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ABSTRACT 

In the past several years, High-End Computing (HEC) has seen enormous growth in 

peek performance, and development of Peta-flop supercomputer is in the near horizon. 

Despite these advances, data access delay has been a major reason for poor sustained 

system performance (SSP) on HEC machines. Multiple levels of memory hierarchy have 

been incorporated into computer architecture to take advantage of locality among data 

accesses to reduce the gap between peak and sustained performances. However, many 

applications lack locality, which make these advances inefficient. Researchers have 

proposed many optimization methods to improve locality and to prefetch data into these 

cache memories before CPU demands for it. However, there are limitations in applying 

these methods. First, locality is application dependent and choosing an efficient 

combination among all existing tuning methods at runtime remains elusive. Second, the 

current client-initiated prefetching strategies do not work well for applications with 

complex, non-contiguous data access patterns.  

To bridge the performance gap, we introduce server-based data push architecture. In 

this architecture, a dedicated server named Data Push Server (DPS) initiates and 

proactively pushes data closer to the processing units in time. We addressed the issues of 

monitoring data access history, making spatial and temporal access pattern predictions, 

architecture modifications to push the predicted data values close to processing cores, and 

modeling data access cost. We have quantified data access cost from communication and 

middleware latencies. We present analytical models for memory performance prediction 

based on data access patterns that are useful to choose effective optimization and 

prefetching strategies with low overhead. We have applied these models to improve the 
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performance of Message Passing Interface (MPI) derived datatypes. We have studied the 

server-push architecture by enhancing SimpleScalar simulator with a dedicated 

processing unit that pushes data for another processor. The simulation results show 

significant performance gains. Our DPS architecture is extendable to various levels of 

memory hierarchy, and has a broader impact on high-end computing to improve 

productivity.
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CHAPTER 1 

INTRODUCTION 

1.1 DATA ACCESS PERFORMANCE 

High end computing (HEC) is a major strategic tool for science, engineering, and 

industry. HEC simulations in various areas of science enable to understand the world 

around us [Abra03, Kusn05]. They study the universe, enabling us to observe the systems 

that are too small (nanotechnology, biotechnology, DNA analysis etc.), too large 

(astrophysics, hurricanes, tsunamis, aircraft, atmosphere etc.), and too dangerous (nuclear 

weapons) for direct experimental observation. HEC machines have emerged with 

TeraFlops of computing power, and PetaFlop computing is in the near horizon. The 

current fastest supercomputer IBM BlueGene/L beta-System has 32768 processors, with 

a peak performance of 367 TeraFlops [Ibmb04]. Even with the existence of these 

powerful supercomputers, the demand for more powerful supercomputers continues, and 

many projects are in development to quench computing power thirst.  

However, there is a rapidly growing gap between the peak performance of HEC 

machines and sustained system performance of applications running on these systems 

[Dhpcs]. While the peak performance of current HEC machines is improving rapidly, the 

sustained performance of applications on these machines is in the range of meager 10% 

(see Figure 1.1). Disparity among performance growth of processors, storage, memory, 

network, and applications has been the cause of this gap. The performance of processor 

and network interconnect are improving multiple times faster than that of memory and 

storage. Among these disparities, poor data access performance is a major reason for the 

divergence gap. Traditionally the performance has been linked to processor speed. The 
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capacity and speed of processors doubled every 18 months complying with Moore’s Law 

until 2004, due to the increasing density of transistors within a chip. In contrast, main 

memory (DRAM) speeds and bandwidth haven’t increased enough to catch up with the 

processor performance. Since 2004, multi-core processor technology is making strides of 

improvement and the future belongs to these powerful processors. These advances are 

fueling the performance gap between processing and data access further into new levels. 

This trend is predicted to continue for the next decade and beyond. The increasing 

incompatibility between performance of processor and memory has been an obstacle to 

fully exploit the technological advances and the expected performance from the 

hardware. 

Immense research effort has been spent on reducing the performance gap between 

processor and memory. Caching is a commonly used method to mask the performance 

disparity between processing and data access performance. Advanced hierarchical 

memories that include cache memories at various levels are available to bridge this gap. 

A cache memory works on the principle of spatial and temporal locality [Smit82], which 

 

Figure 1.1. Growing gap between peak and sustained performance 
                         Source:  HECRTF [Feda04] 
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stores recently accessed cache lines of data.  However, there are many applications that 

lack locality in accessing the memory. These applications spend a major fraction of 

execution time waiting for data accesses. In other words, cache memories are exploited 

better if the cached blocks of data are reused extensively before other cache blocks 

replace them.  

Transforming and reordering the memory accesses improve application performance 

[Mcki96, Kand99, Vudb01]. As loops are the basic blocks, where most of time is spent in 

HEC applications, various loop optimization techniques have been developed to enhance 

the memory hierarchy utilization. Loop transformations (loop unrolling, loop fusion, loop 

interchange, loop reversal and loop tiling) are some of the most effective loop 

optimizations. Nevertheless, developers have to be aware of these optimization 

techniques and the location of applying them to improve the performance of applications. 

Prefetching is another strategy to mask the data access latency. While caching holds 

data temporarily, prefetching brings the data to a cache closer to the computing processor 

before it is requested. Various prefetching strategies have been proposed and developed 

during the past decade [Chba95, Ctws01, Fupa91, Jogr97, Kasi02]. Based on the data 

access history, these strategies try to predict future references using the distances (strides) 

between sequences of accesses. To predict these strides, algorithms are developed 

ranging from basic constant stride prediction to complex Markov chain predictions. 

Prefetching instructions can be issued either by a developer or a compiler at software 

level or by CPU at hardware level. These instructions have to be issued carefully to avoid 

negative effects of evicting useful cache lines. Accurate prediction and timely issuing of 

prefetch instructions increase the effectiveness of prefetching.  
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1.2 PROBLEM STATEMENT 

Data access performance can be improved by utilizing cache memory effectively. 

Accurate and aggressive predictions that help prefetching data in time and automatic 

reordering of loops can help reduce the CPU stall time in waiting for data access. This is 

the path to reduce the divergence gap problem of current HEC machines and to improve 

their productivity. 

Although numerous researchers have proposed hardware and software optimization 

mechanisms to reduce the processor-memory performance gap, memory access is 

application dependent. Some advanced compilers utilize these optimization techniques at 

various levels to improve application performance. However, compilers alone are not 

sufficient to achieve the best possible optimization due to the dynamic behavior of the 

memory accesses [Bgst03]. Optimizations that are implemented by hand with the 

knowledge of optimizations, achieve better performance than compiler optimizations. But 

superior manual optimizations require extensive knowledge of the hardware architecture 

and also about the data access patterns of application. The developer needs to be aware of 

efficient optimization techniques to be applied in the right place. Choosing an effective 

combination of optimizations at runtime among all existing tuning methods is remaining 

elusive. 

Data prefetching at hardware level is a challenging task. Although many strategies 

exist in literature, their performance varies largely from application to application, and is 

generally poor on HEC computers. The poor performance of current prefetching 

technology may be due to different reasons. One noticeable reason is that current 
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prefetching is based on client-initiated prefetching, where the computing processor 

initiates the prefetching. While letting the computing processor to prefetch the required 

data seems to be a straightforward solution, client-initiated prefetching has many 

limitations. For instance, predicting what data to fetch require computing power; 

aggressive (accurate) prediction algorithms may take computing power away from 

application and therefore reduce the system performance; the prediction information 

obtained by the computing processor may get lost in the memory hierarchy; the client 

does not know where the data is and have to compete with other computing processors 

for data access, therefore cannot perform in-time prefetching. In addition, in many HEC 

machines, computing processors have reduced OS implementations. They do not have the 

means to collect data access information effectively for data access prediction and 

prefetching. Chip-level multiprocessing puts multiple cores share the same data bus and 

high-level caches, and puts even more pressure on data access if multicore concurrent 

processing is conducted.  

In recognizing the limitation of client-initiated prefetching, and taking the advantage 

of the abundant computing power, several new prefetching strategies have been proposed 

recently on multi-core processors [Alke96, Ctws01, Hafe04, Hugh00, Lwwh02, Lukc01, 

Roso01, Shpc01]. The main idea of these approaches is to let a helper thread run ahead of 

the program main thread on a separate core to initiate a load cache misses in a multicore 

machine. The pre-execution can be conducted on a core close to the program’s main 

thread, which is called pull-based pre-execution, or on a core close to the memory, which 

is called push-based prefetching [Hafe04, Solt02]. The former fits the current multicore 

chip architecture well. The latter requires special hardware support but is more efficient 
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in masking data access delay and also realizes the decoupling of data access as suggested 

by Smith [Smit82]. 

 

1.3 OUR APPROACH 

Caching and prefetching techniques enhance data access performance, but they must 

be applied in HEC application development efficiently. As the time-to-solution of an 

application includes the time to find a set of optimization parameters, we have to reduce 

the time to search for optimization parameters at runtime. Prediction of what future data 

will be used by an application and timing of its usage is important to make prefetching 

effective. Prefetching incorrect data, either too early or too late has adverse effects on 

performance. In our research, we introduce strategies to improve caching and prefetching 

and overall, to bridge the gap between peak performance and sustained system 

performance of HEC. 

We extend the concept of decoupling of computing and data access. We design a data 

access server system, named Data Push Server (DPS), dedicated to predict data access 

pattern and to push data closer to computing processors in time. Here the term ‘push’ also 

means that, unlike traditional client-initiated prefetching, DPS initiates prefetching. DPS 

does not conduct any computing or pre-execution. Its whole purpose is to providing data 

push service and to prefetch based on data access prediction. This further separation of 

computing and data service has several benefits. First, a dedicated server can adapt to 

complex prediction algorithms for more aggressive prediction and can push data into 

multiple computation threads or cores. This is especially beneficial for HEC, where 

parallel processing is often achieved with the SPMD model [Cull97, Cusg98]. Second, 
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DPS is flexible to choose strategies dynamically to predict future accesses based on data 

access history. Instead of looking for a single magical prediction method for all data 

access patterns, which does not exist, DPS can adaptively choose a prediction method 

based on the history of accesses and compiler hints. This, again, is very beneficial to 

HEC where few of the so called “grand challenge applications” often running repeatedly. 

Third, we use temporal data access information to predict when to push data. This avoids 

costly synchronization needed for pre-execution strategies to initiate prefetching in time. 

DPS can be implemented at various levels of a memory hierarchy.  

We have also developed models to classify the data access delay in message passing 

and to predict that cost based on data access patterns. In message passing, data access 

delay has become a major portion as the network speeds have improved quite faster 

compared to memory access performance. To improve the data access cost, we first 

classified it based on non-contiguity and the size of messages. We then developed a 

model to predict memory access cost, in order to choose optimization parameters that 

improve cache utilization. In this process, we used various cache optimization techniques 

including array padding, cache blocking, software prefetching, and loop unrolling. We 

applied these models in improving the performance of derived datatypes in the Message 

Passing Interface implementation MPICH2. MPI derived datatypes allow users to 

describe noncontiguous memory layout and communicate noncontiguous data with a 

single communication function. This feature enables an MPI implementation to optimize 

the transfer of noncontiguous data. Our automatic optimized implementation achieves 

performance closer to which an advanced developer can achieve by packing/unpacking 
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noncontiguous messages with optimizations. This is a significant performance 

improvement over original implementation of MPICH2. 

 

1.4 MOTIVATION 

Parallel application developers come from multiple disciplines of scientific research. 

Their aim is to make their algorithm work more than concerning about improving 

sustained system performance on HEC machines. This reduces the productivity of these 

machines and the purpose of building fast supercomputers is defeated. It is necessary to 

pinpoint the performance bottlenecks and to optimize the performance of parallel codes 

automatically.  

Computer architecture provides various means of improving data access performance, 

however, it requires locality in data. Many parallel codes access data noncontiguously, 

where locality does not exist. Instruction level parallelism and memory level parallelism 

are introduced in superscalar and multicore processors. However, these techniques are 

beneficial only if data access latency is masked efficiently. Data prefetching has been 

considered an effective method to mask data access latency. Unfortunately, current data 

prefetching optimizations are marred by complexity overhead and limiting their 

effectiveness to a few simple algorithms. There is a need for sophisticated strategies to 

mask data access latency as well as reducing the divergence gap.  

It is the goal of performance optimization techniques to optimize the performance of 

parallel applications dynamically. These techniques have to avoid any burden on the 

application developers and utilize numerous structures provided by computer architects. 
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This dissertation focuses on designs and models that attempt to improve data access 

performance using automatic loop reordering and data prefetching strategies. 

 

1.5 THESIS 

Our thesis is as follows. Existing methods of optimizing data access performance 

require greater support from compilers and developers, which have been proven 

ineffective. We seek to provide novel analytical models and architecture to effectively 

and automatically improve data access performance. Our approach is to predict cache 

optimization parameters analytically in order to reduce the overhead caused by trial-and-

error based methods. We have designed an architecture to prefetch data by using 

aggressive strategies to predict what data an application would use in the future and to 

push that data closer to processor in time. These techniques promise applicability in 

middleware, and are extendable to various levels of memory hierarchy, such as parallel 

I/O. The objective of our thesis is to automatically improve data access performance in 

order to achieve superior productivity on high performance computing machines without 

placing burden on application developers. 

 

1.6 OVERVIEW OF THE DISSERTATION 

This dissertation is organized as follows. Chapter 2 provides a literature review of 

past memory optimization methods in relation to our thesis. We discuss the multitude of 

approaches of data access optimization methods and attempt to provide arguments for our 

prediction models and prefetching strategies. Chapter 3 presents our server-based data 

push architecture. We discuss existing memory subsystem in multicore processor 



10 

architecture and present modifications to the microarchitecture of memory subsystem to 

monitor data access history and push data from DPS. We also discuss data access pattern 

prediction in spatial and temporal dimensions. In Chapter 4, we provide fundamentals of 

data access performance models and discuss our prediction models that can be applied for 

software level data access reordering. In Chapter 5, we show the practical usage of our 

prediction model in improving the performance of MPI implementation. Chapter 6 

provides the simulation results of our server-based data push model. In Chapter 7, we 

discuss the applications of server-based push model at various levels of memory 

hierarchy and ways to find energy savings-memory performance tradeoff. Lastly, in 

Chapter 8, we present overall conclusions, impact of our work in high-end computing 

field, and the future directions of this work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 DATA ACCESS OPTIMIZATION 

Poor data access performance has been a growing problem for the last three decades 

and many researchers attempted to solve the problem. Despite numerous efforts, memory 

performance is still a bottleneck in high end computing. One major contributing factor to 

this problem is the growth of processor performance. Processor performance has 

improved by 52% a year until 2004, and by 25% since [Hepa06]. Memory latencies are 

high and the number of memory references issued by superscalar processors makes the 

memory performance even worse. Overlapping the CPU stall time during these memory 

accesses can be done at hardware level and at software level. At hardware level, 

providing multiple levels of cache and prefetching data before a CPU requests for it are 

popular strategies. At software level, modifying applications in order to improve cache 

utilization and compiler or user inserted prefetching instructions are prominent.  

Hardware data prefetching is considered as an effective method of masking CPU stall 

time. Data prefetching anticipates cache misses and fetches data before processor 

requests for data. When the anticipation of a future cache miss is correct, CPU stall time 

that would have been caused due to the cache miss is avoided. The challenge in data 

prefetching is anticipating future cache misses as well as the time that cache miss occurs. 

Many researchers have proposed algorithms to predict future references based on the 

history of cache misses. We discuss existing strategies and their inadequacies in Section 

2.2.  
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Many processor architectures rely on multiple levels of cache memory for exploiting 

spatial locality and temporal locality of data being accessed. However, this method fails 

when data accesses are non-contiguous where spatial locality does not hold. Temporal 

locality does not have effect, when data sizes are very high in addition to non-contiguous 

data access. Obtaining very high performance is the goal of parallel and distributed 

programs, where these slow memories prevent in achieving that. The spatial locality of 

data impacts the performance of parallel algorithms such as the ocean grid solver and 

Barnes-Hut [Cull97] and other domain decomposition based algorithms. The ocean grid 

solver exchanges data along horizontal and vertical boundaries. In many domain partition 

based solutions the boundary data is contiguous and spatial locality is optimal in the 

cache. When the boundary is non-contiguous (e.g. column boundary in a row-ordered 

language implementation), the amount of cache misses increase based on the contiguity 

of the data. The Barnes-Hut application initially operates on adjacent particles with good 

spatial locality for communication. As the simulation progresses, particles travel through 

physical space decreasing the spatial locality of communication causing additional cache-

related delays. Many scientific applications have similar noncontiguous patterns. Another 

example, transmission of a sub-matrix may require a series of non-contiguous accesses 

incurring more memory latency than contiguous accesses of the same size. Transmissions 

of data in such cases often utilize the message-passing model, a widely used and accepted 

parallel programming interface called Message Passing Interface (MPI) [Mpif98]. In 

Section 2.3, we discuss these performance bottlenecks and related work. 
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2.2 HARDWARE DATA PREFETCHING 

Data prefetching is a well studied research area of computer architecture. Traditional 

hardware data prefetching strategies on single core processors range from simple 

sequential prefetch strategies to complex Markov prefetching, and to using compiler hints 

in prefetching and chasing pointers. Sequential strategies [Dads93, Dads95] prefetch next 

k lines of data, while strided strategies [Chba95, Fupa91, Jogr97, Kasi02] predict future 

strides based on past accesses. With the increasing complexity of these methods, the 

benefits of prefetching diminish in the traditioanl client-initiated prefetching. Software-

controlled prefetching [Mogu91] gives control to developers or compilers to insert 

prefetching instructions into programs. Many processors provide support for such 

prefetching instructions in their instruction set. However, software-controlled prefetching 

puts burden on developers and compilers, and is less effective in reducing memory stall 

time on ILP processors due to late prefetches and resource contention [Prra99].  

With the emergence of multi-thread support in processors, many thread-based 

solutions have been proposed to deal with the complexity issue. These methods can be 

roughly classified into two categories: pre-execution based and prediction based. Pre-

execution based methods often use a helper thread to run slices of code ahead of main 

thread. A small list of various proposals using pre-execution include Luk et al.’s Software 

controlled pre-execution [Lukc01], Liao et al.’s Software-based speculative 

precomputation [Lwwh02], Zilles et al.’s Speculative slices [Ziso01], Roth et al.’s Data-

driven multithreading [Roso01], Annavaram et al.’s Data graph precomputation 

[Anpd01], and Hassanein et al.’s data forwarding [Hafe04]. Many of these methods often 

rely on compiler support to select slices of code to pre-execute and to trigger execution of 
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that code. Collins et al. [Ctws01] suggest using hardware to select instructions for 

precomputation. Zhou [Zhou05] and Ganusov et al. [Gabu05] proposed utilizing idle 

cores of a CMP to speed up single threaded programs. Zhou’s dual-core execution (DCE) 

approach uses idle core to construct large, distributed instruction window and Ganusov et 

al’s future execution (FE) uses idle core to pre-execute future loop iterations using value 

prediction. In contrast to pre-execution approaches, our Data Push Server (DPS) system 

resides on a dedicated data server and adaptively chooses future data prediction strategies 

aggressively. DPS is designed to serve multiple processing cores simultaneously, where 

as DCE and FE are tightly coupled to one core. DPS predicts temporal patterns to provide 

in-time prefetching, while pre-execution approaches require synchronization to achieve 

that. 

Prediction based multi-threaded strategies use helper threads to predict future 

references based on history of past accesses. Solihin et al. [Solt02] propose memory-side 

prefetching (similar to push-based prefetching), where a memory processor is designed to 

reside within main memory. This memory processor observes history L2 cache misses 

and predicts future accesses. This scheme uses stride-based and pair-based correlations 

among past L2 cache misses and pushes predicted data to L2 cache. Our DPS strategy 

suggests using a dedicated server outside main memory to observe data accesses at L1 

cache level and to push predicted data directly either into L1 cache or a separate prefetch 

cache, which is close to CPU. Based on the observed data accesses, DPS has flexibility to 

choose multiple prediction strategies and to serve multiple processing cores. DPS also 

predicts when to push data based on temporal pattern of data accesses for in-time 

prefetching. All these features of DPS make a better system than memory-side 
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prefetching. Hassanein et al. [Hafe04] also use memory-side prefetching and suggest to 

forward data to either L1 cache or directly into CPU registers, but their scheme is based 

on pre-execution. Parts of code are run in a memory processor and the predicted data is 

sent to L1 cache or registers. In this approach, there is a possibility that the memory 

processor used to run code being not scalable. If many cores of a CPU are requesting the 

service from this pre-execution based memory processor, the performance of memory 

processor degrades. In our DPS approach, we use a server outside memory that is more 

scalable to serve multiple cores of a processor. Since DPS software can be implemented 

as a thread, multiple threads can be instantiated, where each thread serves an individual 

core. This makes prediction of future access patterns more scalable.  

Furthermore, DPS is extendable to multi-processor environments such as SMP, where 

nodes share the same memory. DPS fits well as a memory server in these environments. 

DPS pushes data from the shared memory to local memory of the compute nodes. Since 

the server-based push model separates data movement from computing, its impact is 

fundamental and is beyond the field of HEC.  For instance, it can serve as the µ proxy 

between the file server and its clients in a distributed file system to improve scalability; 

can enhance coherence to provide a single image in a parallel system; and can virtualize 

storage in a Grid environment. Even in HPC, DPS can be enhanced in language, compiler 

and scheduling, and can be implemented at system or application level. 

 

2.3 SOFTWARE LEVEL OPTIMIZATIONS 

Memory performance of non-contiguous data accesses can be improved by various 

optimization techniques such as array padding, loop un-rolling, loop transformations, 



16 

cache blocking etc. Loops are the basic blocks most of the execution time is spent in 

numerical and scientific applications. Transforming the data access pattern in these is 

most effective based on the number of iterations each loop runs. Loop blocking [W3hp04] 

minimizes memory system use with multidimensional array elements by completing as 

many operations as possible on array elements currently in the cache. Loop unrolling 

[W3hp04] attempts to unroll certain innermost loops, minimizing the number of branches 

and grouping more instructions together to allow efficient overlapped instruction 

execution (instruction pipelining). The best candidates for loop unrolling are innermost 

loops with limited control flow. Loop distribution [W3hp04] moves instructions from one 

loop into separate, new loops. This can reduce the amount of memory used during one 

loop so that the remaining memory may fit in the cache. It can also create improved 

opportunities for loop blocking. Loop fusion combines instructions from two or more 

adjacent loops that use some of the same memory locations into a single loop. This can 

avoid the need to load those memory locations into the cache multiple times and 

improves opportunities for instruction scheduling. Loop interchange changes the nesting 

order of some or all loops. This can minimize the stride of array element access during 

loop execution and reduce the number of memory accesses needed. Outer loop unrolling 

unrolls the outer loop inside the inner loop under certain conditions to minimize the 

number of instructions and memory accesses needed. This also improves opportunities 

for instruction scheduling and scalar replacement. Data prefetching [Dkkl99] is an 

effective technique to hide memory access latency. It works by overlapping time to 

access a memory location with time to compute as well as time to access other memory 

locations. This inserts prefetching instructions for selected data accesses. We have to be 
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careful about choosing these accesses to not to prefetch unnecessary data. This technique 

works well in combination of loop unrolling. 

