexity
of aggressive prefetching algorithms has a negative ef-
fect on overall performance. This has been a major
reason that many processor architectures still stick to
a simple strided prefetcher and do not develop aggres-
sive prefetching algorithms that are proposed over the
last two decades. Our proposed server based method is
a possible solution by providing some dedicated hard-
ware for prefetching. This dedicated prefetch engine
can use any type of prediction algorithm or a combi-
nation of prediction algorithms. Through push-based
prefetching aggressive prediction algorithms have a
chance to be used if their complexity of moved to an-
other core.

The benefits of DPS are extendable to multi-
processor environments such as SMP, where nodes
share the same memory. DPS fits well as a memory
server in these environments. DPS pushes data from
the shared memory to local memory of the compute
Since the server-based push model separates
data movement from computing, its impact is funda-
mental and is beyond the field of HEC. For instance, it
can serve as the u prozry between the file server and its
clients in a distributed file system to improve scalabil-
ity; can enhance coherence to provide a single image in

nodes.

a parallel system; and can virtualize storage in a Grid
environment. Even in HPC, DPS can be enhanced in
language, compiler and scheduling, and can be imple-
mented at system or application level.

5 Conclusions and Future Work

In this study, we have presented the server-
based data push architecture, called Data Push Server
(DPS), for masking processor stall time effectively.
DPS uses a data server in parallel with processing core
(or cores) to predict future data accesses and to push
the required data to its destination in time. A struc-
tured design is presented to implement DPS in multi-
processor machines. A novel aggressive prefetching al-
gorithm is also proposed, to predict constant strided,

Xian-He Sun et al.: Server-Based Data Push Architecture for Multi-Processor Environments

varying strided and repeating patterns.

Initial simulation results show that DPS has a pro-
found potential to improve the memory access perfor-
mance of various data access patterns. DPS has re-
duced L1 cache miss rates of benchmark kernels with
various strided patterns, in particular those of SPEC
CPU2000 benchmarks to less than 1%. This is a signif-
icant improvement (up to 95%) over strided prefetch-
ing. These results show the potential of DPS in avoid-
ing most of the processor stall time by moving data
closer to computing in time.

We have only demonstrated potential performance
gains of DPS in this study. Many research issues re-
quire more investigation. We plan to study DPS ap-
proach further for fast data access and to explore its
potential in other domains of information processing.
We plan to extend this work to study detailed imple-
mentations of DPS and to design a strategy to select
various pattern prediction strategies based on compiler
and user-provided hints. This will improve the effec-
tiveness of DPS in predicting irregular patterns such
as data structure traversals. We would like to con-
tinue studying the usage and scalability of DPS core
to support multiple processing cores as well. We in-
tend to explore more accurate pattern prediction algo-
rithms, such as time series analysis models. Emerging
heterogeneous multicore architectures and advances in
reconfigurable computing show promise to implement
our DPS as a specialized core that prefetches data for
other computing cores.

References

[1] DARPA. High productivity computing systems (HPCS),

vision: Focus on the of HPC

“User & system efficiency and productivity”.
http://www.darpa.mil/ipto/programs/hpcs/vision.htm.

lost dimension

[2] John Hennessy, David Patterson. Computer Architecture:
A Quantitative Approach. Fourth edition, Morgan Kauf-
mann, ISBN: 0123704901, 2006.

[3] Wm A Wulf, Sally A McKee. Hitting the memory wall:
Implications of the obvious. ACM SIGARPH Computer
Architecture News, March 1995, 23(1): 20~24.

[4] Chen T F, Baer J L. Effective hardware-based data prefetch-
ing for high performance processors. IEEE Transactions on
Computers, 1995, 44(5): 609~623.

[5] Dahlgren F, Dubois M, Stenstrom P. Fixed and adaptive
sequential prefetching in shared-memory multiprocessors.
In Proc. International Conference on Parallel Processing
(ICPP), Los Alamitos, CA, USA, CRC Press, 1993, Vol.1,
pPp-56~63.

[6] Fu J, Patel J H. Data prefetching in multiprocessor vector
cache memories. In Proc. the 17th Annual International
Symposium on Computer Architecture, Toronto, Canada,
1991, pp.54~63.

[7] Joseph D, Grunwald D. Prefetching using Markov predic-
tors. In Proc. the 2/th International Symposium on Com-
puter Architecture, Denver-Colorado, 1997, pp.252~263.

[8] Gokul Kandiraju, Anand Sivasubramaniam. Going the dis-
tance for TLB prefetching: An application-driven study. In

[9]

[10]

[11]

(12]

(13]

[14]

(18]

[16]

(17]

(18]

19]

(20]

(21]

[22]

(23]

(24]

651

Proc. the International Symposium on Computer Architec-
ture, Anchorage, Alaska, 2002, p.195.

Alexander T, Kedem G. Distributed predictive cache design
for high performance memory system. In Proc. the 2nd
International Symposium on High Performance Computer
Architecture (HPCA), San Jose, CA, 1996, pp.254~263.
Collins J, Tullsen D, Wang H, Shen J. Dynamic specu-
lative precomputation. the 34th International
Symposium on Microarchitecture, Austin, Texas, 2001,
pp-306~317.

Wessam Hassanein, José Fortes, Rudolf Eigenmann. Data
forwarding through in-memory precomputation threads. In
Proc. the International Conference on Supercomputing
(ICS), 2004.

Hughes C J. Prefetching linked data structures in systems
with merged DRAM-logic [Thesis]. University of Illinois at
Urbana-Champaign, Technical Report UITUCDCS-R-2001-
2221, May 2000.

Liao S, Wang P, Wang H, Hoflehner G, Lavery D, Shen J.
Post-pass binary adaptation tool for software-based specu-
lative precomputation. In Proc. the ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation (PLDI’02), Berlin, Germany, 2002, pp.117~128.
Chi-Keung Luk. Tolerating memory latency through
software-controlled pre-execution in simultaneous multi-
threading processors. In Proc. the 28th Annual Inter-
national Symposium on Computer Architecture, Géeborg,
Sweden, 2001, pp.40~51.

Amir Roth, Gurindar S Sohi. Speculative data-driven mul-
tithreading. In Proc. the 7th International Symposium on
High Performance Computer Architecture, Nuevo Lenone,
Mexico, 2001, p.37.

Craig Zilles, Gurindar Sohi. Execution-based prediction
using speculative slices. the 28th Annual In-
ternational Symposium on Computer Architecture (ISCA),
Goeborg, Sweden, 2001, pp.2~13.

Yang C L, Lebeck A R. Push vs. pull: Data movement
for linked data structures. In Proc. the International Con-
ference on Supercomputing (ICS), Santa Fe, New Mexcio,
2000, pp.176~186, pp.176~186.

James E Smith. Decoupled access/execute computer archi-
tectures. In Proc. the 9th Annual International Symposium
on Computer Architecture (ISCA), Gold Coast, Queens-
land, 1982, pp.112~119.

Culler D, Singh J P, Gupta A. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann,
ISBN 1558603433, August 1998.

In Proc.

In Proc.

Xian-He Sun, Surendra Byna. Data-access
memory servers for multi-processor environ-
ments. IIT CS TR-2005-001, November 2005,

http://www.cs.iit.edu/~suren/research.html.

Burger D C, Austin T M, Bennett S. Evaluating future mi-
croprocessors: The SimpleScalar tool set. Technical Report
1308, University of Wisconsin-Madison Computer Sciences,
1996.

Surendra Byna, Xian-He Sun, William Gropp, Rajeev
Thakur. Predicting the memory-access cost based on data
access patterns. In Proc. the IEEE International Confer-
ence on Cluster Computing, San Diego, September 2004,
pp.327~336.

Annavaram M, Patel J M, Davidson E S. Data prefetch-
ing by dependence graph pre-computation. the
28th International Symposium on Computer Architecture
(ISCA), Goeborg, Sweden, 2001, pp.52~61.

Kohout N, Choi S, Kim D, Yeung D. Multi-chain prefetch-
ing: Effective exploitation of inter-chain memory paral-
lelism for pointer-chasing codes. In Proc. the 10th Inter-
national Conference on Parallel Architectures and Compi-
lation Techniques, Barcelona, Spain, 2001, pp.268~279.

In Proc.

652

[25] Roth A, Moshovos A, Sohi G S. Dependence based prefetch-
ing for linked data structures. In Proc. the 8th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA,
1998, pp.115~126.

[26] Ilya Ganusov, Martin Burtscher. Future execution: A hard-
ware prefetching technique for chip multiprocessors. In
Proc. the 14th Annual International Conference on Paral-
lel Architectures and Compilation Techniques (PACT’05),
Saint Louis, MO, 2005, pp.350~360.

[27] Conway J H, Guy R K. The Book of Numbers. Springer-
Verlag, New York, 1996, ISBN: 038797993X.

[28] Box G E P X, Jenkins G M, Reinsel G C. Time Series Anal-
ysis: Forecasting and Control. 3rd ed, Prentice Hall, 1994.

[29] Jack Doweck. Inside Intel core microarchitec-
ture and smart memory access. White pa-
per, Intel Research website, Available online at

http://download.intel.com/technology/architecture/sma.pdf,

2006.
[30] Sun Microsystems.
chitecture Overview.