Some advanced compilers provide these optimizations. There had been an immense 

amount of research to improve the compilers to include all these optimizations [W3nc00, 

Dkkl99]. Despite all these efforts, compilers alone could not be very successful due to 

their compile time, and architectural constraints. For example, cache performance is 

sensitive to the block sizes of the data and it depends on cache size, cache line size and 

associativity very highly. Some of the aggressive optimizations may degrade the 

performance by transforming already optimized code into sub-optimal code.  

As an example, we compare compiler optimization performance with manual 

optimizations to show that the manual optimization is better than compiler could achieve 

with the best optimization options. We use matrix-transpose (MT) program in this 

example, executed on SGI Origin 2000 machine with MIPS 10000 processor. We 

compiled this program with SGI MIPSpro compiler [W3nc00], which has exclusive 

library of loop optimizations called LNO. For manual optimizations, we used cache 

blocking and external array padding for array sizes of 512*512, 1024*1024, 2048*2048, 

4096*4096, and 8192*8192. Each element is an 8-byte long double. The tested scenarios 

are: 

a) compilation of MT using –O2 optimizations (default) [mO2] 

b) compilation of MT using –O2 optimizations + cache blocking [mO2cb] 

c) compilation of MT using –Ofast optimizations [mOfast] 

d) compilation of MT using –Ofast optimizations + cache blocking [mOfastcb] 
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It can be seen from Figure 2.1, that default optimizations are worse than simple 

manual cache blocking optimization. Using advanced compiler optimizations show 

improvement over the default options. The last column of manual optimizations in 

combined with compiler optimizations shows another 100% improvement. This shows 

the scope for further improvement of performance if the code is developed with these 

optimizations taken into consideration based on hardware capabilities and software 

requirements in mind. 

Finding an effective combination of these manual optimizations requires extensive 

knowledge of the hardware architecture and data access patterns of application. If a 

developer is attempting to achieve high performance, he/she needs to be aware of 

efficient optimization techniques to be applied in the right place. But in practice, it is not 

common that application developers are aware of all the advances in technology and it is 

a costly process to “tweak” the code to achieve better performance. For them, it is more 

important to make their application work correctly and to meet their deadlines of 
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Figure 2.1. Comparison of compiler performance with manual optimizations 
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application development. It is performance evaluation researchers’ job to worry about 

finding optimizations, without putting burden on application developers. 

To solve the above problem, we need better performance analysis tools and 

optimization suggestion tools. Several trace-based systems have been designed for 

performance studies of parallel applications, such as Pablo [Derr99], AIMS [Yasm95]. 

These systems trace performance data for the whole application and analyze that data to 

find the bottlenecks. If any part of the code is tuned for improvement, the whole 

application has to be run to see the performance. The Paradyn system [Mcch95] is a 

dynamic performance instrumentation and measurement system. This system identifies 

the performance bottlenecks. But there is no mechanism to show the code tuning 

approaches that help the user or to apply optimizations automatically in order to improve 

performance. This needs retrieval of parameters of data access pattern at the bottleneck 

location and prediction of performance with modified patterns. SCALEA is another tool 

that does instrumentation, measurement, analysis and visualization. But this still lacks 

finding the effective combination of tuning methods.  

Currently there are few automatic tuning software tools. One of the most popular 

tools of optimization is Automatically Tuned Linear Algebra Software (ATLAS) 

[Whal01]. This tool runs subroutines multiple times to obtain the best optimization 

parameters by a trial and error method. Chung et al. [Chuh04] proposes a method to try 

several optimization values in the valid range, where previous runs define valid range. 

This uses machine-learning mechanisms to characterize and prioritize performance 

issues. This method also needs multiple runs to find a good set of optimizations. A 

prediction model can remove these multiple runs and be extended to optimize more than 
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just linear algebra subroutines. When the prediction model is simple and fast, it can 

facilitate to perform the optimization dynamically, at runtime, based on the data access 

pattern and available memory hierarchy. 

Many performance prediction models are available to help programmers in estimating 

the cost of memory. Copious research effort has been spent in this area to develop 

accurate cache performance models. But most of these models [Chat00, Sech00, Jaco96] 

lack generality. They are complex, and are bounded to a few algorithms or data access 

patterns. Jacob [Jaco96] extracts address traces from the code, which requires execution 

of the program, and consumes a lot of time if an optimization has to be applied. In our 

research, we developed a prediction model. We base our prediction model on various 

access patterns, which are parameterized. This helps in predicting the memory cost with 

very small complexity and skips the costly process of tracing the references every time 

data access pattern is changed. Chatterjee et al. [Chat01] studies the exact analysis of 

cache misses based on the polyhedral model, which is very complex. The Cache Miss 

Equations model (CME) [Ghos99] is the least costly performance model to our 

knowledge. However, this model also requires tracing the references to create the reuse 

vectors and solve cache miss equations. These models are accurate but expensive, and are 

better choices for static analysis of cache behavior. Our model fits better in choosing the 

optimization parameters dynamically at runtime than CMEs.  

Our model focuses on a wide range of data access patterns with multiple array 

variables. Most of the other cache analysis models hold good results for a specific 

algorithm [Chat00, Sech00], but fall short in acquiring generality. In our research, we 
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aimed to develop models that are simple, practical and reasonably accurate to make 

performance optimization decisions.  

 

2.4 SUMMARY 

In this chapter, we presented research work related to data access performance 

optimization at hardware level and software level. At hardware level, data prefetching is 

an extensively studied area. Various strategies exist to anticipate future cache misses and 

data access patterns. At software level, advanced compilers perform loop optimizations; 

however, they are ineffective with many complex noncontiguous data access patterns.  

We also discussed memory optimization techniques performed by various frameworks. 

Despite these efforts, a huge gap between peak performance and sustained performance 

with numerous applications still exists. Many data prefetching methods need to be more 

accurate in predicting future reference by using sophisticated and adaptive algorithms. 

Most of the software level optimization methods are either time consuming or not useful 

for generic applications. Our research goal at hardware level is to utilize a server and to 

push data in time to mask the data access latency effectively. At software level, our 

objective is to provide models that can be used for any application and they are based on 

data access patterns that cover a wide spectrum of memory accesses. The following 

chapters provide detailed discussions of our research towards the goal of data access 

performance improvement. We discuss more related work depending on the context, 

when we introduce our strategies, models, and implementations. 
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CHAPTER 3 

SERVER-BASED DATA PUSH ARCHITECTURE 

In this chapter, we first introduce the operation of memory hierarchy, memory 

subsystem of existing processors, and the prefetching support in current general-purpose 

processors. We then present the design and functionality of our server-based data push 

architecture. We discuss various technical issues, including how to monitor data access 

history, what data to prefetch, when to prefetch, how to push data. Finally, we discuss the 

benefits of implementing DPS on a multicore processor and present a case study of 

implementing DPS in Cell processor. 

 

3.1 MEMORY SUBSYSTEM 

To bridge the gap between processor and memory performance, modern computer 

architectures include multiple levels of memory hierarchies. Cache memory and 

Translation Look-aside Buffer (TLB) are essential parts of this hierarchy. Cache 

memories are placed either on the die of a processor or outside between CPU and main 

memory. These are introduced to hold small portions of the contents of main memory 

that are (believed to be) currently in use. The size as well as the latency increases to 

access a level of cache as it is placed further from the CPU. It is common to place L1 

cache on the die of the processor to make it closer to the CPU. Recent processors (Intel 

Core Duo architecture [Dowe06] based processors, IBM Power5 and AMD Dual core 

processors) place L2 cache on the die and extending the cache to another level L3. 

AMD’s processors use large L2 cache instead of L3 cache. In Intel and AMD’s dual-core 

processors, each core has its private L1 cache and shared L2 cache. Cache of virtual 
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memory mappings is stored on Translation Look-aside Buffer (TLB). Processors use 

virtual addresses to refer to data. These addresses have to be mapped to physical 

addresses on main memory. Page table contains the full list of such virtual address to 

physical address mappings and a TLB acts as a cache to store a small number of recently 

used mapping information. It is becoming common to include more than one level of 

TLB. IBM’s 64-bit PowerPC processors use Segmentation Look-aside Buffer (SLB) to 

cache the segment information. This replaces segment registers of previous 32-bit 

architectures of PowerPC. 

Figure 3.1 explains how CPU processes a memory request on a traditional single core 

processor with one level cache and a TLB. We assume that the memory hierarchy follows 

inclusive property in this subsystem. Baer et al. [Baer88] suggests that it is essential that 

the contents of higher level cache be a subset of the lower level caches, so that the higher 

level caches shield the lower level caches from cache coherence interference. Most of 

current memory hierarchies follow this property. When a memory reference occurs, CPU 
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Figure 3.1. Processing data request by CPU 
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initially searches for data in the registers (not shown in the figure). Registers are small in 

number at the highest level of memory hierarchy and the fastest accessible. If the data is 

not present in the registers, CPU searches the TLB to find the virtual-to-physical address 

map. If the mapping entry is found, the next step is to search the L1 cache for the data. If 

L1 cache does not have the data (which results in an L1 miss), the search continues to the 

next level cache. If the requested data was never fetched from the main memory, cache 

misses occur at each level cache. When data is found it is fetched and stored in the L1 

cache and returned to the CPU. In the figure, we have shown only one level of cache. 

Some of the advanced processors search TLB and the L1 cache simultaneously, where 

cache maintains the virtual address to real address mapping. For the purpose of simple 

explanation, we assume that the search is sequential. If a virtual-to-physical address 

mapping is not found in the TLB, the search continues to find the mapping in page table, 

which resides in main memory. If a requested page has never been fetched into the main 

memory, the mapping of that page does not exist in the page table, which results in a 

page fault. In this case, the requested data page is fetched to the main memory and the 

page table entry is updated. The total cost of accessing memory includes the access time 

and the miss penalties of these levels in the hierarchy. 

The recent revolution of multi-core (dual-core, quad-core and eight-core) processor 

architectures have increased the computing capacity rapidly. Single core processor speeds 

have been following the Moore’s law, which resulted in 52% improvement in speeds till 

2004. From then, Intel, AMD, IBM, Sun has introduced multicore processors, with 

various designs based on Chip Multi-processing (CMP), thread level parallelism (TLP). 

In these processors, each chip has more than one core that contains Arithmetic Logical 
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Unit (ALU) and one or two levels of cache memory. A typical Intel multicore processor 

[Dowe06] is shown in Figure 3.2. In this processor, each of two cores has its own L1 D-

cache and shared L2 D-cache. The data access operation by CPU cores is similar to the 

operation shown above (Figure 3.1), except sharing the L2 cache. L1 misses from both 

cores access shared L2 cache memory. IBM Power5 dual-core processor has similar 

cache hierarchy with shared L2 and L3 cache memories [Skte05]. Sony/Toshiba/IBM’s 

Cell Broadband Engine (CBE or Cell) is a heterogeneous architecture. Cell processor 

contains eight symmetric processing elements (SPE core) and one PowerPC processing 

element (PPE). Each SPE has access to a small local store (local memory) and share a 

system memory. This multi-core processor revolution has given us an opportunity to 

introduce new features such as separating the task of data access to improve data access 

performance.  

Figure 3.3 shows the detailed memory subsystem of Intel Core architecture 

[Dowe06]. Schedulers (Reservation Stations) issue various instructions including 

memory operations. Load and store instructions go to Memory Reorder Buffer (MOB), 

 
 

Figure 3.2. Multicore processor architecture (Intel Core) 
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where the MOB schedules memory instructions to improve memory level parallelism. If 

the requested data is in the L1 cache, data is moved to ALUs for processing. If data is not 

present in L1 cache, a cache miss occurs and propagates to L2 cache and so on. DTLB 

acts as a cache for memory mapping translations between virtual and physical addresses.  

The Intel Core microarchitecture provides Smart Memory Access (SMA) system 

[Dowe06], where Instruction Pointer-based (IP) prefetcher is added to L1 level cache (see  

 
 

Figure 3.3. Memory Subsystem of Intel Core architecture 

 
 

Figure 3.4. Instruction Pointer-based prefetcher of Intel Core architecture 
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Figure 3.4). This prefetcher predicts memory addresses that are going to be used by a 

program and deliver data just in time. IP prefetcher maintains a Prefetch History Table, 

where it stores the last address, last stride and last prefetch information. However, the IP 

prefetcher only “tries” to predict the address of next load, according to a constant stride 

calculation. When a constant stride is found, Prefetch Generator issues a prefetch request 

to L1 cache. To avoid contention between regular instructions and prefetch instructions 

for bandwidth, prefetch requests are given lower priority. If the prefetched data arrives 

late or predicted references are dropped due to lower priority, the benefit of prefetching is 

lost. 

As mentioned in the previous chapters, the existing prefetching solutions are limited 

by the power of prefetch generator. They often try to predict only the next load 

instruction based on constant stride. With the emerging multicore processors with 

numerous processing cores, not all the cores would be busy with processing. Using the 

computing power of idle cores or dedicated cores for making data access prefetching 

decisions is an obvious solution to data access problem. We propose to utilize the power 

of these computing cores to execute better algorithms to predict complex data access 

patterns that can adapt the prefetch distance based on latency. The current prefetchers 

support client initiated pull-based prefetching. We aim to use push-based prefetching that 

effectively separates data access from computing as suggested by Smith [Smit82]. 

 

3.2 DATA PUSH SERVER ARCHITECTURE 

Data Push Server (DPS) is designed to predict data access patterns of applications and 

to push the predicted data from main memory to a cache closer to processor. Figure 3.5 
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shows the structure of DPS. Its three primary components are: pattern detection manager, 

prefetch engine, and management engine. The pattern detection manager (PDM) collects 

history of data accesses in spatial and temporal dimensions. Data access information in 

spatial dimension includes the strides between successive accesses. Information in 

temporal dimension refers to the time of accesses, either in clock cycles or inter-reference 

distance. The PDM then classifies patterns of those data accesses. The prefetch engine is 

responsible to predict future accesses and the timing. It in turn has three subcomponents: 

prefetch strategy selector, prefetch predictor, and request generator. The prefetch Strategy 

Selector (PSS) adaptively selects an appropriate method to predict future accesses based 

on the pattern information. The prefetch predictor of the prefetch engine decides what 

data to fetch and the request generator decides when to push data so that the prefetched 

data arrives at its destination in time. Here by ‘in time’, we mean that data is pushed from 

its source to destination within a window of time before it is required, and where it does 

not replace other data blocks from cache falsely. By moving data into a cache too early, it 

may replace data blocks that would be accessed in the near future. Our strategy aims to 
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avoid such negative effects. The Management engine is responsible to issue instructions 

to push data. The prefetch requests are kept in a prefetch queue and data propeller in the 

management engine issues a signal to push the data to its destination. The source of data 

in multi-core processor environment is main memory, and the destination is cache 

memory. Also, when prefetching fails, management engine holds the cache misses as 

usual.  

Figure 3.6 shows a scenario of DPS system running on a computing core, serving 

Figure 3.6. DPS on Multicore processor 
(DAP: Data Access Pattern, PS: Prefetch Signal, CL: Cache Line,  

PCL: Prefetched Cache Line) 
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processing cores 1,2, …, m. We show that each core in a multicore processor 

environment contains its own L1 and L2 cache memories and shares the memory among 

other cores. This assumption is true for the future multicore processors announced by 

Intel, AMD and IBM. The core, on which DPS is running, observes the data access 

patterns of L1 cache of cores 1 to m, and predicts the future accesses correspondingly. 

The data (prefetched cache line or PCL) is pushed from the shared main memory to the 

prefetch cache (PC) of each client core. Data Propeller issues the prefetch signals (PS) to 

main memory and data is pushed. Regular memory operations related to raw cache 

misses caused by an application are served by main memory directly. These cache lines 

are read or written by L2 cache and this data (CL) is transferred main memory and L2 

cache. CPU on each core accesses both L1 cache and prefetch cache simultaneously. An 

L1 cache miss is propagated to lower level L2 cache. A prefetch cache miss is discarded. 

In the following sections, we discuss the functionality of DPS system components in 

detail. 

 

3.3 MONITORING DATA ACCESSES 

Monitoring data access history is an important task in order to predict future accesses. 

There are various methods to obtain an insight into future data accesses by an application, 

such as user provided hints, compiler hints, and predicting based on history of accesses. 

If an application developer has prior knowledge of data access patterns in his application, 

that information can be used. Another method is to utilize compiler provided hints. 

Existing advanced compilers perform extensive data flow analysis during compilation. 

Some of this data flow analysis is used to generate software level prefetching instructions 



31 

[Modk96]. The most common data access monitoring method is to observe the past 

history to predict sequences of future addresses. Similar to Intel Core architecture shown 

in Figure 3.4., many existing processors use past history of data accesses. Many 

researchers [Dads95, Vali00] also consider observing data access history an economical 

and productive way of predicting future accesses due to minimal hardware modifications. 

The issue of where to observe the data accesses comes next. Data access history can 

be observed from cache accesses at L1 cache, cache misses at L1 cache, cache misses at 

lower level caches. Many previous studies use cache miss history only either at L1 cache 

or at L2 cache. This can predict future accesses to some extent; however, the accuracy of 

prediction is low for complex patterns. Moreover, observing cache misses only cannot 

give an insight into data access times, which is necessary to predict when to prefetching. 

In our technique, DPS observes the data access history at L1 level cache. DPS observes 

access history of both hits and misses, which helps us in predicting time of future 

accesses. As shown in Figure 3.7, DPS obtains the history of data accesses at L1 cache to 

construct comprehensive history, which improves prediction accuracy.  

 
 

Figure 3.7. Data Access History collection for DPS 
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The history of data accesses contains state, tag, data address, and clock cycle 

information. State refers to L1 cache access or L1 miss. Tag field records the instruction 

address and data address refers to physical address of data requested by the CPU. Clock 

field records the time of access in cycles. This information is used to predict the temporal 

pattern of the data accesses and to push data in time. As the clock through out the CPU is 

similar, the core on which DPS is running on has the same clock to synchronize in time 

prefetching.  

The data access history is collected temporarily into DAH buffer (Figure 3.7). This 

buffer is accessed by DPS system. We propose a new instruction called GDAH to retrieve 

the contents of DAH buffer. GDAH CORE_ID instruction retrieves data access history 

from a core identified by CORE_ID. This instruction provides flexibility of implementing 

DPS either at hardware level of system level. At system level, DPS can be implemented 

using helper threads on one of the cores. This is a scalable solution as multiple threads 

are able to support multiple processing cores.  

After collecting history of data accesses, prediction of future accesses is done by the 

prefetching engine of DPS. In research literature, there are many strategies to predict 

future data references. However, no single strategy accurately predicts all data access 

patterns. Sequential and strided strategies can predict regular constant and varying strided 

accesses, while another set of strategies try to chase pointers and data structure traversals 

[Anpd01, Kcky01, Roms98] that require compiler and user provided hints. Pre-execution 

based approaches [Gabu05, Hafe04] often use a helper thread to run slices of code to 

predict future accesses. Complexity of these strategies varies. Using simple strategies 

cannot capture complex patterns and complex strategies suffer from high overhead in 
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predicting simple access patterns. An accurate prefetching mechanism should support 

various prediction strategies and should adapt to data access patterns of an application at 

runtime.  

In DPS, the pattern detection manager (PDM) detects data access patterns, and the 

prefetch strategy selector chooses an appropriate prediction strategy based on the 

detected pattern. To detect whether a pattern is formed by simple strides or complex 

variable strides, the PDM observes the distances (spatial and temporal strides) between 

consecutive data references. We classify data access references into contiguous, non-

contiguous, and combinations of contiguous and non-contiguous patterns. Figure 3.8 

shows a classification data access patterns. We divide these patterns further based on 

repetition of occurrence of each pattern and on variation of strides for non-contiguous 

patterns. Each pattern is divided into single occurrence, and repetitive patterns. For single 

occurrence reference pattern, if there is no regularity, future accesses cannot be predicted. 

Among repetitive patterns, even if there is no regularity in a sequence of accesses, future 

accesses can be predicted using the past sequence of accesses.  

 
Figure 3.8. Classification of Data Access Patterns 
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Based on above classification, the PDM characterizes a pattern and passes that 

information to the prefetch strategy selector (PSS). The prefetch strategy selector (PSS) 

chooses a prediction strategy based on initial information regarding a pattern. Many 

strategies exist to predict future references with similar strides or patterns of strides 

[Chba95, Fupa91, Kasi02]. Sequential prediction simply adds 1 to current address and 

brings the next block of data. This is simple and useful to predict contiguous access 

patterns. Strided prediction uses differences between successive data accesses. If a 

constant stride exists, future accesses are calculated using that stride.  For example, if r is 

the current data access and d is the constant stride, future accesses are, r+d, r+2*d, 

r+3*d, …, r+n*d, where n is the prefetch distance. Stride prediction is useful for 

constant noncontiguous data access patterns. Using Markov chains [Jogr97] is a more 

complex strategy, where each data access reference is given some probability of 

occurrence based on its history. Distance prefetching [Kasi02] uses similar approach, but 

counts the occurrence of distances between successive references. These two Markov 

chain based strategies are useful for repetitive patterns.  

Table 3.1 gives a summery of prediction strategies that can be used for various data 

access patterns used in the classification shown above. Sequential, strided and Markov 

chain based methods predict work well for constant strided patterns, but they are only 

effective partially when repetitive patterns. Complex variable strided patterns, 

combinations of contiguous and noncontiguous patterns, and pointer references (marked 

as XXXX for prediction strategy in the table) need aggressive algorithms in predicting 

future references accurately. In the next section, we introduce a more complex strategy 

for predicting future strides.  
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3.4 PREDICTION OF SPATIAL ACCESS PATTERNS 

As mentioned in the previous section, many strategies exist to predict future 

references. However, patterns with variable strides and repetitions need more analysis to 

find regularity among them. With dedicated machine, as computing power is available for 

prediction, we introduce a new method that predicts regular patterns with constant stride 

Table 3.1. Prediction strategies for data access patterns 
 

Pattern Example of stride 
sequences 

Prediction strategy 

Contiguous, Single 
occurrence 

1,2,3,4,5… Sequential prediction 

Contiguous, repetitive 
occurrence 

1,2,3,4,5…, 1,2,3,4,5… Sequential and Markov 
chain prediction 

Noncontiguous, 
constant stride, single 

occurrence 

1,5,9,11,… Strided prediction 

Noncontiguous, 
constant stride, 

repetitive occurrence 

1,5,9,11,…, 1,5,9,11… 
 

Strided prediction,  
Markov chain prediction 

Noncontiguous, 
constant stride, 
repetitive stride 

occurrence 

1,5,9,11,…, 2,6,10,12… 
 

Strided prediction,  
distance prediction 

Noncontiguous, variable 
stride, single occurrence 

1,3,9,13,… XXXX 

Noncontiguous, variable 
stride, repetitive 

occurrence 

1,3,9,13,…, 1,3,9,13 Markov chain prediction, 
distance prediction 

Combinations of 
contiguous and 

noncontiguous, single 
occurrence 

1,2,3,9,15,21, 22, 23, 24, 
30… 

XXXX 

Combinations of 
contiguous and 
noncontiguous, 

repetitive occurrence 

1,2,3,9,15,21, 22, 23, 24, 
30, 1,2, 3, 9… 

XXXX 

Pointer references No specific pattern XXXX 
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as well as variable stride accesses and repeating patterns. This prediction strategy is based 

on a finding “what number comes next” in the context of number sequences [Cogu96]. 

This method forms a difference table of depth d, which we call multi-level difference 

table (MLDT). Existing strided prefetching [Chba95, Fupa91] and distance prefetching 

[Kasi02] methods use the distances (strides) between successive page numbers up to one 

level to find regularity. In MLDT scheme, we extend finding distances for more than one 

level. Each entry of the difference table is the difference between the two entries just 

above it (in the sense “right entry minus left entry”).  

Assume that successive data references are in the order shown in the first line of 

Figure 3.9. The first differences (d=1) are the strides between the right reference minus 

the left reference. If these strides are different, differences among these strides are 

calculated. Second differences (d=2) in Figure 3.9 are equal to a constant value of 2. 

After a constant difference is found, the next entry of second differences above can be 

predicted to be the same. As shown in figure 3.9, third entry of second differences is 

predicted as 2 (predicted entries are marked in bold face and green color font). This is 

added to the third entry of the first differences, i.e. 7 + 2 = 9. This value is added to the 

fourth entry of references to find the fifth reference, i.e. 16 + 9 = 25. The future 

references are predicted (36, 49) in the above example.  

In the example above, we have shown finding the address of next data block. We 

have worked out to find polynomials to predict next kth reference in a reference sequence. 

References  1 4 9 16 25 36   49  

First differences            3      5      7       9      11        13  

Second differences  2 2    2   2       2  

Figure 3.9. Multi-level Difference Table for variable stride non-contiguous pattern  
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In figure 3.10, we show a three-level difference table. The references are represented by 

Ai (i = 0 to n). The first differences are Bi, (i = 0 to n-1), second differences are Ci, (i = 0 

to n-2), and third differences are Di, (i = 0 to n-3). We present these polynomials up to the 

depth of three, which can be extended further. 

If the depth of a difference table is 1 and a constant value can be found among the 

first differences, i.e. in figure 3.10, Bi (where i = 0 to n-1) is the constant B, value of kth 

reference from reference Ar can be found with the following formula. BkAA rkr *+=+ . 

For a difference table of depth 2, where second differences are constant, value of kth 

reference from reference Ar can be found with the following formula.  

CkkBkAA rrkr *
2

)1(** 1
+

++= −+  

For a difference table of depth 3, where third differences are constant, value of kth 

reference from reference Ar is: DMCkkBkAA krrrkr +
+

++= −−+ 21 *
2

)1(** .  

Here Mk = 2)2(*)1(*
6

kkkk
+−− , where k = 1, 2… 

MLDT works similar to the existing stride based prefetching strategies that predict 

constant stride patterns. In addition, this method finds sets of repeating differences, and 

ultimately finds the actual pattern in accessing structures with variable strides data access 

pattern. When the depth of a difference table is 1, references have a constant stride. 

References  A0 A1 A2 A3 A4  A5   A6

First differences                          B0        B1        B2        B3        B4          B5  

Second differences              C0             C1             C2           C3     C4  

n   0 1 2 3 4 5   6

Third differences              D0       D1           D2        D3       

Figure 3.10. An Example of Multi-level Difference Table 
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Existing stride-based prefetching strategies are effective for this special case. For variable 

strided patterns, MLDT searches for regularity among data references by finding deeper 

difference table. We extend this method to find repeating sets of strides (e.g. 4, 8, 4, 4, 8, 

4, 4, 8, 4…) at each level of difference table. These repeating sets of patterns are common 

in accessing user-defined datatypes (e.g. structures). For patterns with various strides 

among multiple variables, the prefetch predictor requires more time to learn data access 

patterns. This can be extended to time series analysis such as ARIMA models [Bogr94] 

to make complex pattern predictions.  

Identifying patterns in irregular accesses (for example pointer references) is complex, 

which may be impossible to predict the addresses of future accesses. The overhead during 

pattern learning phase of such data accesses can be reduced by utilizing compiler hints 

and application support [Kcky01, Roms98]. Most of current compilers perform highly 

sophisticated data dependence analysis. From this analysis, compilers can generate hints 

to derive data access patterns. Similarly, the application developers can provide hints 

regarding the data access pattern in their applications. Runtime profiling of the 

application also provides such hints. DPS can dynamically select multiple strategies 

based on the patterns and compiler-provided hints. DPS system is scalable to add new 

prediction algorithms as it can be implemented at system level and be separated from 

computing.  

 

3.5 PREDICTION OF TEMPORAL ACCESS PATTERNS 

The issue of when to prefetch in the existing methods is limited by the occurrence of 

an event such as a cache miss or a page fault (prefetch on miss) or the first access to a 



39 

data block (tagged prefetch) etc. However, these strategies do not guarantee that the 

prefetched data will reach its intended destination “in time” to overlap the processor stall 

time. The efficiency of prefetching in time depends on three factors (Figure 3.11): the 

time to predict future accesses ( predT ), the latency of initiating and transferring data from 

its source to destination ( latT ), and the gap between current time and the next data 

reference that would cause a demand cache miss ( ∆T ) when no prefetching is applied. The 

prediction cost predT  includes the cost for validating prefetches to avoid duplicate data. 

Sometimes, it is possible that cache lines are already available in cache memories. 

Validation avoids such duplication to maintain coherency of data. If missT  denotes the 

penalty caused by a cache miss, prefetching can take place in the following situations: 

 Case 1. If ( predT + latT ) > ( ∆T + missT ), the prefetching is completely useless. 

 Case 2. If ( predT + latT ) > ∆T  and ( predT + latT ) < ( ∆T + missT ), there is a partial gain of 

performance improvement based on how much of missT  is overlapped. 

 Case 3. If ( predT + latT ) = ∆T , the prefetching is in time and the prefetching is the 

most effective (Figure 3.11). 

 Case 4. If ( predT + latT ) < ∆T , there are two cases.  

T0 

Tmiss

Tpred Tlat 

∆T  

 
Figure 3.11. In time prefetching 
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A. If the destination of prefetched data has empty space to accommodate, the 

prefetching has no negative effect. 

B. If the destination of prefetched data is full, a victim cache line has to be 

replaced based on replacement policies. This negative effect of prefetching 

may result in extra cache misses. 

To benefit from prefetching, a prefetching strategy has to be adaptive to decide if a 

prefetch would be useful or not. A useless prefetch increases traffic of the bus, and may 

pollute a location on the destination of that prefetch. This necessitates the prediction of 

∆T  to make a decision whether to prefetch or not.  

In DPS (Figure 3.5), the request generator decides when to prefetch. The request 

generator varies the value of k (from section 3.4) based on the detected spatial and 

temporal data access history of a cache. Temporal history contains clock ticks of 

processing core to recognize its timing pattern. The request generator predicts ∆T  and 

adjusts the value of k so that ( predT + latT ) is approximately equal to ∆T . We assume that 

only one application runs on a processing core at a time, since it is complex to observe 

temporal pattern of data accesses when multiple tasks are running on the same core. We 

currently use MLDT method to identify temporal pattern in order to predict ∆T . This can 

be extended to use ARIMA models [Bogr94] to predict temporal access patterns.  

 

3.6 PUSHING PREDICTED DATA 

The data propellor component of DPS delivers data to processing units. After 

predicting the addresses of future references by the prefetch engine, the data at these 

addresses has to be delivered to appropriate processing units. In traditional hardware 



41 

prefetching strategies, prefetching instructions are issued by the same processing unit that 

executes a program. In DPS strategy, the predicted future data references are stored in a 

prefetch queue. The prefetch engine sends this prefetch queue to the data propellor, and 

the data propellor issues prefetching (push) instructions to move the data from the 

memory to processing units that need data.  

Special support to issue push instructions to memory is needed. In addition to current 

load and store instructions, we suggest to introdice a new instruction called PUSH, which 

takes destination (client of DPS) core identification, and predicted address of data. The 

instruction looks as follows: 

PUSH instruction loads the data at address ADDR into prefetch cache of core 

identified by CORE_ID. This instruction initiates a search for address ADDR at L2 cache, 

but data is pushed into the prefetch cache instead of L1 cache. Motivation behind using a 

separate prefetch cache is discussed in the next paragraph. If an L2 cache miss is resulted 

in due to this instruction, data is brought from memory is directly pushed into the 

prefetch cache.  

Figure 3.12 shows the modified memory subsystem to support DPS prefetching. Data 

can be directly pushed either into L1 cache or a separate prefetch cache. However, to 

avoid competition between regular data fetches and data prefetch for L1-L2 bus 

bandwidth, we propose to use a separate prefetch cache. The L1 cache is usually busy 

serving loads and stores from CPU. Adding another operation of pushing data might clog 

the L1 cache. One way to resolve this issue is to give low priority to storing prefetched 

data. However, the benefit of prefetching data is reduced if it is performed with low 

PUSH CORE_ID, ADDR
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priority. Using a separate prefetch cache, which can be searched simultaneously with L1 

cache solves improves prefetching benefits. The proposed prefetch cache is a small 

cache, which is accessed simultaneously with L1 cache. The size of cache line for the 

prefetch cache is similar to that of L1 cache. We suggest to use higher associativity for 

the prefetch cache, as addresses in regular patterns have affinity, and they tend to map to 

the same location in the prefetch cache. But care must be taken that access time for 

prefetch cache be less than that of L1 cache.  

In many current prefetching schemes, data is directly pulled (prefetched) into L1 or 

L2 cache memories. This avoids duplicate cache lines. In our prefetching strategy, DPS 

pushes data into prefetch cache directly. In this case, care must be taken to avoid 

duplicate copies of cache lines. This is important especially when the data has already 

been modified and kept either in L1 or L2 cache. To solve this problem, we use a 

prefetch validation component. The validation component searches the L1 and L2 cache 

 
 

Figure 3.12. Microarchitecture of memory subsystem for DPS 
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if prefetched lines are already available in caches. It discards prefetched lines if they exist 

in cache memory. DPS alleviates duplicate addresses by monitoring hits and misses of L1 

cache as mentioned in section 3.3. The operation of prefetch validation avoids the 

possibility of duplicate cache lines further and manages cache coherence. The 

performance of prefetching would not be affected as this validation cost is small and is 

usually constant (equal to average cache hit time). The request generator of DPS 

considers the validation cost and adapts to generating prefetching request further in 

future.  

The prefetch cache contains the physical addresses. It is searched for physical address 

similar to the search operation of L1 cache. For memory mapping from virtual to physical 

address, TLB entries are used. This avoids complex virtual prefetch cache, which 

contains address mapping information [Hepa06]. If a mapping is not found, a TLB miss 

occurs. As the size of TLBs in current processors is big enough, it is safe to assume that 

the number of TLB misses are few as it can hold the mappings for much of the working 

set. In our simulations, we observed that with the existing TLB configuration of 128 to 

256 entries, it can hold mappings for a large working set. For instance, with 4 KB page 

size, 256 entry TLB can hold up to 1 GB working set. The TLB misses we observed for 

various SPEC 2000 benchmarks are few and related to cold start misses. 

The operation of CPU’s prcessing a memory request is modified with the addition of 

prefetch cache. Figure 3.13 shows the modifications from Figure 3.1. DPS pushes 

predicted data into prefetch cache, which is validated if it is already in the cache memory. 

Duplicate copies are discarded, which is especially required for dirty cache lines to 

maintain coherence. From CPU’s memory requestion, after virtual to physical address 
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mapping from TLB is obtained, L1 cache and prefetch cache are searched 

simultaneously. If the requested cache is found in the prefetch cache, data is sent to CPU 

directly and cache search operation is discarded. A prefetch miss does not trigger any 

events. If data is not found both in prefetch cache and L1 cache, then an L1 cache miss 

occurs and the next level cache or memory is searched for data, similar to normal data 

access operation. As mentioned in the previous paragraph, no extra TLB prefetching is 

perfomed to reduce the complexity. If a TLB miss occors, mapping information is 

brought into TLB from page table and search for cache line resumes by searching 

prefetch cache and L1 cache.  
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Figure 3.13. Modified CPU data request operation 
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3.7 BENEFITS OF DPS 

Design of Data Push Server has several benefits. It provides true separation of data 

access from computing. Complexity of data access prediction is moved to a server. This 

feature gives a chance to select prediction algorithms adaptively based on history. Its data 

push approach improves performance more than pull-based strategies. The usage of a 

server also makes the DPS prefetching system scalable. One DPS system supports 

multiple cores by starting threads for each client. 

Separation of data access from processing is a major benefit of DPS. Previous 

research efforts have achieved such separation to some extent by using helper threads to 

pre-execute parts of the code [Lukc01, Lwwh02, Ziso01, Roso01, Hafe04] or by using 

memory processor [Solt02, Hafe04]. Pre-execution strategy suffers from synchronization 

costs and requirements of compiler or user support to start and stop pre-execution. 

Memory processor method can suffer scalability issues, when multiple processing cores 

requests for service as it is bound to inside main memory. More processing power cannot 

be added or reduced based on demand of client cores. Our DPS system crosses these two 

major hurdles in separating data access from computing. DPS uses a data access history 

buffer support to observe data access patterns and pushes the predicted data into a 

prefetch cache in a timely manner. This does not exclusively require compiler or user 

support to identify data access patterns. No special synchronization is needed between 

processing cores and the core, where DPS is running on. This provides true separation of 

data access from computing.  

DPS is a true push-based prefetching strategy, which has more potential to have 

performance gains. Conventional pull-based approaches often suffer to run complex 
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prediction algorithms. In single core processors, prefetching strategies have been given 

lower priority compared to main processing as the complexity of prefetching can 

undermine the benefits of prefetching itself. In multi-core processor, either helper threads 

or another core pulls data into a cache (typically to L2 cache) that is shared by a core that 

is running prefetching algorithm with processing cores. There has been no special 

hardware support for helper threads or another core to observe the patterns of processing 

core. To compensate this, fragments of code has been passed or compiled on helper 

threads, which has the synchronization problem as mentioned earlier. In DPS, we support 

to use minor modifications to the microarchitecture of memory subsystem to support 

observing data access patterns of processing cores. We also introduced an addition of 

prefetch cache, where predicted data is directly pushed. The CPU accesses this prefetch 

cache simultaneously with L1 cache. Prefetch cache hits are a lot faster than shared L2 

cache prefetch hits of pull-based strategies.  

Another benefit of our DPS is prefetching engine’s choosing prediction algorithms 

based on history. This gives adaptability to select prediction algorithms with various 

complexities according to running application’s data access pattern, instead of sticking to 

a single algorithm. As there is no universal algorithm that can predict all access patterns 

with the same complexity, our approach is beneficial. As shown in Table 3.1, various 

algorithms can be used by DPS. It is also flexible to use any new algorithms that may be 

devised in the future, since DPS system is feasible to implement as a thread.  

DPS can support multiple processing cores. Two proposed research projects [Solt02, 

Hafe04] use memory processor approach to push data. Solihin et al. use a memory 

processor to push data into L2 cache, while Hassanein et al. push data into L1 cache or 
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registers. However, both are plagued by coupling the prefetcher to memory. The first 

strategy observes L2 cache misses at a processor inside memory and pushes predicted 

data into L2 cache. The latter approach uses pre-execution of code in memory processor 

to predict future accesses. However, these two methods support only one core. As the 

number of cores to be supported increase, the workload on memory processor increases 

and it is highly probable that the performance gains degrade. Our DPS approach, 

however, uses cores that are dedicated for running prefetching algorithms. One might 

argue that running computing on both processors in a dual-core processor is more 

beneficial than one core supporting data access prefetching of another. However, our 

DPS is designed to support prefetching in larger processors, with more cores. We used 

dual core processor to explain the design of DPS. Benefits of DPS are useful for future 

HEC processors, where more processing cores require data access service. It is 

commonplace in HEC computing to have idle nodes. Similarly, in future HEC 

processors, we could designate these idle cores to execute the operation of Data Push 

Server. As DPS is a software system with hardware support, processing cores have a 

choice not to use DPS’s service, if there are no idle cores.  

 

3.8 CASE STUDY: IMPLEMENTING DPS ON CELL PROCESSOR 

Implementation of DPS can be done with a combination of software with hardware 

support. Many current processors support multiple threads to run on each processor core. 

DPS can be implemented on a helper thread that has interface to monitor data access 

history buffer and to push data into prefetch cache. The goal of DPS is to serve multiple 

processing cores that are clients for DPS service as shown in Figure 3.6. The thread level 
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implementation with hardware support provides that flexibility to serve multiple cores of 

a processor by instantiating separate thread for each client. Emerging chip-level 

multiprocessors (IBM’s Cell processor [Ibmc06], ClearSpeed’s co-processors [Clea06] 

etc.), have many processing cores. It is not far in the future we will witness many general 

purpose processors containing hundreds of cores in each processor. Using some of these 

cores specifically to run DPS system serving other processing cores is beneficial.  

In the previous sections, we discussed the modifications to be done to processor 

microarchitecture and to memory subsystem in multicore processors. Among existing 

processors, Cell processor [Ibmc06] has a positive environment for implementing our 

DPS without hardware modifications. As shown in Figure 3.14 Cell processor 

microarchitecture is a heterogeneous multi-core architecture, which has one PowerPC 

Processing Element (PPE) and eight Synergistic Processing elements (SPE). Each SPE 

has a software-controllable local store (LS) of 256 KB size. SPEs and PPE share an 

external system memory. Each SPE has a synergistic memory flow controller (MFC), 

which connects SPEs to each other and to PPE, through a very high bandwidth Element 

 
 

Figure 3.14. IBM Cell Broadband Engine Architecture 
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Interconnect Bus (EIB). MFCs perform data movement among individual SPEs and PPE. 

They provide the primary method for transfer, synchronization, and protection between 

main memory and local storage. MFC commands provide an interface to perform the data 

transfers. These are referred to as MFC DMA commands. Each MFC can support 

multiple DMA transfers at the same time by maintaining queues of MFC commands.  

The provision of SPEs is a great benefit for computing intensive SIMD parallel 

applications, which are instruction-intensive workloads. When it comes to data intensive 

applications, as many HPC applications, the performance of Cell processor as many 

multicore processors is limited by data latency rather than instruction latency. Prefetching 

data into local stores of SPEs can improve the scope of Cell processors to provide 

superior performance improvement for data intensive applications. PPE has a Data 

Prefetch Engine (DPFE) to prefetch data into PPE’s cache memory. The DPFE performs 

simple sequential and regular strided predictions for cache memory of PPE. Prefetching 

for SPEs can be done by software, where either program developers or compilers provide 

hints for prefetching. This software controllability of SPE local store provides a scope for 

improving I/O performance of parallel applications as well with the use of DPS. 

Challenging issues of implementing DPS system on any processor are the interface to 

collect data access history and to push data closer to the processor. We can use software 

implementation to predict future accesses, which is practicable once we have prediction 

strategy algorithms such as strided pattern prediction by using multi-level difference table 

introduced in sections 3.4 and 3.5.  

On Cell processor, the prediction algorithms of DPS system can be executed on PPE. 

The collection of data access patterns and pushing data into SPEs can be performed by 
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the use of software libraries. IBM provides various Cell processor SPE C/C++ language 

extensions [Cbeh06]. These libraries provide interface to access SPE local store directly 

from a program running on PPE. The collection of data access patterns can be done by 

running a daemon on each SPE to that sends the list to the PPE over either over DMA or 

by using effective-address aliases to a local store (LS) with privileged software on PPE 

(section 3.1, page 64 of BE Handbook, v.1.0). Over DMA, we can use DMA list 

commands provided by SPE C/C++ extensions [Cbeh06].  

To predict future data references, DPS chooses prediction algorithm adaptively based 

on collected data access history. As shown in Figure 3.6, PPE acts as DPS core. To push 

data after predicting, PPE initiates a DMA request to put data into LS of SPE. Current 

language extensions from IBM provide interface to put data into LS using put_block ( ) 

function. To put multiple blocks at a time, this function can be extended, called 

put_blocks ( ), which is similar to existing Memory Flow Control DMA commands and 

MFC DMA list commands. If DMA latency is too high, Cell processor provides another 

solution, where PPE can have direct access to store predicted data into LS of an SPE 

directly, using effective address aliases (Section 3.1, page 64 of BE Handbook, v.1.0) 

[Cbeh06].  DPS system can run as privileged software to access the LS of SPEs to push 

predicted data blocks into LS. With simple software development, DPS can be executed 

on Cell processor to improve the data access performance of data intensive HEC 

applications for future Cell based supercomputers.  
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3.9 SUMMARY 

In this chapter, we presented the design of our server-based data push architecture. 

We discussed various features and functionality of DPS, whose goal is to proactively 

push data closer to the CPU based on predicting future references. We first discussed the 

issue of monitoring data and selecting prediction algorithm based on a comprehensive 

classification of data access patterns. We present the design of a data access history 

buffer to hold history of data accesses at L1 cache and an instruction called GDAH to 

collect it into a DPS system. DPS then predicts future references as well as their access 

time to provide in time prefetching. Data Propeller module of DPS pushes data into a 

separate prefetch cache. To maintain coherence, we use a validation component that 

discards prefetched cache lines if those lines are already available in caches.  