UltraSPARC IV Processor Ar-
www.sun.com/processors/white-
papers/us4_whitepaper.pdf

[31] IBM. Cell Broadband Engine resource center. http://www-
128.ibm.com/developerworks/power/cell/.

[32] Thomas R Puzak, A Hartstein, P G Emma, V Srinivasan.
When prefetching improves/degrades performance. In Proc.
the 2nd Conference on Computing Frontiers, Ischia, Italy,
May 04~06, 2005, pp.342~352.

[33] Standard Performance Evaluation Corporation.
Benchmarks, http://www.spec.org/.

[34] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, Iain
Duff. A set of level 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Software, 1990, 16(1):
1~17.

[35] John D McCalpin.
balance in current high performance computers.
Technical Committee on Computer Architecture,
http://www.cs.virginia.edu/stream.

[36] Sherwood T, Perelman E, Calder B. Basic block distribution
analysis to find periodic behavior and simulation points in
applications. In Proc. the International Conference on Par-
allel Architectures and Compilation Techniques, Barcelona,
Spain, 2001, pp.3~14.

[37] Dahlgren F, Dubois M, Stenstrom P. Sequential hard-
ware prefetching in shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 1995,
6(7): 733~746.

[38] Yue Liu, David R Kaeli. Branch-directed and stride-based
data cache prefetching. In Proc. the 1996 International
Conference on Computer Design, VLSI in Computers and
Processors, October 7~9, 1996, pp.225~230.

[39] Mowry T, Gupta A. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors.
Journal of Parallel and Distributed Computing, June 1991,
12(2): 87~106.

[40] Pai V S, Ranganathan P, Abdel-Shafi H, Adve S. The im-
pact of exploiting instruction-level parallelism on shared-
memory multiprocessors. IEEE Transactions on Comput-
ers, February 1999, 48(2): 218~226.

[41] Zhou H. Dual-core execution: Building a highly scalable
single-thread instruction window. In Proc. the 2005 In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques (PACT’05), Saint Louis, MO, 2005,
pp-231~242.

[42] Solihin Y, Lee J, Torrellas J. Using a user-level memory
thread for correlation prefetching. In Proc. International
Symposium on Computer Architecture, Anchorage, Alaska,
May 2002, pp.171~182.

SPEC

Memory bandwidth and machine
IEEE
1995,

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

Xian-He Sun received his B.S.
degree in mathematics in 1982 from
Beijing Normal University, China,
and received his M.S. degree in
mathematics, M.S. and Ph.D. de-
grees in computer science in 1985,
1987, and 1990, respectively, all
from Michigan State University,
USA. He was a post-doctoral re-
searcher at the Ames National Lab-
oratory, USA, a staff scientist at the ICASE, NASA Lang-
ley Research Center, an ASEE fellow at the US Navy Re-
search Laboratories, and was an associate professor in the
Department of Computer Science, Louisiana State Univer-
sity before he joined the Computer Science Department,
Illinois Institute of Technology (IIT) in August 1999. Cur-
rently he is a professor of computer science at IIT, a guest
faculty in the Mathematics and Computer Science Divi-
sion at the Argonne National Laboratory, and the direc-
tor of the Scalable Computing Software Laboratory at
IIT. He was on sabbatical leave during the 2006~2007
academic year working in the Computing Division at the
Fermi National Accelerator Laboratory as a visiting scien-
tist. Dr. Sun’s research interests include high performance
computing, performance evaluation, and distributed sys-
tems. More information about Prof. Sun can be found at
www.cs.lit.edu/~scs/sun.

Surendra Byna received his B.
Tech. in electronics and telecom-
munication engineering in 1997
from Jawaharlal Nehru Technolog-
ical University, India. He received
his M.S. and Ph.D. degrees in com-
puter science in 2001 and 2006, re-
spectively. Currently, he is a senior
research associate in the Computer
Science Department at Illinois In-
stitute of Technology (IIT), Chicago. He is also a guest
researcher at Argonne National Laboratory and a faculty
member at Scalable Computing Software Laboratory at
IIT. Dr. Byna’s research interests include high perfor-
mance computing, data access performance evaluation and
optimization, parallel I/O, and power aware computing.

Yong Chen received his B.E.
degree in computer engineering in
2000 and M.S. degree in com-
puter science in 2003 from Univer-
sity of Science and Technology of
China. Currently, he is pursuing his
Ph.D. degree in computer science
from Illinois Institute of Technol-

ogy, Chicago. His current research
focuses on parallel and distributed
computing in general, and on performance evaluation, op-
timization, data access performance, and parallel I/O in
particular.