DPS has many benefits by separating data access from computing. These include 

isolation of complexity from computing cores, performance gains, and supporting 

multiple cores with a scalable DPS. We discussed the implementation of DPS using 

modifications to microarchitecture of memory subsystem. We described the modified 

CPU data access operation. We also studied the possibility of implementing DPS on IBM 

Cell processor, which provides software controllable local store in place of L1 cache. On 

the Cell processor, DPS can be implemented on PowerPC Processing Element (PPE), 

without any hardware modifications.  

In the next chapter, we discuss modeling the data access cost and optimizations at 

software level. In Chapter 6, we present the simulation of DPS on SimpleScalar simulator 

and the performance results for various SPEC CPU2000 benchmarks that have poor 

cache performance.  
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CHAPTER 4 

MODELING DATA ACCESS PERFORMANCE 

In the previous chapter, we introduced the Data Push Server framework to provide 

accurate and in-time prefetching with aggressive spatial and temporal prediction 

strategies. We also presented operation of memory subsystem in multicore processor. In 

this chapter, we discuss data access optimization methods at software level, and models 

to predict data access performance. We then present Simple Memory Access Cost 

(SMAC) prediction model, which is based on various data access patterns and the size of 

data accesses to help applying cache reuse optimizations in high performance 

applications.  

 

4.1 MEMORY PERFORMANCE MODELS 

Cache memories are characterized by their size, line size and associativity. Cache size 

( C ) represents its capacity in bytes. Caches are organized in cache lines. The data 

transfer between two levels of memory hierarchy is done based on the size of these lines. 

When a cache miss occurs, a block of data of size equal to cache line size ( L ) is fetched 

from the next lower level cache or memory. This property conforms to spatial locality. 

Associativity of a cache helps in deciding how many locations are there to place a cache 

line. For a direct mapped cache (1-set associativity), a fetched cache line can be placed in 

one of the ( LC / ) positions. If another cache line is mapped to the same location, 

currently residing cache line has to be replaced. Higher associative caches provide more 

than one place to map a cache block. In a fully associative cache, a cache block can be 

placed anywhere in the cache. But fully associative caches are costly. It is common for 
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architectures to have 2-way to-8-way associative caches. In an 8-way associative cache, a 

block can be placed in any of the 8 positions in each set of 8 lines.   

Many computation models for parallel program performance exist and they provide 

simple classification of communication performance [Mamt95]. The Hierarchical 

Memory Model (HMM) applies the characteristics of memory hierarchies to network 

communication. The cost estimates of this model are accurate for very large sets of 

streaming data, but ignore the network attributes that are common in parallel processing. 

Other models such as Bulk Synchronous Parallel (BSP) [Vali90] and LogP [Ckps96] 

models quantify communication latency and bandwidth. LogP is widely used in parallel 

computing as it also incorporates the asynchronous behavior and communication 

overhead. Many extensions of LogP model are available [Mofr98, Aiss95]. However, all 

these models ignored the effect of memory latency and the middleware latency that might 

occur before network communication. This latency is caused due to the data collection 

overhead when the data has to be gathered from user memory. This overhead was small 

compared to the network latency historically when the networks were slow and was 

considered as a constant. But with the advances in network technology, the memory 

overhead has become significant. It is also not wise to consider this overhead a constant 

as it heavily depends on the data access pattern and size.  

Towards the goal of modeling this overhead, we first classified the communication 

cost as memory communication and network communication. Memory communication (or 

memory copying) is the transfer of data from the user’s buffer to the local network buffer 

(or shared-memory buffer) and vice versa. Network communication is the movement of 

data between source and destination network buffers. 
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The memory-communication cost for sending a data segment depends on 

architectural parameters, such as cache capacity, and code characteristics, such as data 

distribution. In general, the overall communication cost includes data-collection 

overhead, the cost of data copying to the network buffer, the cost of data forwarding to 

the receiver (network-communication cost), and other costs added by the middleware 

implementation. When data distribution in memory is noncontiguous, the data is typically 

collected into a contiguous buffer before being copied to the network buffer. This process 

adds extra buffering overhead to the overall communication cost and is implementation 

dependent. 

We can quantify the memory-communication overhead as follows. We divide the 

overall communication cost into three parts: basic contiguous data-copying cost (o), 

memory-communication cost (l), and the network-communication cost (L). The memory-

communication cost is further classified as data-packing overhead (lp) and middleware- 

induced overhead (lm). The middleware-induced overhead includes all other costs, such 

as extra buffer-copying cost, handshaking overhead between source and destination 

processes (if there is any), and load-imbalance costs. 

LllooverheadionCommunicat mp +++=_  

We measured each of these costs as follows. The basic data-copying cost (o) is the 

cost of copying a contiguous data between two buffers. The network-communication cost 

(L) is calculated by subtracting (o) from the cost of communicating a contiguous message 

between two processes. The cost of reading data noncontiguously from a buffer and 

writing it into a contiguous buffer includes data-packing cost (lp) and the basic overhead 

(o). Subtracting (o) from this cost gives the data-packing cost (lp). The middleware-
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induced cost (lm) is calculated by subtracting the sum of other costs   from the overall 

communication cost. The results for a parallel matrix-transpose algorithm with derived 

datatypes are shown in Figure 4.1. It shows that the basic-copying cost (o) is relatively 

constant per data reference. In contrast, data-packing and middleware-induced costs grow 

significantly with data size. In this chapter, we show how to reduce the data-packing cost 

of the overall memory-communication cost. 

This quantification led to new models of parallel communication to extend LogP 

model by Cameron and Sun, called memory-logP model [Casu03]. The memory-LogP 

model formally characterizes the memory-communication cost under four parameters: l: 

the effective latency, defined as the length of time the processor is engaged in 

transmission or reception of a message due to the influence of data size (s) and 

distribution (d), l=f(s, d); o: the overhead, defined as the length of time the processor is 

engaged in transmission or reception of an ideally distributed (contiguous) message 
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Figure 4.1. Memory-communication cost for a matrix-transpose algorithm is 
classified into basic contiguous overhead, data-packing cost, and middleware-

induced cost. The network-communication cost is also shown. 
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(during this time, the processor cannot perform other operations); g: the gap, defined as 

the minimum time interval between consecutive message receptions at the processor (the 

reciprocal of g corresponds to the available per processor bandwidth for a given 

implementation of data transfer on a given system); and P: the number of 

processor/memory modules (point-to-point communication in the memory hierarchy 

implies P=1). This model was further extended by Cameron to include middleware 

overhead [Cage04].  

With this understanding, we extend our research to find the memory access cost based 

on prediction instead of classifying the communication cost repeatedly. Our model aims 

to predict the memory access cost for various data access patterns that occur in numerical 

and scientific applications. In the following section, we first explain the data access 

patterns and then the prediction model. 

4.2 DATA ACCESS PATTERNS 

      In chapter 3, we gave a classification of data access patterns based on strides between 

accesses. In this section, we explain more on our classification using strides and size of 

data blocks that are being accessed. Loops and arrays are fundamental structures of most 

numerical and scientific applications [Peak98]. A major share of the execution time of 

these applications is spent in loops, accessing data from arrays. Loop variables are 

incremented or decremented to find the reference of an array. Analyzing these reference 

patterns of array accesses is needed to find out the hotspots and to optimize the 

performance by reorganizing these memory references. 

Data access patterns are classified based on the stride between successive accesses. 

Modal model of memory [Mitc01] categorize data accesses as constant, strided and non-
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monotonic modes. Yan et al. [Ryan02] classify memory access patterns into three types: 

migratory, group and unpredictable patterns. 

We classify data access patterns in scientific applications as constant, contiguous and 

non-contiguous. Non-contiguous pattern is further divided into four patterns. This 

classification is based on the size of data blocks accessed with each reference and their 

successive strides. Stride is the distance between the previous reference and current 

reference. 

Constant accesses are those where the same data block is accessed repeatedly i.e., 

stride is equal to zero. In this type of accesses, once the data block is loaded into the 

cache, further accesses would not cause any other cache misses. 

Contiguous access pattern is where the stride between successive accesses is equal to 

the size of datatype. These are divided further as fixed length block accesses and variable 

length block accesses. Fixed length block accesses refer to the same datatype in 

consecutive references.  

Non-contiguous access pattern is where the stride of next reference is greater than the 

size of currently accessed datatype. These can be further divided as follows: 

a.  Fixed length block, with fixed stride: Stride is similar through out the access 

pattern. As shown Figure 4.2.a., a block with a size of constant block_size is 

copied into dest from src. The next block is copied from src+stride to 

dest+block_size, i.e. array src is being accessed non-contiguously with a fixed 

stride and array dest is being accessed contiguously. 

b. Fixed length block, with varying stride: The stride varies between each access. 

(Figure 4.2.b.) 
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c. Variable size block, with fixed stride: Accessing different or varying size 

datatypes, where the strides of accesses are similar. (Figure 4.2.c.) 

d. Variable size block, with variable stride: Accessing different or varying size 

datatypes, where the strides of accesses are varying. (Figure 4.2.d.) 

These access patterns cover all the access patterns of data accesses in scientific 

applications. 

 

4.3 SIMIPLE MEMORY ACCESS COST (SMAC) PREDICTION MODEL 

Model parameters: 

As we explained before, a cache memory is characterized by its size, cache line size 

and associativity. In our model, we consider TLB as a level of memory hierarchy. Its 

parameters are page size P  (similar to cache line size of a cache) and the capacity. The 

capacity of a TLB is the amount of memory page mapping it can store and is equal to 

number of page entries multiplied by page size. 

 
 

Figure 4.2. Noncontiguous Data Access Patterns 
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Table 4.1 summarizes the memory hierarchy parameters. Subscript i of a parameter 

signifies the level of that cache/TLB in the hierarchy of memory. Cache memory at level 

i has three properties: its size in bytes (Ci), cache line size (Li) and its associativity (Ai). 

TLB is represented with the number of page table entries (Ts), page size (Ps) and it 

associativity (AT). M refers the total number of cache levels.  

Cache misses are classified into three types [Mark87]. Compulsory misses are the 

misses that occur when the CPU accesses a data block for the first time. Capacity misses 

are the misses that occur due to insufficient cache to hold an entire range of data that is 

being accessed at a time. This range is also called working-set. Conflict misses are the 

misses that occur when more than one cache block maps to the same location even 

though the existing cache block still is being used in the near future. Cache misses at 

level i are represented with Mi. c
ikM ),( refers to the number of cache misses at level k of 

memory hierarchy, in accessing ith array (variable) contiguously. If it is being accessed 

non-contiguously, it is represented by n
ikM ),( .  

Table 4.1. Memory hierarchy parameters 
 

kC  Cache size at k th level cache of memory hierarchy 

kL  Cache line size at k th level cache of memory hierarchy 

kA  Associativity of k th level cache of memory hierarchy 

kM  Number of cache misses at k th level cache of memory hierarchy 
c

ikM ),(  Number of cache misses at k th level cache of memory hierarchy in 
accessing i th array, contiguously. 

n
ikM ),(  Number of cache misses at k th level cache of memory hierarchy in 

accessing i th variable, non-contiguously. 

sT  Number of page table entries (PTE) in TLB 

sP  Page size of each PTE 

TA  TLB associativity 

M  Number of cache levels in memory hierarchy 



 60

Data access pattern parameters are shown in Table 4.2. The subscript i represents the 

ith array being accessed. The parameters 
c

ikR ),(  and 
n

ikR ),(  represent the number of 

contiguous and non-contiguous references separately. iS is the fixed stride in accessing 

the ith array and ),( jiS is the variable stride. D  is the working set size and iW represents 

the block (word) size of the ith array. 

Our goal is to predict the memory access cost of a basic block of loop with any type 

of data access patterns discussed in section 2, and for multiple data array variables. We 

assume LRU replacement policy for cache and TLB. We assume that the memory 

hierarchy is following inclusive property. The total cost of accessing memory includes 

the access time and the miss penalties of these levels in the hierarchy. If there are k levels 

of cache memory and one level TLB [Patt96], 

Total Memory cost =  (Number of TLB hits * Time to access TLB) +  

     (Number of TLB misses * TLB miss penalty) +  

     (Number of L1 hits) * (Time to access L1) +  

(L1 misses * L1 penalty) + (L2 misses * L2 penalty) + … + 

Table 4.2. Data access parameters 
 

c
ikR ),(  Number of contiguous references of ith array at cache level k of the memory 

hierarchy. 
n

ikR ),(  Number of non-contiguous references of ith array at cache level k of the 
memory hierarchy. 

iW  Fixed size of the data block being accessed in i th array. 

iS  Fixed stride of accessing i th array non-contiguously. 

c
iW  Variable size of the data block being contiguously accessed in i th array. 

n
jiW ),(  Variable size of j th data block being non-contiguously accessed in i th array. 

),( jiS  Variable stride of the j th data block being contiguously accessed in i th array. 
(stridej in stride signature) 

D  Size of working set 
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 (Lk misses * Lk penalty) …  (4.1) 

To predict this cost, we have to find the number of cache hits/misses at each level and 

TLB hit rate. We predict the cache and TLB misses based on the access pattern.  

Assuming that there are M levels of cache, the total miss penalty due to cache misses 

is the sum of miss penalty at each level. 

α−= ∑
=

M

k
kkm TMT

1
)*(     …  (4.2) 

where kM is the total number of cache misses and kT  is the miss penalty at level 

k cache. α  is the overlapping the cache misses with prefetching and other OS 

optimizations. 

Consider that there are m  array variables accessed contiguously and n  array 

variables accessed non-contiguously, the total number of misses at cache level k  is the 

sum of misses caused in accessing contiguously accessed arrays and those of non-

contiguously accessed arrays. 
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1
),(

1
),(     …  (4.3) 

c
ikM ),(  is the number of cache misses at k th level cache of memory hierarchy in 

accessing i th variable, contiguously.  n
ikM ),(  is the number of cache misses at k th level 

cache of memory hierarchy in accessing i th variable, non-contiguously.  

Now we count the number of cache misses based on the data access pattern. 

Constant access pattern: In this type of accesses, once a word is loaded into the 

cache, the following accesses to the same word cause no extra cache misses. If the word 

size of a variable is iW and there are the number of cache misses is equal to ⎡ ⎤)/( ki LW . 
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Contiguous access pattern: In this pattern, the stride between successive accesses is 

the same as data size. All the cache misses caused in this pattern are compulsory misses. 

Each reference fetches a cache line into the cache. Cache line contains more than one 

word of data. This is to assure spatial locality property of using cache memory. If the 

cache line size is more than the data type accessed, the next reference utilizes the 

prefetched data from the cache. Each reference causes ⎡ ⎤)/( ki LW  misses, i.e. if the word 

size is more that cache line size, then it causes more than one miss, otherwise just one 

miss occurs for every ⎡ ⎤)/( ik WL  references. If there are n  references, the number of 

cache misses caused at cache level k  in accessing variable i  is:   

⎡ ⎤)/(*),( ki
c

ik LWnM =  

If i th variable has c
ikR ),(  references, the number of cache misses is:  

⎥⎥
⎤

⎢⎢
⎡= )(*),(),(

k

c
ic

ik
c

ik L
WRM      …  (4.4) 

where c
iW is size of the data block being contiguously accessed in i th variable. 

The number of cache references at level k  ( c
ikR ),( ) is the number of cache misses at 

the lower level cache, i.e. c
jk

c
ik MR ),1(),( −= . 

Non-contiguous access patterns: As described in previous section, there are four 

main types of access patterns. These patterns are classified based on the variability of 

stride and data block size. The occurrence of cache misses is categorized into four 

regions based on the working set size, similar to Saavedra and Smith [Saav95]. First 

region is the one where all the working set fits in the cache. As long as the working set 

size is less than the cache size, the total data fits into the cache. All the cache misses are 
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compulsory misses. This number is equal to ⎡ ⎤)/(*),( ki
n

ik LWnM =  at level k  of memory 

hierarchy in accessing i th variable non-contiguously. This number is the same for all 

types of non-contiguous access patterns. 

When size of the data working set exceeds the cache size, three regions of memory 

operations are defined. The first region is when the stride ( S ) is between 1 and cache line 

size ( kLS ≤<1 ). The second region is kk ADSL /≤< , where kA  is the associativity of 

k th level cache of memory hierarchy. The third region is 2// DSAD k ≤< . In this last 

case, although the kCD > , only kASD </  amount of data is needed for access. In the 

last region the number of references mapping to a single set is less than the set 

associativity. Thus, only compulsory misses are caused in the third access pattern, i.e.  

⎡ ⎤)/(*),( ki
n

ik LWnM = )     …  (4.5) 

where n  is the number of data accesses. Thus, we set our focus on the first two 

regions to count the number of cache misses.  

First we find the cache misses for a fixed size of data block accesses of one variable, 

with a fixed stride.  

If the stride (fixed) is less than the cache line size, one cache miss occurs for ( SLk / ) 

references. If there are n references, the number of cache misses is: )/(* kLSn , where n  

is the number of data accesses. 

If the stride (fixed) is more than the cache line size, each reference causes 

⎡ ⎤ )1,/(max( ki LW cache misses, i.e. each access causes one miss when the word size is 

less than kL . If word size is more than kL , each reference causes ⎡ ⎤ki LW /  misses. If 

there are n  references, the number of cache misses is equal to ⎡ ⎤ )1,/(max(* ki LWn . 
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⎡ ⎤ )1,/(max(*),(),( ki
n

ik
n

ik LWRM =     …  (4.6) 

For variable stride with fixed size block accesses, the cache misses have to be 

counted for each stride. If the stride is less than kL , it does not cause a cache miss as the 

pre-fetched line of data is reused. The number of cache misses is: 

⎡ ⎤ ))1,/(max(*))0),/min((( ),(
1

),(),(

),(

k
n

ji

R

j
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ik LWLSM

n
ik

∑
=

⎦⎣=  …  (4.7) 

c
ikM ),( is the number of cache misses at k th level cache of memory hierarchy in 

accessing i th variable, non-contiguously, ),( jiS  is variable stride of the data block being 

contiguously accessed in i th variable. n
ikR ),(  is the number of non-contiguous references 

of ith array at cache level k  of the memory hierarchy. n
jiW ),(  is the size of j th data block 

being non-contiguously accessed in i th variable. In this pattern when the stride ),( jiS  is 

less than the cache line size, we assume that the cache line has already been fetched into 

the cache. However, when this stride is causing to fetch a new cache line, then this 

formula misses to count that cache miss. This can be corrected by maintaining the history 

of cache line that has been fetched recently. 

The number of cache references at level k  ( n
ikR ),( ) is the number of cache misses at 

the lower level cache, i.e. n
jk

n
ik MR ),1(),( −= . 

For fixed or variable stride with variable size block accesses, the cache misses have to 

be counted for each block size. In this case, we assume that the stride is always more than 

kL . If the data block size is less than kL , it does not cause a cache miss as the pre-

fetched line of data is reused. The number of cache misses is: 
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Refer Table 4.3 for a summary of formulae to calculate the cache misses for all data 

access patterns. Using (4.3) total number of cache misses in accessing contiguous and 

non-contiguous data is calculated. Formula 4.2 gives the total memory access cost. 

 

4.4 MODEL VERIFICATION 

This section presents performance measurements to verify the predicted memory 

access cost with the measured cost on various architectures. We measure the performance 

of loops with all the data access patterns mentioned above and compare that performance 

with the predicted performance.  

Table 4.3. Number of cache misses for all data access patterns 
 

Data access pattern Number of cache misses 
Constant 
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We took the measurements on a Sun Solaris based cluster called Sunwulf, which is 

located at the Scalable Computer Software Lab of Illinois Institute of Technology. 

Sunwulf is composed of a four-processor E450 server and 63 high-end workstations. We 

run our experiments on one of the nodes. Each node is a SUN Blade-100 workstation 

with one UltraSparc-IIe, 500MHz CPU. The L1 cache is 16KB, with a 16-byte cache line 

size. The L2 cache has a capacity of 8MB and its line size is 64 bytes. It also has a TLB 

with 4KB page size and 48 entries. We used a microbenchmark to find the average access 

time and miss penalty of each level of memory hierarchy. This is similar to the 

microbenchmark proposed by Saavedra and Smith [Saav95].  

Another platform we used for experiments is a 32-node Beowulf, located at 

University of South Carolina. Each node consists of 933MHz, Pentium III processor. It 

has 16 KB L1 cache and 256KB L2 cache. Both these caches are on the die, and the 

average penalty for load misses is measured as 7 cycles and 70 cycles for L1 and L2 

respectively.  We chose these processors, as they apply inclusive property in the memory 

hierarchy with less aggressive pre-fetching.  

We used the loops similar to Figure 4.2 and measured the time to execute those loops. 

In all these loops, two array variables are accessed with different access patterns. We 

chose these loops since many applications contain loop blocks where the data accesses 

are similar to the access patterns discussed above. We can apply the same prediction 

model for any number of arrays. Execution time of these loops contains only the data 

access cost, without any computation cost. We used pointer-to-pointer copy to avoid the 

cost of memcpy. In these experiments, we ran many iterations of the program to find the 

minimum cost. We also flushed the cache after measuring the time for an iteration to 
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replace any cache blocks that are reusable. We compiled these programs using gcc 3.0 

and padded the arrays to avoid any cache thrashing. The comparison of predicted cost 

and measured memory access cost is presented in the following paragraphs. The memory 

access cost is presented as a ratio of execution time to the number of memory references. 

This normalization is done to fit all the data into the graph. The performance is better for 

lower values.  

Figures 4.3 and Figure 4.4 compare the predicted memory access cost with measured 

cost in running the loops in various data access patterns explained in section 4.2 (Figure 

4.2) on Sunwulf cluster. For contiguous data accesses (Figure 4.3.a.), the predicted cost is 

constant per reference. The prediction error reduced as the number of references 
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Figure 4.3. Comparison of measured and predicted memory access cost. The 

access patterns are: 4.3.a. Contiguous data access (word size: 1byte, stride: 1byte). 
4.3.b. Non-contiguous data access with fixed word size and stride (word size: 8 

bytes, stride: 16 bytes) 
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increased. The error was mainly due to the approach of counting cache misses 

pessimistically without taking prefetching into consideration. The prediction error was 

below 20% for small data and below 4% for large data with this data access pattern.  

To test the non-contiguous access pattern performance we used three sizes of fixed 

strides (16bytes, 32 bytes and 64 bytes) that are equal to L1 cache line size, more than L1 

line size and that of equal to L2 line size. For non-contiguous accesses, with stride equal 

to L1 cache line size, the prediction error reduced as the data size increase.  It can be seen 

from Figure 4.3.b and Figure 4.3.c, that the utilization of caches are more effective when 

the data size is less than L2 cache size. Overall, the error is below 20% in most of the 
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Figure 4.3. Comparison of measured and predicted memory access cost. The 

access patterns are: 4.3.c. Non-contiguous data access with fixed word size and 
stride (word size: 8 bytes, stride: 32 bytes) 4.3.d. Non-contiguous data access with 

fixed word size and stride (word size: 8 bytes, stride: 64 bytes)  
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cases. For the remaining two non-contiguous access patterns with fixed strides, the 

prediction error is below 10% for larger data sizes.  

 

For non-contiguous access pattern with variable strides, we initialized an array that 

contains strides of accesses. Prediction cost of this access pattern contains the cost of 

accessing non-contiguous arrays as well as the cost of accessing the array of strides. The 

prediction error is below 15% (Figure 4.4). This error is caused by missing some of the 

cache misses in non-contiguous accesses, which requires maintaining the history of the 

length of cache lines that are already been fetched into the cache. Another reason for 

prediction error for all these access patterns is that we are using average miss penalties, 

which may not be accurate. 

We observe the similar results on Pentium III processor on Beowulf cluster (Figures 

4.5, 4.6, and 4.7). The prediction error is slightly high for small data sizes where the 

prefetching of this processor is effective. As the working set size increase, the L2 misses 

increase and the prediction error is below 20% in these cases. 
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Figure 4.4. Comparison of measured and predicted memory access cost for 
non-contiguous data access with fixed word size and variable strides (word size: 8 

bytes, stride varies from 1 to 128 bytes periodically) 
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We also verified the performance of the loops in NAS Parallel benchmarks that are 

performing matrix transpose operation. We have measured the performance two 

variations of matrix transpose algorithms from NAS Parallel benchmarks’ Fast Fourier 

Transform program. The first algorithm is a simple matrix transpose of copying rows of 

one matrix to columns of another matrix. The second algorithm uses cache-blocking 

optimization to improve the performance. Both algorithms fit into the data access patterns 

explained in section 4.2. The data working set of the first algorithm increases with the 

dimension of the matrices. Due to the row major ordering of arrays in C (column major 

ordering in Fortran), one matrix is accessed contiguously and the other is accessed non-

contiguously with fixed stride. The second algorithm makes sure that a block of data is 
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4.5.a. 

Non-contiguous accesses with 16 byte strides
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Figure 4.5. Comparison of measured and predicted memory access cost on 

Pentium III processor. The access patterns are: 4.5.a. Contiguous data access 
(word size: 1byte, stride: 1byte). 4.5.b. Non-contiguous data access with fixed 

word size and stride (word size: 8 bytes, stride: 16 bytes),  
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fully utilized before replacing it from the cache. In this algorithm, the two matrices are 

accessed non-contiguously with fixed strides. However, as the whole data block is reused 

before it is being replaced, and we chose the block size such that it fits into the cache, the 

number of cache misses is very less compared to the unoptimized version of matrix 

transpose. These experiments are performed on Sun UltraSparc IIe processor node.  

 

As expected, the performance (time/reference) increases as the data size increases for 

the unoptimized transpose algorithm (Figure 4.8). Predicted values of performance are 

slightly different from the measured values. The error is around 13%. In the second 
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4.6.a. 
Non-contiguous accesses with 64 byte strides
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Figure 4.6. Comparison of measured and predicted memory access cost on 
Pentium III processor. The access patterns are: 4.6.a. Non-contiguous data 
access with fixed word size and stride (word size: 8 bytes, stride: 32 bytes) 

4.6.b. Non-contiguous data access with fixed word size and stride (word size: 8 
bytes, stride: 64 bytes) 
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algorithm, the performance is improved for the transpose algorithm due to the cache-

blocking optimization (Figure 4.9). The performance error was below 5% for most of the 

data sizes, but increased for large data sizes. This is mainly due the increase in average 

time per memory reference for the large data sizes. 
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Figure 4.7. Comparison of measured and predicted memory access cost for 
non-contiguous data access with fixed word size and variable strides (word size: 8 

bytes, stride varies from 1 to 128 bytes periodically) 
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Figure 4.8. Comparison of measured and predicted memory access cost Matrix 
transpose algorithm without cache blocking optimization  
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4.5 UTILIZATION OF OUR MODEL 

Our prediction model can be utilized in a broad variety of situations. As we can 

predict the memory access cost for all access patterns, in the optimization cycle, we can 

spare repeated source code modification, compilation execution to retrieve performance 

data. We can just change the access pattern parameters and find the access cost for that 

pattern. This makes the process of testing many optimized patterns with very small 

overhead. This model can be directly applied in memory-logP model to find the memory 

access cost, which is a function of data size and distribution of data. We utilize this mode 

in improving the performance of MPI derived datatypes [Mpif98], which we explain in 

the next chapter.  

 

4.6 SUMMARY 

In this chapter, we discussed the issues of memory hierarchy and presented our 

proposed prediction model based on data access patterns. To optimize memory 

performance, we can use loop transformations and loop access reordering techniques to 
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Figure 4.9. Comparison of measured and predicted memory access cost 
Matrix transpose algorithm with cache blocking optimization  
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improve the memory access performance. To obtain these loop optimization parameters, 

a simple, fast and accurate memory access cost prediction model is necessary. This 

improves the standard of application level optimizations and reduces the burden on the 

programmers to learn the rapidly improving processor and computer architecture 

technology. Towards achieving this goal, in this chapter we presented an analytical model 

to predict the memory access cost based on the data access patterns. We first classified 

the most common data access patterns in scientific computing applications. We then 

presented a model to predict the memory access cost called SMAC. We verified this 

model with measurements and showed that this model is practical. The accuracy of our 

model is reasonable given its simplicity. We also applied this model to matrix transpose 

routines in Fast Fourier Transform program of NAS benchmarks, which was 

implemented in different memory access patterns. 

Our model is simple, effective, and easy to be incorporated into memory cost tuning 

tools, where optimization parameters are to be found at runtime. The prediction error of 

10% to 20% exists; but our model is reasonably accurate in making optimization 

decisions. We are currently utilizing this model to improve the performance of MPI 

derived datatypes, by optimizing the memory access cost (discussed in the next chapter). 

This cost prediction is a part of our memory-logP model, which emphasizes the 

importance of memory communication performance in point-to-point communication. 

Our model is practical because of its simplicity. We are able to fit this easily into any 

optimization library to choose optimization parameters dynamically at runtime. This is 

not possible with the existing models due to their complexity. 
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This model can be extended in various aspects. In future, we plan to extend this 

model to include external and internal conflict misses. We will broaden this model for 

replacement policies other than LRU, such as FIFO, LFU, MRU, MFU etc. In future, we 

plan to incorporate this model in an automatic performance tuning system that improves 

the application performance by optimizing the memory access cost. 



76 

CHAPTER 5 

DATA ACCESS OPTIMIZATION FOR MIDDLEWARE 

In this chapter, we first present our techniques of utilizing SMAC model for 

improving the performance of message passing middleware. Communication in parallel 

applications is a combination of data transfers internally at a source or destination and 

across the network. Previous research focused on quantifying network transfer costs has 

indirectly resulted in reduced overall communication cost. Optimized data transfer from 

source memory to network interface has received less attention. In shared memory 

systems, such memory-to-memory transfers dominate communication cost. In distributed 

memory systems, memory-to-network interface transfers grow in significance as 

processor and network speeds increase at faster rates than memory latency speeds. Our 

objective is to minimize the cost of internal data transfers. The following examples in this 

chapter illustrate the impact of memory transfers on communication; we present a 

methodology for classifying the effects of data size and data distribution on hardware, 

middleware, and application software performance. This cost is quantified using 

hardware counter event measurements on the SGI Origin 2000. Our analysis technique 

identifies the critical data paths in point-to-point communication. For the SGI O2K, we 

empirically identify the cost caused by just copying data from one buffer to another and 

the middleware overhead. We use MPICH in our experiments, but our techniques are 

generally applicable to any communication implementation. 

We then explain the methods to improve the performance of MPI derived datatypes 

utilizing our proposed prediction models. The Message Passing Interface (MPI) has 

become a de facto standard for parallel programming. This standard supports derived 
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datatypes, which allow users to describe noncontiguous memory layout and communicate 

noncontiguous data with a single communication function. This feature enables an MPI 

implementation to optimize the transfer of noncontiguous data. In practice, however, few 

MPI implementations implement derived datatypes in a way that performs better than 

what the user can achieve by manually packing data into a contiguous buffer and then 

calling an MPI function. In this chapter, we present a technique to automatically select 

templates that are optimized for memory performance based on the access pattern of 

derived datatypes. We implement this mechanism in the MPICH2 source code. The 

performance of our implementation is compared to well-written manual 

packing/unpacking routines and original MPICH2 implementation. We show that 

performance for various derived datatypes is significantly improved and comparable to 

that of optimized manual routines. 

 

5.1 MEMORY COMMUNICATION 

Computers continue to increase in complexity. Hierarchical memories, superscalar 

pipelining, and out-of-order execution have improved system performance at the expense 

of simplicity. Redesigned compilers allow applications to take advantage of new 

architectures and execute more efficiently. As shown in Chapter 2, compilers are limited 

in their ability to increase performance. For instance, the compiler is often unaware of 

subtle characteristics of cache hierarchies. Optimal performance is typically achieved 

through a combination of optimized compilation and algorithm redesign through system 

dependent analysis. 
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Communication in parallel systems increases complexity tremendously. As a result, 

parallel compilation is even less fruitful than its sequential ancestor. Optimizing 

performance in such environments relies more heavily on the use of tools to provide 

performance data for analysis.  

Distributed systems rely on middleware to address the interoperability of 

heterogeneous software and hardware implying additional complexity. The interaction 

between hardware, software and middleware is not well understood. Thus, the optimizing 

abilities of distributed compilers are very limited. Optimizing performance in such 

environments will greatly rely on tools for system dependent analysis. 

Communication costs in such environments are a function of the critical data path 

(see Figure 5.1). A communicated message must be moved from the source’s local 

memory to the target’s local memory. Memory communication is the transmission of data 

to/from user space from/to the local network buffer (or shared memory buffer). Network 
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Figure 5.1.  Memory communications within shared memory (1a-b) 
and to/from the network buffer in distributed communication (2a-

b/3a-b) follow critical paths dependent upon data size, data 
distribution, and system implementation.
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communication is data movement between source and target network buffers. 

Communication cost consists of the sum of memory and network communication times. 

Unfortunately, the same layers of middleware that enable distributed processing (e.g. 

MPI, PVM) convolute the critical data path. Figure 5.1 illustrates the possible critical 

paths of data for communication in a simple distributed shared memory machine or 

cluster. The chosen path (and cost of the communication) depends on the destination, the 

data size and distribution, and the system implementation of the middleware. 

Consider communication in a cluster of shared memory computers. Depending on the 

underlying communication scheme (e.g. MPI, PVM), the chosen implementation (e.g. 

MPICH [Mpif98]), and the system architecture design, different communication buffers 

will be used along the critical data path. For small data sizes, communication proceeds 

without application-level buffering. For large data sizes, data buffering at the application 

level will occur.  Buffering will also occur at the network level. 

The relative cost of memory communication is increasing. Processor speeds continue 

to outpace memory latency improvements. As the gap widens, memory performance 

becomes an even larger portion of overall execution time. It is very important to limit the 

cost of memory accesses. As mentioned, compilers can help, but given the complexity of 

present and future distributed systems, the first step toward this solution is to identify the 

critical path of memory communication in a real system and quantify the cost. 

In next section, we describe a scientific approach to empirically determine the critical 

path of memory communication. Our approach [Bycs02] follows traditional methods of 

characterizing memory hierarchies applied to memory communication. We additionally 

apply a model of memory communication cost to characterize the effects of locality on 
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observed buffer transmission [Bycs03, Bycs04]. Our goal is to identify and quantify the 

costs of memory communication automatically. We test our methodology on a cluster of 

SMPs to show its usefulness and verify correctness. In the following sections, we 

describe the experimental setup and then classify memory communication from network 

communication. 

 

5.2 CLASSIFICATION OF PARALLEL COMMUNICATION 

5.2.1 EXPERIMENTAL SETUP 

SGI Origin 2000: Distributed Shared-Memory (DSM) multiprocessors provide the 

convenience of shared memory programming with a scalable design. The SGI Origin 

2000 at NCSA utilizes a cc-NUMA architecture running the IRIX version 6.5.14 

operating system. The interconnection network for 128 processors is a 5th degree 

hypercube with 4 processors (2 nodes) per router. High-speed, dedicated Craylink 

interconnects link nodes. The achievable remote memory bandwidth on Craylink 

interconnect is 624MB/sec in each direction, which adds a 165ns off-node penalty and 

110ns per hop. As long as the communication is between nodes within a hypercube, per-

hop latency is zero, but the communication to an outer cube node causes increases in 

latency. 

A directory based tree protocol maintains cache-coherence. A complex memory 

hierarchy reduces the impact of memory latency. Each node contains two MIPS R10000 

processors [Ncsa00]; each running at 195MHz, and 32kB two-way set associative, two-

way interleaved primary (L1) cache. An off-chip 4MB secondary unified cache is present 

as well. Cache and page block sizes are 32 and 4096 bytes respectively.  Load misses at 

L1 and L2 were measured as 12 and 90 cycles respectively. The MIPS R10000 is a four-



81 

way superscalar RISC processor. The machine used in testing has 48 195MHz MIPS 

R10000 processors, with 14 GB main memory. The available local memory access 

bandwidth is 680MB/sec in each direction. SGI O2K machine is selected as our platform 

due to availability and support of hardware counter libraries. As our study focuses on the 

effect of local memory references, this can be generalized for commodity cluster 

architectures. 

Hardware Performance Counters: All the commodity processors provide hardware 

performance counters to measure and validate the processor architecture. The MIPS 

R10000 processor has two on-chip 32-bit registers to count 30 distinct hardware events. 

In our experiments we have measured the events related to total cycles (event 0), 

graduated instructions (event 17), memory data loads graduated (event 18), memory data 

stores graduated (event 19), L1 cache misses (event 25), L2 cache misses (event 26). The 

overhead of cache misses on SGI Origin 2000 is measured [Moos01] as 1 cycle for 

register access, 2-3 cycles for an L1 cache hit, 7~13 cycles for an L1 cache miss, 60~200 

cycles for an L2 cache miss. A TLB miss costs more than 2000 cycles. This shows that 

the overhead increases massively as L2 cache misses occur. We have chosen these 

counters to study the memory effect on communication as they reflect the memory 

operations for any processor. 

Performance Measurement: We measure each experiment twenty times for all data 

sizes and hardware counter events. Accuracy is maintained by taking only the values with 

low standard deviation. In the next section, we quantify performance degradation for non-

contiguity of the data using the memory-logP model [Casu03]. For this, we use a program 

that measures performance for sending a contiguous and a non-contiguous message with 
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point-to-point blocking message passing under various data sizes and strides. We study 

point-to-point, blocking communication due to its prevalence in parallel applications. 

However, our methodology applies to any middleware implementation. In the third 

experiment, we use a matrix transpose algorithm to represent memory communication 

packing and unpacking. We measure the costs for simple contiguous message copying, 

non-contiguous message copying, and sending data to a remote processor. 

Communication cost for sending a data segment depends on architectural parameters 

(e.g. cache capacity) and code characteristics (e.g. data distribution) as explained in the 

memory-logP model [Casu03]. Typically, a message transmission involves data 

collection, data copying to the network buffer and data forwarding to the receiver. When 

a data distribution is not contiguous, typically it is collected into a contiguous buffer 

before copying to the network buffer (see Figure 5.1). This intermediate copying is costly 

as data sizes and strides increase resulting in additional capacity and conflict misses to 

the cache [Larw91]. This can be done without extra buffer copying by directly copying to 

the network buffer. However, the performance degrades further due to poor utilization of 

network buffer. Strided accesses decrease the efficiency of cache hierarchies designed to 

exploit locality (capacity misses). Caches with less than full associativity, often a small 

power of 2, suffer from mapping collisions under certain access patterns (conflict 

misses). 

The parameters of the memory logP model capture architecture and code 

characteristics. Memory cost of transferring data of a specific size is a combination of 

unavoidable overhead (o), and effective latency (l) – a function of data size and 

distribution. Additional network latency after removing overlap exists in passing a 
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message between two processors. Total communication time increases with memory 

latency (l). In our micro benchmark experiments, memory performance worsens with an 

increase in stride. We use the memory-logP model to enumerate the memory hierarchy 

performance so that a developer can improve the performance of those parts of code with 

locality-conscious optimizations. Quantifying the memory communication costs is the 

first step in bottleneck identification. Succeeding analysis can identify system buffer-

related parameters. 

Figures 5.2 and 5.3 illustrate the communication cost and cause of 16-Dword (16 x 8 

bytes), strided data transfers using MPI Blocking Sends. The contribution of memory 

communication to total communication is obvious. As message sizes increase for fixed 

strides, data transfer time increases (Figure 5.2) from additional conflict and capacity 

misses (Figure 5.3) in the memory communication. The rate of cost increase is dependent 

upon the data distribution and the memory hierarchy characteristics. 
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Figure 5.2. Total cost for sending contiguous (stride 1) and non-
contiguous (stride 16) messages. The costs are similar at low data sizes 
and it increases a lot once the data does not fit into the cache or when 

TLB thrashing occurs. 
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Estimation of the o parameter of the memory logP model requires measurement of 

contiguous data transmission, a relatively simple task using micro-benchmarking 

techniques. We expect the o parameter increases proportionately as problem size and 

strides increase; that a scalable transmission method is chosen. Recent work [Wogr02] 

indicates that the overheads for packing and unpacking of MPI derived data types in 

implementations such as MPICH do not scale well.  

Measuring the l parameter directly requires running experiments varying message 

size and contiguity. After subtracting the ideal overhead, the l function remains. In Figure 

5.4, a comparison of various costs is shown. The first bar in each grouping quantifies 

overhead (o) of copying a contiguous data block. In the SGI O2K system measured, 

overhead remains constant as size increases. The second bar in each grouping shows the 

cost for packing a non-contiguous message into an intermediate buffer. This cost is 

similar to copying a contiguous message when the data fits totally into the cache. After 

the data size crosses this barrier, the costs increase due to cache and TLB misses. Sending 

a contiguous message includes a small fraction of memory copying cost (o) and network 
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Figure 5.3. L2 cache misses for sending contiguous (stride 1) and non-
contiguous (stride 16) messages.  Each L2 cache miss costs between 60 

to 200 cycles. 
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latency, but for non-contiguous messages, this memory cost increases with the data size 

as it includes the latency parameter (l). 

5.3 IDENTIFYING MEMORY COMMUNICATION 

Memory hierarchies are complex. System middleware (e.g. MPICH) provides 

abstractions (e.g. derived data types) to simplify distributed programming hiding the 

details of data transfer from the user. Determining the particular costs of memory 

communication is non-trivial due to the complex interaction between application, 

middleware, and hardware. However, to optimize performance, application developers 

must understand the full cost of communication. Using the quantifiable parameters of the 
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Figure 5.4. Comparison of cost for various implementations of transpose algorithm.  
Contig.memcpy () : Copying data from one buffer to another using memcpy (). This is 
the basic overhead (o) to copy contiguous data. Non-contig. MPI_Pack () : This packs 
columns of matrix using MPI_Type_vector (). This cost is a combination of (o) and 

(l). Contig.MPI_Send () sends a contiguous message over network to another 
processor. This includes the cost of small contiguous copying overhead (o) and the 

cost for network transfer and software overhead of MPI_Send. Non-contig. MPI_Send 
() packs a non-contiguous data to transpose and sends to the receiver. This cost 

includes the packing overhead, copying data from memory to the network buffer and 
the network cost. 
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memory logP model and micro-benchmark experiments, it is possible to identify buffer 

copies in shared memory architectures. 

Specifically, we test various data sizes and strides iteratively and observe the largest 

gap among the successive hardware counter values after consideration of experimental 

variation. These gaps or significant changes pinpoint policy decisions in the case of MPI 

codes (application buffers) and memory hierarchy characteristics (implicit buffering). At 

the memory hierarchy level, our approach is similar to that of traditional micro-

benchmarking techniques [Sagc93, Whal01] used to identify general cache 

characteristics. We additionally verify our analyses with hardware counter data; this is 

particularly important for identifying application-level buffers. 

Inefficient memory communication is not limited to exploitation of the memory 

hierarchy. Figure 5.4 shows the increases in the latency parameter (l) with additional 

layers of overhead caused by middleware such as MPICH implementation is measured. It 

has been our experience that code developers targeting performance generally avoid 

certain abstractions such as derived data types since they understand the overhead 

resulting from such abstraction negatively and significantly impacts performance. Figure 

5.4 affirms this intuition. Figure 5.5 shows the classification of various costs including 

(l), (o) and other latency. Collective costs of middleware are very high with the increase 

of message size. This depicts that the magnitude of the cost differential is truly system 

and application dependent. Hence, a more scientific approach to determine when to use 

abstractions such as derived data types would involve determining the exact cost for a 

specific application-architecture combination. This is the purpose of our techniques and 

the original motivation behind this work. 
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As discussed, the critical data path for communicating a message varies depending on 

the destination, data size, and distribution and the implementation of middleware (see 

Figure 5.1). For example, MPI [Mpif98] uses three protocols in buffering: short, eager 

and rendezvous. In “short” protocol, data is sent with the envelope of the message. This 

protocol is ideal for very small data sizes. With “eager” protocol, data is not stored in an 

application buffer at the sender, assuming the receiver can store the data (see Figure 5.1 

2a/3a-b). This method is advantageous to reduce any synchronization delays. But 

buffering may require additional space for messages from an arbitrary number of senders. 

Memory exhaustion may occur at the receiver for large data. In “rendezvous” protocol, 

data is buffered at the sender until the receiver responds and posts a receive signal. This 

scheme provides scalability but comprises extra handshaking delays and stall for the 

cases of buffer exhaustion. 
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Figure 5.5. From figure 5.4, Contig. memcpy () = o, MPI_Send () contains 
the overhead due to copying of data from memory to the network buffer and 
network latency. Non-contig MPI_Send () has the additional buffer copying 

cost over MPI_Send () costs. 
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A standard-mode send function uses “eager” protocol while the message size is less 

than the available system buffer size. After the buffer size is surpassed, the system 

switches to rendezvous protocol. There are many implementations to deal with non-

contiguous data. In a typical MPICH implementation [Mpif98], buffering is needed 

regardless of message size (Figure 5.1 2b) for strided datatypes. At the receiver, 

unpacked data requires an additional copy (Figure 5.1 3a); when unpacking is not 

necessary, no additional copy is made (Figure 5.1 3b). The CPU stalls when the buffer 

exhausts until the data is sent out of the buffer. Location of the receiver also impacts the 

overall communication cost in shared memory systems. 

Comparing the performance of communication for contiguous and strided messages 

can isolate the overhead caused by additional buffering. The cost of sending a contiguous 

message between two processors is a combination of data transfer overhead (o) and 

network latency. Sending a strided message has extra overhead due to poor exploitation 

of memory hierarchy and additional buffer copying. Optimally, the cost of copying 

strided data into a contiguous buffer is the same as the cost of packing it using MPI 

implementation. Additional middleware induced overhead is separated by subtracting the 

costs of sending contiguous message and that of packing from the total cost of sending 

strided message. Figure 5.5 depicts the partition of these costs. This is an empirical 

method of separating all the costs in memory communication. Presentation of these costs 

provides a developer with an insight into exploiting the advanced memory hierarchies, 

and to decide which critical data path is optimal to use. 
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5.4 MPI DERIVED DATATYPES 

The MPI (Message Passing Interface) Standard is widely used in parallel computing 

for writing distributed-memory parallel programs [Mpif95, Mpif98, Grla99]. MPI has a 

number of features that provide both convenience and high performance. One of the 

important features is the concept of derived datatypes. Derived datatypes enable users to 

describe noncontiguous memory layouts compactly and to use this compact 

representation in MPI communication functions. Derived datatypes also enable an MPI 

implementation to optimize the transfer of noncontiguous data. For example, if the 

underlying communication mechanism supports noncontiguous data transfers, the MPI 

implementation can communicate the data directly without packing it into a contiguous 

buffer. In contrast, if packing into a contiguous buffer is necessary, the MPI 

implementation can pack the data and send it contiguously. In practice, however, many 

MPI implementations perform poorly with derived datatypes—to the extent that users 

often resort to packing the data manually into a contiguous buffer and then calling MPI. 

Such usage clearly defeats the purpose of having derived datatypes in the MPI Standard. 

Since noncontiguous communication occurs commonly in many applications (for 

example, fast Fourier transform, array redistribution, and finite-element codes), 

improving the performance of derived datatypes has significant value. 

The performance of derived datatypes can be improved in several ways. Researchers 

have used data structures that allow a stack-based approach to parsing a datatype, rather 

than making recursive function calls, which are expensive [Thrz99, Grld99, Romg03]. 

These works improved the performance of derived datatypes to the level of performance 

with naïve manual implementations for packing noncontiguous data. (We do better than 
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that with our optimizations.) Wu et al. [Wuwp04] improved the performance of MPI 

derived datatypes by taking advantage of the features in InfiniBand to overlap packing 

and unpacking a message with network communication.  

The performance of derived datatypes can be improved further by using optimized 

algorithms for packing and unpacking of data. Many implementations of derived 

datatypes use loops in packing/unpacking noncontiguous data. Utilizing data locality in 

these loops by applying loop optimizations, which a developer cannot easily do without 

advanced knowledge of memory hierarchy design and optimizations, is beneficial. This 

area is the focus of our research. These techniques are useful for MPI implementations on 

various network channels and the performance gain is not limited to fast networks. To 

our knowledge, no other MPI implementations use memory-optimization techniques for 

packing noncontiguous data in their derived-datatype code (for example, see the results 

with IBM’s MPI in Figure 5.12). 

Much research has been performed by the compiler and algorithms community on 

improving memory-hierarchy performance by using techniques such as loop 

transformation, array padding, and cache blocking [Larw91, Kand99, Rivt99], and we use 

some of these optimizations in our optimized packing algorithms. Many compilers use 

some of these optimizations to improve code performance. However, longer compile 

times and dynamic behavior of data accesses limit the performance improvement that a 

compiler can obtain. Many software libraries have been developed, particularly for 

numerical software, that use advanced memory-optimization techniques, for example, the 

portable LAPACK library [Weblpk] and the ESSL and PESSL libraries on IBM 

machines [Webibm]. ATLAS (Automatically Tuned Linear Algebra Software) is an 
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approach for automatically generating optimized numerical software on machines with 

deep memory hierarchies [Whal01]. 

As explained in earlier sections, inter-process communication (IPC) can be 

considered as a combination of memory communication and network communication. 

Memory communication (or memory copying) is the transfer of data from the user’s 

buffer to the local network buffer (or shared-memory buffer) and vice versa. Network 

communication is the movement of data between source and destination network buffers. 

Limiting the cost of memory accesses can significantly improve the overall 

communication time, as we demonstrate in this chapter. The key to improving the 

memory-access performance is to exploit advanced memory hierarchies in modern 

computer architectures. Doing so directly is difficult for users because they are often 

unaware of architectural details, and these details vary from machine to machine. We do 

the memory optimizations automatically at the library level in our memory-conscious 

implementation of derived datatypes. 

We first implement our optimizations in MPICH-1 version, where we present the 

scope of performance improvement by using MPI’s profiling interface (PMPI). In this 

chapter, we present automatic selection of optimized packing/unpacking templates within 

the MPICH2 source code, based on data access patterns, data size, and memory 

architecture. Ogawa et al. [Ogma96] used optimized templates in improving MPI 

performance for instantiating partial-evaluation code selection in order to reduce software 

overhead. We, in contrast, use templates to optimize memory performance. 

For MPICH-1 optimization at profiling MPI level, except for the results in Figure 

5.12 with IBM’s MPI, we performed experiments on an SGI Origin2000 at the National 
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Center for Supercomputing Applications. This machine has a cc-NUMA architecture and 

runs IRIX 6.5.14 as the operating system. Each node of the machine has two MIPS 

R10000 processors [Ncsa00] running at 195 MHz. Each processor has a 32 KB two-way 

set-associative and two-way interleaved primary (L1) cache and a 4 MB off-chip 

secondary cache. The MIPS R10000 processor has two on-chip 32-bit registers to count 

30 distinct hardware events. In our experiments, we measured the events related to total 

cycles (event 0), graduated instructions (event 17), memory data loads graduated (event 

18), memory data stores graduated (event 19), L1 cache misses (event 25), and L2 cache 

misses (event 26). The MPI implementation we used is MPICH-1.2.5 with the shared-

memory device. 

For optimizations in MPICH2 source code, to test the portability of our optimized 

implementations, we ran these experiments on two different clusters: a 350-node Linux 

cluster (jazz) at Argonne National Laboratory and an 84-node Sun cluster (sunwulf) at 

Illinois Institute of Technology. The nodes of jazz have a 2.4 GHz Pentium-4 processor 

with 1 GB of memory. These processors have 512 KB of built-in L2 cache, with a 64 

byte cache line and 8-way associative, a TLB of 128 entries, and a page size of 4 KB. 

These nodes are connected with Fast Ethernet. Each node of the sunwulf cluster is a Sun 

Blade-100 workstation with one 500MHz UltraSparc-IIe CPU. The L1 cache is 16 KB, 

with a 16-byte cache line size. The L2 cache has a capacity of 8 MB and its line size is 64 

bytes. It has a TLB of 48 entries with 4 KB page size. These nodes are connected with 

Gigabit Ethernet. 
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5.5 OPTIMIZING MPI DERIVE DATATYPES 

In this section, we describe how we automatically use memory-optimized packing 

algorithms to implement MPI derived datatypes [Bgst03, Bgst031]. 

Overview of optimization technique: Figures 5.6 and 5.7 illustrate the procedure for 

optimizing sends with derived datatypes. The profiling interface in MPI [Mpif95] 

provides a convenient way for us to insert our code in an implementation-independent 

fashion as follows. Every function in MPI is available under two names, MPI_ and 

PMPI_. User programs use the MPI_ version of the function, for example, MPI_Send. 

We intercept the user’s call to MPI_Send by implementing our own MPI_Send function 

in which we do the datatype packing (if necessary) and then call PMPI_Send to do the 

data communication. As a result, application programs don’t need to be recompiled; they 

need only to be re-linked with our version of the MPI functions appearing before the MPI 
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library in the link command line. We currently interpret derived datatypes by accessing 

the internal data structures used by MPICH. However, we plan to adopt an 

implementation-independent way by using the datatype-decoder functions from MPI-2, 

namely, MPI_Type_get_envelope and MPI_Type_get_contents. In our implementation of 

MPI_Send, we first determine whether the datatype passed is a basic (predefined) 

datatype or a derived datatype. If it is a basic datatype, we simply call PMPI_Send as no 

packing is needed.  For a derived datatype, we first determine whether any performance 

improvement is possible for the access pattern represented by the datatype as described 

below. 

Memory performance degrades significantly when the program cannot reuse the data, 

which is already loaded in various levels of the memory hierarchy. We observed in 

Figure 5.2 that the data-packing overhead (lp) increases after data size 2 MB. Cache reuse 

degrades when the number of cache lines required to be loaded for the working set of 

data is more than the available number of cache lines. Reuse of the Translation Look-

aside Buffer (TLB) degrades when the number of page entries required is more than the 

number of entries the TLB can hold. The TLB typically contains a small number of 

entries, which result in more misses when the number of pages required is higher than 
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this number. Therefore, to determine whether any performance improvement is possible, 

we use the metric of determining whether there will be any TLB misses for a naïve 

(unoptimized) data-packing algorithm for the given data size. For this purpose, we need 

to know the number of page entries that will be required to be loaded into the TLB. For a 

noncontiguous access with fixed block size and fixed stride, this number can be 

determined as follows.  

Let W be the size in bytes of each contiguous block, S be the stride in bytes between 

the start of two consecutive contiguous blocks of data, n be the number of references to 

contiguous blocks of data in the innermost loop, Ps be the page size in bytes, and Tp be 

the maximum number of entries the fully-associative TLB can hold. If SPs ≥ , each page 

contains ⎦⎣
S
Ps  references. The number of pages required pR  can be calculated as follows: 

⎦⎣
=

S
P
nR

s
p  if SPs ≥ , and ⎥⎥

⎤
⎢⎢
⎡=

s
p P

WnR  if SPs < . 

If pp TR < , the entire data to be accessed, including the stride, can be mapped by 

TLB; that is, there are no TLB misses. In this case, we assume that no performance 

optimization is possible, and we simply call PMPI_Send. But if pp TR ≥  and if the access 

pattern represented by the datatype includes out-of-order accesses, some of the pages 

mapped would be replaced before they are completely used. In this case, we use our 

optimized packing algorithm that uses cache blocking to ensure better reuse of mapped 

pages.  

Choosing a Block Size: After determining that performance improvement is 

achievable, performance-optimization parameters (such as block size for cache blocking) 
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are calculated. Lam et al. [Larw91] have shown that the block size has a significant effect 

on blocking algorithms. Choosing the optimal block size, however, is difficult. Temam et 

al. [Tefj98] propose an analytical approach to calculate block size by taking into 

consideration all three types of cache misses: compulsory, capacity, and conflict misses. 

This method has significant overhead in estimating the parameters accurately.  

Instead of trying to find the optimal block size, we simply aim to choose a block size 

that avoids the worst performance. Specifically, because of the high cost of TLB misses 

[Safs00] and the relatively small size of the TLB, we decided to choose a block size that 

minimizes TLB misses. In our implementation, we choose a block size that 

accommodates TLB mapping, noncontiguous array accesses, and the other variables in 

the program. We use half the TLB entries ( 2/pT ) to map the block and the other half to 

accommodate the contiguous buffer and other loop variables. In other words, we use a 

block size that will consume half the entries in the TLB. We determine the TLB size for a 

given system by running a microbenchmark developed by Saavedra et al. [Sagc93]. The 

page size is determined by using the system command getpagesize (). 

Choosing a Packing Algorithm: Based on the data-access pattern represented by a 

datatype, we choose a predefined packing function and plug in the memory-optimization 

parameters. To select a function, we classify access patterns into combinations defined by 

contiguous or noncontiguous accesses with fixed or variable block sizes and fixed or 

variable strides. For each of these combinations we use a predetermined packing function 

with architecture-dependent parameters. The data is packed into a contiguous buffer with 

the selected packing function, and we then call PMPI_Send with the contiguous buffer. 
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Figure 5.8 shows the current implementation of MPI_Send in MPICH, and Figure 5.9 

shows our implementation with the packing optimizations. 

 

To directly apply the optimizations in the source code of MPICH2 [Bstg06] instead of 

PMPI [Bsgt03], we developed a systematic approach. Our method first retrieves the data 

access pattern of a derived datatype from user’s definition and verifies whether 

performance improvement is possible with optimizations for a derived datatype before 

applying them, as shown in Figure 5.6. If improvement is possible, our optimization 

method uses an analytical model [Bsgt04] to predict memory access cost and to find 

optimization parameters with the lowest access cost. These parameters are passed to 

templates to pack/unpack noncontiguous data. 

Overall procedure of optimizing an MPI communication function using derived 

datatypes has two steps. In the first step, we verify whether a datatype is optimizable or 

not, and find optimization parameters. In the second step, MPI communication function 

calls optimized templates automatically. 

MPI_Send (data, datatype, dest) 
{ 
 if (datatype is basic datatype) 
 { 
  Send (data) to the network buffer. 
 } 
 else (datatype is derived datatype) 
 { 
  /* MPI_Pack () cost is staggeringly high for large 
               data sets and powers-of-2 dimension arrays */ 
   
            MPI_Pack (data, datatype, buffer); 
  Send (buffer) to the network buffer. 
 } 
} 
 

Figure 5.8. Current implementation of MPI_Send in MPICH-1 
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In MPI programs, after defining a derived datatype, it has to be committed by calling 

MPI_Type_commit. We modified the implementation of the MPI_Type_commit 

function to verify whether optimization is possible. The modified implementation first 

retrieves the data access pattern, which includes the type of the user-defined datatype, old 

datatype, strides between consecutive memory accesses, size of the data items, and depth 

of the derived datatype. If the old datatype is another derived datatype (that is, when a 

MPI_Send (data, datatype, dest) 
{ 
 if (datatype is basic datatype) 
 { 
  PMPI_Send (data, datatype, source, dest); 
 } 
 else (datatype is derived datatpe) 
 { 

packing_algorithm = Select_best_packing_algorithm (data, 
datatype); 

  pack (packing_algorithm, data, datatype, buffer) ; 
  PMPI_Send (data, datatype, dest); 
 } 
} 
 
Select_best_packing_algorithm (data, datatype) 
{ 
 if (data fits into cache/TLB) 
 { 
  packing_algorithm = PMPI_Pack (data, datatype); 
 } 
 else  
 { 
  calculate_optimization_params (datatype, system_info, &params); 

choose_packing_algorithm (params, data, datatype, 
&packing_algorithm); 

 } 
 return (packing_algorithm); 
} 
 
pack (packing_algorithm, data, datatype, buffer) 
{ 
 if (packing_algorithm == PMPI_Pack) 
 { 
  PMPI_Pack (data, datatype, buffer); 
 } 
 else 
 { 
  /* Here come the template implementations for various  
     data-access patterns with optimized parameters */ 
 } 
} 
 

Figure 5.9. Memory-conscious implementation of MPI_Send 
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derived datatype is nested), MPI_Type_commit retrieves these values for that inner 

datatype as well. We use the datatype decoder functions of MPI-2, namely 

MPI_Type_get_envelope and MPI_Type_get_contents to retrieve the 

pattern. The overhead of decoding datatypes by using these functions is low. 

In order to determine whether a datatype is optimizable or not, the modified 

MPI_Type_commit function verifies a series of heuristics that cause cache misses. It 

verifies whether the datatype is contiguous or noncontiguous, examines whether the data 

size is more than cache size, and then calculates the factor of cache and TLB reuse. The 

optimization method reverts back to the original implementation if it determines that the 

performance cannot be improved at any of these verifications. We use an optimization 

flag (is_optimizable) to keep track of the results of these verifications. If the 

performance can be improved, MPI_Type_commit determines the optimization 

parameters and sets the flag is_optimizable to 1. 

We developed optimized templates to pack/unpack noncontiguous data by using 

various loop optimization methods. In our current implementation, these templates use 

cache blocking [Larw91], loop unrolling, array-padding optimizations, and software-level 

prefetching [Mogu91]. 

In finding optimization parameters to pass to the templates, we first select these 

optimization parameters based on heuristics explained earlier. To determine if these 

parameters are optimal or not, we use SMAC prediction model [Bsgt04]. This model 

verifies whether the memory access cost is reduced with the selected parameters. A new 

set of optimization parameters are selected if the cost is not optimized and the prediction 

model verifies for lowered cost again. 
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For software prefetching, the number of loop iterations needed to overlap a 

prefetching memory access is called the prefetching distance [Molg92]. Assuming 

memory access latency is l, and the work per loop iteration is w, the prefetch distance is 

ceiling (l/w). The main loop that packs data is unrolled for all the references that reuse 

cache lines that are prefetched. An epilogue loop is called without prefetching to execute 

the last few iterations that do not fit in the main loop. We use a special gcc function 

__builtin_prefetch to issue these prefetch instructions. A special flag, –mcpu, 

has to be set to compile MPI source code. 

In the second step, when the MPI_Send function is called to send the data, if the 

is_optimization flag is 1, the MPI_Send calls optimized packing templates using 

the optimization parameters. These templates are also used when the user calls 

MPI_Pack or MPI_Unpack to pack or unpack noncontiguous data. 

 

5.6 PERFROAMANCE EVALUATION 

We present the performance results with our implementations at PMPI level on 

MPICH-1 source code, and then the optimizations performed directly in MPICH2 source 

code. The first set of results demonstrates the potential of data access performance 

optimization on derived datatypes of MPI. The second set of results shows the actual 

performance improvement for various datatypes, including vector and indexed datatypes 

as well as MG and transpose applications of NAS parallel benchmarks. 

5.6.1 MPICH-1 PMPI OPTIMIZATION RESULTS 

This section presents performance results for the matrix-transpose example. We 

compare the performance of three cases: original MPICH with derived datatypes, original 
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MPICH with manual (unoptimized) packing by the user (no derived datatypes), and 

derived datatypes with our optimized packing algorithm. To describe the transpose 

operation with a derived datatype, we use a datatype that is a vector of vectors (vectors of 

columns in an array). We use a ping-pong operation to measure performance. A process 

sends a message with a derived datatype representing the transpose, and the destination 

process receives it contiguously. The destination process then sends back the data with 

the same derived datatype to the first process, which receives it contiguously. The time is 

measured at the first process and halved to find the communication cost for one complete 

data transfer. We run a many iterations of the program and find the minimum time. 

In the optimized packing algorithm, cache blocking is used only if the number of 

pages required to be loaded in the TLB is more than the available TLB entries. For the 

MIPS R10000 processor on the Origin2000, the number of TLB (fully-associative) 

entries is 64, and the page size is 16 KB. For matrix transpose, the number of pages 

required is more than the available TLB entries for arrays of size larger than 512*512 

double-precision numbers (data size is 2 MB).  

Figure 5.10 shows the performance of the three cases in terms of the number of clock 

cycles per memory reference. For small data sizes, where we do not use cache blocking, 

the performance of the three methods is almost the same. But once the data size is 8 MB 

or larger, where cache blocking comes into effect, our optimized implementation 

significantly outperforms both original MPICH and manual packing, and the performance 

improvement is greater as the data size increases. 
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Figure 5.11 shows the overall communication bandwidth achieved for the same 

example with original MPICH and the memory-optimized version. For higher data sizes, 

the bandwidth achieved by original MPICH decreases considerably, whereas the 

bandwidth with the memory-optimized version decreases only slightly and is as much as 

85% higher than the original MPICH bandwidth. 
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Figure 5.11. Bandwidth improvement with the optimized implementation 
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To see how memory-optimized packing performs compared with derived datatypes in 

a vendor MPI implementation, we ran some experiments on the IBM SP at the San Diego 

Supercomputer Center. We used IBM’s MPI to run three versions of the matrix-transpose 

program: derived datatypes, manual unoptimized packing, and manual memory-

optimized packing. The results are shown in Figure 5.12. For large data sizes, the 

program that uses manual memory-optimized packing takes significantly lower time than 

both the derived-datatypes version and the one with manual unoptimized packing. These 

results demonstrate that vendor MPI implementations also stand to gain by using 

memory-optimized packing. 

5.6.2 MPICH-2 OPTIMIZATION RESULTS 

We used three sets of benchmarks to evaluate the performance of our optimized 

implementations. 
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Figure 5.12. Performance of matrix transpose with IBM’s MPI 
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1. Simple derived datatypes: We chose fixed derived datatypes defined by the 

SKaMPI benchmark [Reth00]. They describe a memory layout consisting of a number of 

units of a basic datatype. The number of units depends on the size of data, the size of 

basic datatype, and strides. We used vector and indexed datatypes. 

2. Nested derived datatypes: We use the nested derived datatypes described by Ross 

et al. in [Romg03]. These datatypes represent a collection of elements from a 3D array. 

When a 3D array is stored in row-major order, accessing the YZ face and all the YZ faces 

of the array in X direction is noncontiguous and has poor locality when the size of the YZ 

face is more than the cache or TLB sizes. We tested a nested datatype describing a 3D 

cube of YZ planes in the X direction with a vector of vectors (vector of YZ planes in an 

array). 

3. NAS benchmarks: Lu et al. [Lwps04] modified four NAS benchmarks to apply 

MPI derived datatypes for noncontiguous data communication. Among these, LU, BT, 

and SP have small data transfers and do not benefit from memory optimizations. In the 

MG benchmark, the data transfers in the comm3 function are noncontiguous and are 

implemented as packing-then-sent by a sender process and receive-then-unpacking by a 

receiver. The datatypes described in the modified code are nested datatypes that represent 

vectors of vectors. We also tested the performance of the matrix transpose operation from 

the NAS parallel benchmarks’ Fourier Transform (FT) program, using MPI derived 

datatypes. To describe the transpose operation with a derived datatype, we use a datatype 

that is a vector of vectors (vector of columns in an array). 

Except for the NAS MG benchmark, we obtained the performance results of all other 

benchmarks with an MPI_Send/Recv ping-pong operation. In this operation, a process 
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sends a noncontiguous message that is described by the MPI derived datatypes, and a 

destination process receives it contiguously. The destination process then sends back the 

data with the same derived datatype and is received at the first process contiguously. The 

time is measured at the first process and halved to find the communication cost for one 

complete data transfer. We ran 20 iterations of each program and calculated the minimum 

time. We present the performance as transfer rate (MB/s) to normalize the results. The 

size of the message used in the ping-pong operation is divided by the measured time to 

find the rate. For the NAS MG benchmark, we compare the execution time of the 

benchmark. 

We compare the performance results for three implementations: manually packing 

data and sending it (no derived datatypes), MPICH2 version 1.0.3 (unoptimized), and our 

optimized implementation of the MPICH2 code. The manually implemented pack and 

unpack codes are written to represent the way a good programmer would write them. 

Ross et al. [Romg03] showed that the implementation of derived datatypes in MPICH2 

outperform those implemented in LAM/MPI [Lamm06]. Therefore, we directly compare 

our results with MPICH2. We compile all manual codes and MPI installations with gcc 

version 3.2.3 with the flags -O6. 

Figure 5.13 shows the performance (rate of sending/receiving data in MB/s) of 

programs using messages formed by vector and indexed datatypes on the jazz cluster. 

Figure 5.14 shows the performance of the same programs on the sunwulf cluster. On both 

clusters, when the message size is larger than cache size, the performance of the original 

MPICH2 implementation degrades sharply compared to the manual implementation for 

both vector and indexed datatypes. With the optimized implementation, this performance 
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is in the same level as that of optimized manual codes. These figures also show that the 

overhead of optimized implementations is low. 

Figure 5.15 shows the performance of programs communicating messages formed 

using nested derived datatypes representing a 3D-cube on the jazz cluster and Figure 5.16 

shows that on the sunwulf cluster. On both clusters, the original MPICH2 performs 

similar to manual and optimized implementations for smaller data sizes. As the message 

size (size of 3D cube) becomes larger compared to the L2 cache size, the performance 

degrades for MPICH2, whereas the optimized implementation maintains superior 

performance similar to that of the optimized manual program. 
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Figure 5.13. Bandwidth measurements for vector (left) and indexed (right) datatype on 
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Figure 5.14. Bandwidth measurements for vector (left) and indexed (right) on sunwulf 



107 

Figure 5.17 shows the performance of the NAS MG benchmark on jazz and sunwulf 

clusters. We measured the execution time of the MG benchmark by using 4, 8 and 16 

processors with B and C class workloads. The execution time with MPICH2 is higher 

than that of the original MG benchmark implementation (manual). With optimized 

MPICH2, the execution time is up to 8% (on average 6%) lower than that of manual 

implementation, and up to 25% (on average 13%) lower than that of unmodified 

MPICH2 on the jazz cluster. On the sunwulf cluster, for 8 and 16 processors, the 
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Figure 5.15. Bandwidth measurements for the 3D-cube experiment on jazz 
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Figure 5.16. Bandwidth measurements for the 3D-cube experiment on sunwulf 
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execution time is up to 12% (on average 7.3%) less than that of the manual 

implementation. Here, manual implementation is original NAS MG benchmark, which is 

not optimized for cache blocking and prefetching. Our optimized MPI derived datatype 

implementation benefits from using cache blocking in the nested datatypes in the MG 

benchmark. 

Figures 5.18 and 5.19 show the performance (rate in MB/s) of the matrix transpose 

subroutine of NAS FT benchmark on jazz and sunwulf clusters, respectively. When the 

message size is larger than the L2 cache size, the rate degrades severely for unmodified 

MPICH2 because of the large number of cache misses caused by poor data locality. The 

optimized MPICH2 implementation benefits from using cache blocking in this program. 

The performance gain is in the range of 50–60% on jazz cluster and 50–114% on the 

sunwulf cluster. 

6.5 SUMMARY 

It was believed that data allocation is not a noticeable factor of communication in a 

parallel computing environment. All the existing parallel programming models consider 

cost of memory access either constant or negligible. Through our experimental testing, 
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Figure 5.17. Execution time of the NAS MG benchmark on jazz (left) and on sunwulf 

(right) 



109 

and case studies, in this research we have shown that memory communication is a 

function of data size and distribution. The performance degrades by a factor 10 times 

even with a small stride of 16. Communication performance can be improved more than 

115% by using memory friendly optimizations external to compilers. This portrays a 

large scope for improvement of communication dominant applications and compilers.  

Memory communication can be caused by many factors, under utilization fast CPUs 

with multiple levels of memory hierarchy, data distribution and various copying 

overheads between buffers. Application developers need to be aware of underlying 

architectures to develop high performance programs. But lack of documentation 
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Figure 5.18. Bandwidth measurements for matrix transpose experiment on jazz 
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Figure 5.19. Bandwidth measurements for matrix transpose experiment on sunwulf 
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regarding the memory hierarchy and buffering schemes for various architectures is a 

source of difficulty in optimizing applications. Identification of these implementation 

based communication overheads is a part of enumerating the memory communication 

costs. In this chapter, we have presented an approach to determine the critical data path 

scientifically along with the memory access overhead as described in this chapter. 

By combining optimization methods with a memory access model, we have 

introduced in this chapter an approach to optimize memory performance automatically. 

The optimized implementation of MPI derived datatypes chooses packing templates that 

are optimized for advanced hierarchical memory systems of modern machines. These 

templates are parameterized with various architecture-specific parameters (for example, 

block size and TLB size), which are determined separately for different systems. By 

using these optimized templates, we obtained significantly higher performance than the 

existing MPICH2 implementation and manual packing/unpacking by the user. This result 

is significant because it will improve the performance of MPI_Pack/Unpack and MPI 

communication functions in many applications that use MPI derived datatypes in 

performing noncontiguous communication. We have shown that our optimized 

implementations are applicable on multiple architectures (Intel and Sun). 

The optimizations described in this chapter are not yet incorporated into the MPICH2 

release, but we plan to do so. We are also looking at other applications of automatically 

selecting optimization parameters using the analytical prediction model. For example, in 

scientific applications, major portion of their run time is spent in executing loops. 
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CHAPTER 6 

PERFORMANCE RESULTS WITH DPS ARCHITECTURE 

In Chapter 3, we presented the design of DPS and discussed the issues of predicting 

data accesses and pushing predicted data closer to a processing core. In this Chapter, we 

present performance results of SPEC CPU2000 benchmarks [Buab96]. As the micro-

acrchitectural modifications proposed to support DPS system are not readily available in 

existing processors, we use the SimpleScalar toolset to simulate our DPS architecture. 

We first explain the structure of SimpleScalar, and implementation of DPS on this 

simulator, then present the simulation results.  

 

6.1 SIMPLESCALAR SIMULATOR 

To model existing complex processors, SimpleScalar toolset [Buab96] was 

developed. This system software infrastructure is commonly used to build modeling 

applications for program performance analysis and microarchitectural modeling. The 

toolset is derived from the MIPS-IV instruction set architecture [Pric95]. It contains 

various simulators, including sim-cache, sim-fast, sim-safe and sim-outorder. Out of 

these simulators, sim-outorder is the most detailed simulator, which supports out-of-order 

issue and execution based on Register Updated Unit (RUU) [Sohi90]. These simulators 

accept various arguments related to memory subsystem described in Chapter 3, such as 

cache size, cache lin e size, cache associativity, load store table size, reorder buffer size, 

TLB information etc.  

The  pipeline for sim-outorder simulator is shown in Figure 6.1. In the fetch phase, 

instructions are fetched from memory based on program counter and branch prediction 
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decisions. The dispatch phase models decoding of instructions into their opcodes, while 

also updating dependency information between instructions. In the scheduler and 

execution phases, all load instructions having their input dependencies met are first 

queued into the ready queue. Ready instructions from the ready queue are issued to 

functional units that are available. In this phase, load operations are ready with their 

effective addresses. The writeback & commit stages identify instructions that are 

dependent on recently completed instructions, and schedule them. They also commit the 

results of write operations to the cache, and retire completed instructions. 

 

6.2 DPS IMPLEMENTATION ON SIMPLESCALAR 

We evaluate the performance of DPS using an extended version of the sim-outorder 

simulator of SimpleScalar toolset V4.0. The baseline simulator configuration consists of 

a four-issue dynamic superscalar cores similar to that of Alpha 21264, with configuration 

shown in Table 6.1. Memory subsystem contains separate data and instruction L1 caches 

of 32 KB that are 2-way set assosiative. L2 cache  memory is unified for instruction and 

data, which has 1 MB capacity and 4-way set associative. The size of RUU is 256. 

 

Figure 6.1. Pipeline for sim-outorder simulator 
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We modified the sim-outorder simulator to accommodate strided prefetching and 

DPS prefetching strategies. To apply strided prefetching, we modified the simulator using 

a 512 entry reference prediction table (RPT) and prefetch instructions are triggered when 

a cache miss occurs [Chba95]. The prefetch distance is constant and set as 8 for strided 

prefetching.  

To simulate the DPS system, we modified the simulator to add another Alpha 21264 

core that contains all the components of DPS core. Originally, the simulator only 

supports one processing core. We added the functionality of another core to support DPS 

on a dual-core processor. Operation of the second core does not affect the cycles or 

instructions of the processing core. To simulate data prefetching functionality, we first 

modified the memory module of the DPS core to introduce an instruction (PUSH 

CORE_ID as explained in Chapter 3) to push data into the prefetch cache of processing 

core. This instruction implemented by adding a bus to support pushing data into the 

prefetch cache. We also added a bus to push directly into the L1 cache of the processing 

core in order to verify the amount of cache pollution caused by aggressive DPS 

Table 6.1. Simulator configuration 
Issue width 4 

Load store queue 64 entries 

RUU size 256 entries 

L1 D-cache 32KB, 2-way set associative, 64 byte line, 
2 cycle hit time 

L1 I-cache 32KB, 2-way set associative, 64 byte line, 
1 cycle hit time 

L2 Unified-cache 1MB, 4-way set associative, 64 byte line, 
12 cycle hit time 

Memory latency 120 cycles 

DAH size 512 entries 

Prefetch queue  512 entries 
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prefetching. We modified the cache manager of processing core to support data push by 

the DPS core. We added a prefetch engine module to the main components (performance 

core) of SimpleScalar simulator to observe data access patterns and to predict future 

references. This includes the pattern detection manager (PDM), a DAH table, and a 

prefetch queue similar to the ready queue structure of the sim-outorder simulator. The 

PDM collects data into DAH. The prefetch strategy selector adaptively chooses 

prediction algorithms among simple strided, Markov chains, distance prefetching, and 

our multi-level difference table (MLDT) strategies based on the pattern information 

provided by the PDM. The DPS core triggers a prefetch when there are prefetch requests 

in the prefetch queue.  

To store the history of data accesses in DPS prefetching strategy, we use a Data 

Access History (DAH) structure to collect load instruction information. The DAH is 

similar to RPT, but stores more information. DAH has a tag, count, tail and head pointer 

fields (Figure 6.2). Tag field records the instruction address. Each entry is a doubly 

linked list, which is a queue and keeps track of data access addresses and the time of 

occurrence (in cycles) of the corresponding entry instruction. Count field maintains the 

number of times an instruction with address stored in tag field has been issued. The stride 

       

  DAH - Initial status      DAH - After one load instruction 
 

 
   DAH - After multiple entries 
 

Figure 6.2. Data Access History (DAH) table 
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between the addresses and times are calculated to find a pattern. Figure 6.2 illustrates a 

constant stride is detected for instruction address 403C20 and a variable stride (a pattern 

with depth 2) is detected for instruction address 4010D8. This design makes DAH 

capable of capturing more history of recent accesses instead of only two latest accesses as 

in RPT, thus makes it possible to capture multi-level difference table of length n. 

Similarly, for a certain data address stored in tag field, the DAH structure manages 

instruction addresses to find which instruction is using data lines. In this way, DAH 

structure supports Markov chain pattern prediction method also, where a certain data line 

is accessed repeatedly.  

 

6.3 SIMULATION ENVIRONMENT 

As a first assessment of the potential of server-based data push model, we constructed 

a set of simple and complex regular strided pattern benchmarks. For these benchmarks, 

we analyzed the cache performance. We then verified the performance improvement of 

SPEC CPU2000 [Spec00] benchmarks that have poor L1 cache performance to test the 

performance gains using DPS. Table 6.2 lists microbenchmark kernels that are crucial 

components of well-known benchmarks such as BLAS (Basic Linear Algebra 

Subroutines) [Dcmd90], STREAM [Mcca95], and SPEC CPU2000  benchmarks. 2D-

matrix transpose and 2D-matrix multiplication are important matrix operations in 

scientific applications. These two operations exist in many benchmarks that test the 

performance of computer architectures including BLAS, CPU2000 benchmarks. Struct 

kernel is taken from CPU2000 benchmarks. Figure 6.3 shows another nested strided 

pattern, which accesses a 3-dimensional matrix. This pattern contains repetition of three 
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different strides. The first stride contains accessing two contiguous elements of 1-

dimensional array. The second and third accesses contains accessing two 1-dimensional 

and 2-dimensional arrays, respectively, with a different strides.  

We select these benchmarks, as they represent data access patterns found in real 

Table 6.2. Benchmark kernels 
Kernel Operation Access Pattern 

2d-matrix 
transpose 

for (i = 0; i < N; i++) 
     for (j = 0; j < N; j++) 
            y[i][j] = x[j][i]; 

y: contiguous 
x: non-contiguous 

2d-matrix 
multiplication 

for (i = 0; i < N; i++) { 
   for (j = 0; j < N; j++) { 
      t = 0; 
      for (k = 0; k < N; k++){ 
          t += a[i][k]*b[k][j]; 
      } 
      c[i][j] = t;          } 
 } 

a: contiguous 
b: non-contiguous 
c: contiguous 

struct accesses for (i = 0; i < N; i++) { 
    type_a[i]->longval1 = a[i]; 
    type_a[i]->longval4=b[i]; 
    type_a[i]->longval8=c[i]; 
} 

type_a: non-
contiguous, irregular 
stride of repeating 1,64 
and 64,  
a, b, c: contiguous 

 

Figure 6.3. 3-dimensional nested strided data access 
Innermost stride to access 1-D array, second strided pattern to access 2-

D array, and the outermost strided pattern to access 3-d array. 
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codes and to explain how our prediction algorithms works. For instance, Matrix transpose 

and multiplication operations are classic examples of noncontiguous (strided) accesses 

that contribute to high cache miss rates when the data size exceeds the cache size. These 

algorithms have been the targets of numerous cache performance improvement studies. A 

struct is a user-defined datatype in C language. These struct accesses represent variable 

strided data accesses, when they are defined with different basic data types or with other 

user defined data structures. These accesses increase the cache misses when the stride 

between successive accesses is larger than a cache line. 

We compare the L1 and L2 cache miss rates of all benchmarks for three cases: 

without prefetching (base case), with strided prefetching, and with DPS prefetching 

strategy. In the base case (without prefetching), the cache misses include compulsory, 

capacity and conflict misses. The strided prefetching strategy predicts the next stride 

based on the history of recent accesses and a prefetch instruction is issued on the 

occurrence of a cache miss. These programs were compiled with gcc V3.2.3 with 

optimizations turned off to verify the effect of prefetching. We use the SimPoint 

[Shpc01] toolset to select a representative starting point beyond a program’s initialization 

phase. 

We also evaluate the performance of SPEC CPU2000 benchmarks. We selected five 

benchmarks that have high L1 cache miss rate. These programs were compiled with gcc 

V3.2.3 using “–O3 –static”. Each program is simulated for 200 million 

instructions after fast forwarding past the initialization phase selected by the SimPoint 

toolset. 
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6.4 SIMULATION RESULTS 

Figure 6.4 shows the L1 cache miss rates of the benchmark kernels. We set N = 1024 

in all the benchmark kernels, where each loop iterates for N times. 2-D matrix transpose 

has one contiguous access pattern (array y), and one non-contiguous access pattern (array 

x). When data size is more than cache size, each cache line loaded into the cache while 

accessing a matrix column is flushed (with row-major order) before it is reused in 

accessing the next column. The cache miss rate without prefetching is 56.25%. Using 

strided prefetching, the cache miss rate is reduced up to 26%. In accessing array x, there 

are two types of strides: forward (positive) strides to access each element of a column of 

the array, and a negative stride after transposing a column fully. The request generator 

adjusts timing to prefetch (i.e. prefetch distance is selected dynamically) with DPS 

strategy, where miss rate is reduced to 0.01%. These misses occur during the data access 

pattern learning stage. L1 cache miss rate of 2-D matrix multiplication without 

prefetching is high due to the number of noncontiguous accesses to array b (~50%). Here, 

arrays a and c are accessed contiguously, but strides are different. Array a is accessed in 
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Figure 6.4. Performance of Kernel benchmarks 
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every iteration, while array c is accessed once every N iterations. Each of these arrays has 

reuse among the fetched cache lines, but array b has no cache reuse, when data size is 

more than cache size. The strided prefetching strategy reduces the miss rate to 24%. For 

struct accesses benchmark, the strides are set to 1, 64 and 64 and these strides repeat. The 

L1 cache miss rate with base case is 55%. In this case, DPS prefetch strategy is able to 

predict repeated sets of patterns. The request generator adjusts the value of k, as there is 

no reuse in accessing type_a structure. With this strategy, most of the cache misses are 

overlapped. Similarly, for 3-D access pattern, DPS prefetching is able to predict repeated 

sets of patterns. 

Figure 6.5 shows L1 cache miss rates of CPU2000 benchmarks. With DPS 

prefetching, L1 miss rates are reduced significantly for all the benchmarks. For ammp L1 

miss rate reduction is 97.05%. For applu it is 48.9%, for art it is 96%, for mcf it is 32%, 

and for mgrid benchmark it is 66.5%. These miss rates are 40% to 95% less (66% on 

average) compared to strided prefetching. Figure 6.6 compares the number of L2 misses 

for these benchmarks, which shows significantly reduced number of misses with DPS 

prefetching.  
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Figure 6.5. L1 miss rate for SPEC 2000 benchmarks 
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Figure 6.7 shows the values of IPC (instructions per cycle) improvement for the 

above CPU2000 benchmarks. The first bar shows the IPC improvement with strided 

prefetching. The second bar represents the IPC improvement when we implement DPS 

prefetching without a dedicated DPS core, i.e. DPS prefetching is implemented on the 

same processing core, where benchmark code is running. The third bar represents the IPC 

improvement, when we use a dedicated DPS core for our prefetching strategy. Strided 

prefetching improves IPC slightly, but degrades for applu benchmark. When DPS is 

implemented on the same processing core, the IPC improvement is negative for all 

benchmarks except for ammp benchmark. This shows that, even though aggressive DPS 

prefetching is effective, when it is implemented on the same processing core, the overall 

performance degrades. With the use of a dedicated memory server core, the IPC values 

improve significantly, benefiting from aggressive prefetching.  
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Cache pollution is a negative effect of aggressive prefetching if prefetche cache lines 

are directly pushed into L1 cache. The cache replacement rate reflects cache pollution 

and it increases if data is not pushed in time. We have tested these effects as well with 

DPS pushing data into L1 cache instead of prefetch cache. Figure 6.8 shows the 

replacement rates for the above CPU2000 benchmarks. It can be observed that the cache 

pollution effect is none for all the benchmarks with DPS prefetching strategy. For strided 

prefetching, the data is prefetched only when there are regular strided patterns among 

data accesses. This does not increase cache pollution and cache performance 

improvement is also low. With aggressive DPS prefetching, the cache performance 

improvement is higher while keeping cache pollution low.  

These performance results show the greater performance gains than existing approach 

by using a dedicated DPS for prefetching. We have shown that adaptability of prediction 

algorithms works positively towards data access performance gains. The goal of 

separating data access from computing is also feasible. The use of a DPS core reduces the 

actual prefetching overhead at processing cores and the performance gain would 

245.25

15.52
28.23

70.69

23.95

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

ammp applu art mcf mgrid

%
 o

f I
PC

 im
pr

ov
em

en
t

Strided DPS (w ithout dedicated core) DPS (w ith dedicated core)
 

 
Figure 6.7. IPC improvement with DPS prefetching 



122 

supercede the overhead involved in observing the patterns. Moreover, DPS has flexibility 

to predict temporal data access patterns adaptively, to prefetch data in time and to serve 

multiple clients. We have also shown aggressiveness of pushing data towards processing 

cores has less cache pollution effect, which shows the accuracy of spatial and temporal 

pattern prediction is high with our DPS system. These functionalities of DPS broadens 

the impact of CMP architectures in bridging the divergence gap of HEC. 

 

6.5 SUMMARY 

In this Chapter, we have demonstrated that DPS can improve data access performance 

significantly. The simulation results show that DPS has considerable gains in memory 

access performance for various data access patterns. DPS has reduced L1 cache miss 

rates of benchmark kernels with various strided patterns, in particular those of SPEC 

CPU2000 benchmarks to less than 1%. This is a significant improvement (up to 95%) 

over strided prefetching. These results show the potential of DPS in avoiding most of the 

processor stall time by moving data closer to computing in time.  
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DPS can be implemented on architectures, including SMP and clusters with special 

hardware and OS support. We plan to investigate DPS approach further for fast data 

access and to explore its prospective performance gains in other domains of information 

processing. We plan to extend this work to study detailed implementations of DPS and to 

design a strategy to select various pattern prediction strategies based on compiler and 

user-provided hints. This will improve the effectiveness of DPS in predicting irregular 

patterns such as data structure traversals. We intend to explore more accurate pattern 

prediction algorithms, such as time-series analysis models. In the next chapter, we 

explain the applications of extending data push server architecture for various levels of 

memory hierarchy to cross the memory-wall hurdle in High-End Computing.  
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CHAPTER 7 

APPLICATIONS OF OUR DATA ACCESS MODELS 

Data access cost models of push prefetching and cache performance prediction has 

various applications. We discussed the fundamentals of our models at cache memory 

level in the previous chapters. In this chapter, we discuss the extensions of these models. 

Push architecture can be applied at multiple levels of memory hierarchy to push data 

from lower level storage device to memory that is closer to processing unit. We present 

the designs of using push model for parallel computing. Energy consumption is another 

major research area to be explored, as the supercomputers are growing larger rapidly. We 

discuss the basics of finding balance between memory performance improvement and 

energy consumption.  

 

7.1 MEMORY SERVERS 

Data access latency is a critical performance bottleneck in shared memory and cluster 

computing environments as well. Data communication is an essential part of parallel 

computing. In shared memory multiprocessing, multiple processes share a large memory 

to communicate intermediate results. In cluster computing, processes use explicit 

message passing functions to transfer data among them. As we have shown in Chapter 5, 

memory communication dominates the cost of sharing data. This problem must be 

addressed to solve to achieve higher productivity in numerous clusters in HEC.  

Another problem in parallel computing is that numerous applications require more 

memory than they have locally. Each node of distributed shared memory architecture or 

clusters has a small local memory. In DSM, the nodes share a large memory. The data 
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transfer activity between the local memories and disk increase, when applications require 

more memory space. One solution that was widely researched is to use memory servers. 

Many researchers have explored the concept of memory servers to reduce disk accesses 

and to directly use the memory of a peer node or the memory on a server, connected 

through network. It is considered that large collective memory capacity of a cluster of 

workstations is often idle, and it would be more cost effective to exploit the unused 

memory of these nodes. The critical assumption in this strategy is that a page access from 

the disk is slower than accessing a page from the global memory of a peer node or a 

global shared memory. This assumption is true as the network technology has made 

strides of improvement in reducing latency. Disk access latency is in the order of 

milliseconds while network latency is in the order of a few hundred nanoseconds. The 

trend is continuing in reducing network latency further towards a few nanoseconds.  

Some of the major projects with the idea of exploiting memory space over network in 

various computing environments are remote memory model [Cogr90] with dedicated 

machines to provide memory space, remote memory model with idle machines [Feza91], 

Global Memory Service (GMS [Fmpk95] and Network Memory Sever (NMS) [Star00]. 

 
 

Figure 7.1. Architecture of Memory Servers 
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Dodo [Acks99] suggests harvesting idle memory space by using resource monitors, a 

central memory manager and scheduler. Iftode et al. [Iflp93] suggests using part of the 

nodes of a multi-computer as memory servers. These memory servers form a layer 

between the RAM and disks. Recently, Li Xiao et al. [Olxl04] have proposed Parallel 

Network RAM (PNR) to utilize global cluster memory when memory requirement is 

large. Each of these projects commonly has clients that require extra memory, servers 

that provide memory space, and a memory management engine (MME) to help the client 

locate the memory server and to move the data from the server to the clients (Figure 7.1). 

The server is capable of providing remote memory space for multiple clients. For the ease 

of description, we show one client in Figure 7.1. These projects differ in defining the 

functionality of the MME and its position in multicomputer environment. 

The goal of existing memory server research projects discussed above is to avoid 

slow disk accesses. However, this extra memory space provision itself is not enough in 

solving data access performance bottleneck problem. We plan to use our server-based 

data push architecture at this level. We can place the Data Push Server at MME level for 

parallel computing (DPS-P). The primary goal of DPS-P is to improve the data access 

performance of CPU by adaptively and proactively pushing the data closer to the 

processor. The vital functionality of DPS-P is to predict future data accesses, their access 

times and, to push the corresponding data to the processor in time. DPS-P is also 

responsible for managing data fetching and adaptive replacement strategies that provide 

better performance for various data access patterns [Suby05]. 
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7.1.1 CLASSIFICATION OF MEMORY SERVERS 

Using a DPS-P memory server that provides smart memory management is beneficial 

to many multiprocessor platforms. We consider two platforms that can benefit from such 

a server. They are: clusters and shared memory parallel processing machines. In clusters, 

instead of providing large memory for all nodes, it is cost effective to use a server that 

supports many nodes. In shared memory parallel processing environment, this server 

supports aggressive data fetching and prefetching closer to applications of several nodes 

from the shared memory. The DPS-P approach can be used here to fetch the data from 

the remote memory to the processes effectively to improve the performance. 

A compute cluster is loosely coupled and each node has its own local memory. DPS-

P can fetch data into a client at two levels; to the local memory of a client or directly to 

the deepest level of cache of a client. Based on the functionality of DPS-P, we classify 

the memory server model into two: pure server model and hybrid server model. With the 

pure server model, DPS-P manages the local memory of clients as well as the remote 

memory on the server and the memory provided by idle nodes. Data that is located 

outside the local memory of a client is pushed by the DPS-P directly into a designated 

prefetch cache. The designated prefetch cache is either a specially designed prefetch 

cache, or any one of the levels of cache hierarchy (L1 cache or L2 cache). If a client has 

no local memory, memory server automatically becomes a pure server model. In a hybrid 

server model, the memory server pushes the data to local memory of a client. The clients 

use their own fetching strategies to move the data to their cache hierarchy. Both of these 

local memory management and DPS-P memory management co-exist and need 

conformity to move the data in and out of the memory at the client and the memory at the 
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server. This hybrid model is similar to the memory server model discussed in figure 7.1, 

but the DPS-P provides push-based data prefetching.  

In the shared memory (SMP) and multicore environments, nodes or processor cores 

share the memory. These environments are natural for the pure server model. For SMP, 

one of the nodes can function as the DPS-P to fetch and prefetch the data into the other 

nodes. This is similar to the DPS we presented in Chapter 3 for multicore processors, but 

has more functionality of managing memory operations.  

In the following subsection, we discuss designs of DPS-P according to the 

classification. The fetching and prefetching algorithms used in DPS-P are similar for all 

the multiprocessor environments. The designs differ based on the context of the clients 

they are serving as well as the source and destination of the data DPS-P is moving from 

and to, respectively. 

 

7.1.2 ARCHITECTURE AND DESIGN ISSUES 

With the objectives of decoupling the data access from computation, aggressive 

prefetching, cost effectiveness, and adaptive memory management to improve the overall 

memory access performance, we propose a design for data push server for MME for 

parallel computing (DPS-P). The primary function of DPS-P is to push (or pre-push) data 

closer to the processor to overlap the data access latency. DPS-P also extends the virtual 

memory of client nodes based on the memory requirement of the applications that are 

running on those clients. We first discuss designs of pure and hybrid DPS-P for cluster 

environment and then present the designs for SMP. 
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There are three main components in the design of DPS-P, which are common to all 

three multi-processor environments mentioned above. They are prefetch engine (PFE), 

memory management engine (MME), and data propeller (DPR) (Figure 7.2). 

A prefetch engine (PFE) observes the data access pattern (DAP) of an application, 

and predicts the future data references. The PFE contains a prefetch predictor and a 

request generator. The prefetch predictor uses various aggressive prefetching strategies to 

predict the addresses of future references based on the data access pattern. These 

addresses are sent to the request generator to choose the order of prefetching. The request 

generator predicts the time when prefetch requests should be issued and sends this 

information to the data propeller. The challenge of a request generator is to decide the 

prefetch distance in such a way that the data is pushed to the destination “just in time”, so 

that the prefetched data does not cause pollution at the destination and not arrive too late. 

Prefetching distance is the number of references from when the prefetch is actually issued 

until its first use. Based on the type of data references, there are two types of prefetch 

engines; cache prefetch engine and memory prefetch engine. The cache prefetch engine 

observes the patterns of past cache line references and predicts the future cache line 
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references. The memory prefetch engine predicts the memory page references by 

observing the page access pattern of the application. The data access pattern prediction 

phase can be bypassed with the use of compiler-generated hints or application provided 

data access pattern, if available.  

The data propeller (DPR) maintains the information of the location of the data 

(memory at DPS-P, remote memory, or local memory) and issues prefetch instructions to 

the appropriate location. These prefetch requests are forwarded to the memory 

management engine (MME). The function of the MME is similar to that of the memory 

manager in the current operating systems. The difference is that the MME is located on a 

server, remotely. In addition, the MME decides an effective way of transferring the data 

from the data location to the destination. It is also responsible for fetching the data to the 

client’s memory when there is a cache miss or page fault (raw misses) based on the 

function of the memory server. The MME chooses the most effective replacement policy 

among a pool of replacement policies, which is appropriate for the current data access 

pattern of the client’s application. This increases the adaptivity of DPS-P to tune the 

workload of each application. 

The placement of the three components and, their input and output differ for clusters, 

SMP environment. In the pure server model for clusters, DPS-P observes the cache 

access pattern and predicts the future references to push the data closer to the application. 

The architecture is shown in Figure 7.3. In this figure, Compute Node 1 and Compute 

Node 2 are the clients for DPS-P. The server node has a large memory and disk to 

support the applications running on the client nodes. Compute Node K is providing its 

idle memory to be used by DPS-P, when node K is idle. We assume that each client node 
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has L1 and L2 level cache and local DRAM. The memory management engine (MME) of 

the server maintains the server memory as well as local DRAM of the client. The server 

sends the memory management signals (MMS) to the client’s local memory. DPS-P uses 

two levels of prefetching engines, one to prefetch the data from DPS-P to the client, and 

another to prefetch the data from the disk to the memory at the server node. In this figure, 

we show that L1 cache as the designated prefetch cache. We assume that the server has 

access to the bus to push the cache lines directly to L1 cache.   

In hybrid model for clusters, the OS of the client itself maintain (Figure 7.4) the local 

memory of a client. The role of DPS-P is to observe the data access pattern, to predict the 

future page accesses, and to push the predicted data into the local memory of the client. 
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This server also provides extra memory space on the server or on the memory which is 

idle at peer nodes. The DPS-P has a memory prefetch engine to predict the future page 

references and a data propeller to push the corresponding data to the local DRAM of the 

client node. In Figure 7.4, Compute Node 1 and Compute Node 2 are the clients for DPS-

P. Compute Node K is providing its idle memory to be used as extra space by DPS-P. 

The memory management engine (MME) of the server maintains the server memory. 

This DPS-P also maintains two levels of prefetching engines similar to pure server 

model. The major difference between pure model and hybrid model is that, in hybrid 

model DPS-P does not issue any management signals to the local DRAM of clients. 
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In the SMP environment, clients do not have local DRAM and all the memory is 

shared. The DPS-P (Figure 7.5) is a pure server model type and it manages the shared 

memory. Compute Nodes 1, 2 and 3 are the clients for Memory Server Node in this 

figure. The DPS-P observes the access pattern of cache memory of each client and 

predicts the future cache accesses. Then, the server pushes the corresponding cache lines 

to the respective client. The design of DPS-P is similar to that of the pure memory server 

for cluster environments. There is a cache prefetch engine to predict the cache references 

of clients. The difference is in the function of MME. Here, the MME is only responsible 

for managing the shared memory. This design also has a memory prefetch engine and a 
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data propeller to push the data from the shared disk to the shared memory. Again, we 

assume L1 cache as the designated prefetch cache at the client nodes in Figure 7.5. 

In all the proposed designs, the core of DPS-P is similar, which includes the prefetch 

engine, the data propeller, and the MME at multiple levels of server’s memory hierarchy. 

These are the components that are common for memory server in any environment. They 

make the DPS-P aggressive, and adapt to the data access pattern of the application. The 

aggressiveness and adaptive behavior of our model is aimed towards improving the 

memory access performance and bridging the gap between the peak computing capacity 

and sustained performance of current and future high-end computing machines. 

  

7.1.3 INITIAL RESULTS 

For irregular data access patterns, pattern prediction cost is high. When multiple 

variables have different patterns, identifying the pattern for each of these variables 

requires storing more history of references and analysis of these references to find if there 

is a pattern at all. In these cases, to reduce this cost caused by pattern learning phase, 

DPS-P can utilize the hints from the application or the compiler. To determine the 

feasibility of DPS-P in these cases, we performed some experiments, where the hints are 

provided by an MPI application. The MPI (Message Passing Interface) Standard is 

widely used in parallel and distributed computing [Grla99, Grld99]. One of the important 

features of MPI is derived datatypes, which enable users to describe noncontiguous 

memory layouts compactly. When the MPI application uses these derived datatypes, the 

user defines the noncontiguous pattern of the derived datatypes in the form of vector, 

struct, and indexed datatypes. These definitions contain the strides between successive 

elements. DPS-P can utilize the information of access pattern from these definitions to 
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predict the future references when the MPI application uses these derived datatypes while 

packing or communicating the corresponding data. 

In our performance analysis, we used the examples of derived datatypes described in 

Chapter 5 of “Using MPI” book by Gropp et al. [Grla99]. In these examples, the derived 

datatypes represent various noncontiguous patterns of sending particles in solving N-body 

problem. N-body problem is one of the most central computational problems in physics. 

In implementing the simulations of n-body problem on multiple processors, each 

processor needs the information of particles of all the other processors. Each of these 

processors first collects (pack) the information of various particles that are located 

noncontiguously in the particle array and then send that collected message to other 

processors. In this case, if the application gives the definition of derived datatype to DPS-

P, the server can push the data from the array closer to the processor during data 

collection phase. The definition of derived datatype contains the number of contiguous 

chunks of data to be collected, the length of each contiguous chunk of data and the strides 

between them. Without DPS-P strategy, the cache performance during this collection 

phase is low when there is no reuse among the fetched cache lines. With DPS-P, the 

number of cache misses for this collection phase can be completely avoided by 

prefetching in time.   

We assume that there is a function defined to send the pattern information from the 

application to the DPS-P node. The derived datatype is an indexed type that collects 1024 

blocks of data. The length of each block is specified in an array, and the values are [1, 2, 

4, 8, 1, 2, 4, 8,…, 1, 2, 4, 8], where block lengths repeat with 1, 2, 4 and 8 double data 

elements. The strides (in bytes) between these blocks are [8, 16, 32, 64, 8, 16, 32, 64,…, 
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8, 16, 32, 64]. Figure 7.6 compares the cache performance of collecting data from a 

particle array without prefetching and with DPS-P prefetching strategy. Cache reuse with 

base case is only 25% while accessing the first two references in each cycle. The 

remaining 75% of the accesses cause a cache miss. Using DPS-P prefetching strategy 

with application hints regarding the data access pattern avoids all the cache misses by 

pushing the corresponding data to the processor from the client. The hit rate increase is 

four-fold. This result shows, with some language or middleware support for user input, 

DPS-P can further be enhanced to reach its potential in pushing the data on time without 

a cold start in predicting the data access patterns. 

 

7.1.4 SERVICE ORIENTED ARCHITECTURE FOR MEMORY SERVERS 

Service Oriented Architecture (SOA) is driving business infrastructure lately. The 

architecture of memory servers is similar to SOA. The common memory server 

architecture (Figure 7.1) and general process of SOA (Figure 7.7) have similarities. In 

both architectures, there are clients that require memory service similar to a service 
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consumer of SOA, and multiple servers that provide extra memory space for the 

consumer entities. Memory Management Engine (MME) can act as a directory service 

between memory clients and memory servers such that MME collects the information of 

available servers and advertises that information for memory clients to choose a server. 

Moreover, the MME can also behave as a service provider entity to predict the future data 

references of memory clients and push that data from its location at memory servers to 

the clients. This adaptation of SOA is needed as cluster computing and SMP are growing 

to be heterogeneous in the near future.  

SOA provides security, scalability, fault tolerance and interoperability. These features 

are beneficial for memory server architecture [Bysu06]. Among the memory server 

systems described in the previous subsection, some of them suffer from scalability and 

fault tolerance problems. Providing dedicated servers and offering memory services, such 

as extra memory space and proactive data movement, improves the scalability and fault 

tolerance. 

Although SOA features are helpful for providing memory servers, the success 

depends on resolving several challenges. It is widely considered that the performance of 
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services over the web (web services) is not beneficial to high performance computing. 

However, SOA is not limited to web services. By providing a service-oriented 

infrastructure (SOI) that is modified to fit the goals of memory servers, benefits of SOA 

model can be applied for memory servers. 

While MME provides discovery service, performance improvement depends on how 

often this service is needed. The interaction between memory client and MME to predict 

future references may affect the performance. To improve the performance effectively, it 

is possible to have data access profiles of clients before hand as proposed by DPS-P.  

 

7.1.5 SUMMARY OF MEMORY SERVERS 

In section 7.1, we have introduced the DPS for parallel computing (DPS-P) 

methodology. Hierarchical memory systems have been developed to hide the 

performance disparity. However, memory hierarchy is based on data localities. It works 

well for some applications but not well for others. DPS-P separates the data accesses 

from the processing unit and employs adaptive memory management and aggressive 

prefetching by observing the data access patterns of applications. It provides on-time data 

delivery services to push the desired data to the processing element.  In this way we give 

a general solution for data access in a computing system. 

The term memory server has been used in the past decade to provide extra memory 

space in reducing disk accesses. This traditional approach does not offer data access as a 

service, and lacks the aggressiveness and adaptability to various application workloads to 

move the data to the processing unit on time. The performance gain of these traditional 

memory servers is not significant. DPS-P, however, separates data from computing and 

pushes data to the computing element on time.  To put the concept into practice, we have 
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presented different DPS-P designs to improve the memory access performance at various 

levels and for different multiprocessor architectures. 

In a cluster environment, DPS-P can be used as a level of memory hierarchy to 

provide extra space for swapping pages in and out. We propose two models for this 

environment: pure server model and hybrid server model. With the pure server model, the 

local and the remote memory are managed by the DPS-P, and with the hybrid server 

model, the local memory is maintained by the client and the remote memory is 

maintained by the server. In the pure server model, data is pushed into the client’s cache 

and the granularity of the data is a cache line. In hybrid server model, the prefetched data 

is pushed to the client’s local memory and the granularity of the data is a memory page. 

In SMP environment, the memory is shared by multiple nodes. DPS-P fits well at the 

memory management level in these environments. DPS-P pushes the data from the 

shared memory to the cache levels of the client nodes. In an SMP, one or more of the 

nodes could run the DPS-P operations. 

Our initial results with the MPI derived datatypes show that DPS-P improves the 

cache hit rates of an MPI application by more than four-fold. We have shown that DPS-P 

can remove most of the CPU stall times by moving data closer to the computing on time, 

for different applications and on different platforms. 

Since DPS separates the data from computing, its impact is fundamental and is 

beyond the field of high performance computing.  For instance, it can serve as the µ proxy 

between the file server and the clients in a distributed file system to improve the 

scalability; can enhance coherence to provide a single image in a parallel system; and can 

virtualize storage in a Grid environment. Even in high performance computing, DPS can 
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be enhanced in language, compiler and scheduling, and can be implemented at system or 

application level.  

 

7.2 HIGH END COMPUTING I/O 

In previous chapters, we have demonstrated that there is a great potential to apply 

server-based data push architecture at memory level. This architecture can be applied at 

disk level to improve the performance of I/O accesses in data intensive scientific 

applications. In this section, we present design of File Access Server (FAS) with the goal 

of applying push model to I/O. 

 

7.2.1 FILE ACCESS SERVER (FAS) 

The goal of File Access Server is to “push” data pro-actively, in time to client’s main 

memory. Here, “push” means the data is sent before an I/O request is generated by the 

client; by “in time”, we mean that data is moved from its source to destination within a 

window of time before it is required, and where it does not replace other data blocks from 

I/O cache falsely. By moving data into an I/O cache too early, it may replace data blocks 

that would be accessed in the near future. Our strategy aims to avoid such negative 

effects. The goal of implementing this file access server is significant reduction in time-

to-solution of various I/O intensive scientific and numerical applications. 

In most of the scientific and numerical applications, I/O accesses show patterns 

ranging from simple strided accesses to complex non-contiguous patterns [Cacr95, 

Bawu96, Nkpe96, Smre98]. With the use of adaptive and advanced prediction algorithms 

to capture these patterns spatially and temporally enables our system to separate data 

movement from computing and to make this data available for processing by the time it is 
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required. Using these advanced strategies requires extra computing power at the server. 

However, with modern multicore chips and multiprocessor servers, we assume that the 

additional computing needed to analyze and predict access patterns is available on the 

server machine. 

The structure of the File Access Server (FAS) system is shown in Figure 7.8. FAS 

consists of four primary components: memory, disk, data prefetch engine, and file 

management engine. FAS memory is the server-side disk cache. FAS conducts two-level 

prefetch; prefetch data from disk to the server-side disk cache and prefetch data from 

server-side disk cache to client-side disk cache. The data prefetch engine is responsible 

for decision-making. A Pattern Detection Manager (PDM) is introduced in FAS prefetch 

engine to collect the history of past I/O access patterns in spatial and temporal 

dimensions. A Prefetch Strategy Selector (PSS) adaptively selects an appropriate method 
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to predict future accesses based on spatial pattern information. The prefetch predictor of 

the data prefetch engine decides what data to fetch; the request generator decides when to 

fetch the data so that the prefetched data arrives in time. The data propeller of the file 

management engine carries on the prefetching and pushes the data into the appropriate 

disk cache. The data propeller is also responsible for storing the prefetched references so 

that it does not push duplicate data blocks. This information is also useful in designing a 

better replacement policy for the prefetch cache (I/O cache). If the prefetching fails, the 

file memory engine handles the page fault as traditional file servers. 

FAS is different from traditional file servers in that it proactively pushes data to the 

clients, before they request. FAS is also quite different from the existing network 

memory server approach [Iflp93]. It does not lease its memory space. FAS’s memory is 

its disk cache for fast data delivery to its clients. FAS has many advantages. In addition to 

improving data access performance, FAS provides a separation of data movement from 

processing. The separation gives the abstraction a user needs and makes many of the 

current I/O layers unnecessary. FAS collects the data access information and makes 

decisions of prefetching, thus the information and perspective will not be lost from one 

I/O layer to another I/O layer. FAS merges small noncontiguous I/O requests made from 

clients and pushes that data to the clients in time. FAS takes data access as a service and 

represents the current trend of service oriented computing. It is a natural product of the 

rapid advance of technologies. FAS trades data access time with extra computing power, 

extra memory, and fast communication. This trade off may not have been worthwhile 

until now. With the continually enlarged gap between CPU speed and I/O speed, the FAS 

design has a great potential for many years to come. This approach also provides high 
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scalability because multiple FASes can be set-up to function as a scalable parallel file 

system (see Figure 7.9). In fact, we plan to implement the FAS functionality in the file 

servers of the PVFS2 file system, so that this feature can be tested and used in practice. 

 

7.2.2 HIGH END COMPUTING I/O RELATED WORK 

While the “Server-Push” model is new and has never been studied, there is a 

significant amount of research in optimizing I/O access performance for HPC. Research 

in software optimizations to improve I/O performance can be roughly classified into the 

areas of advanced compilers [Brms95, Bckk95, Bocr96, Modk96], runtime I/O libraries 

[Cffh95, Mpif96, Pggs95, Grap95, Molg92, Ledu97, Vech99, Alpb02] and parallel file 
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systems [Clrr00, Cfsi00, Scha02, Nase04, Trre04]. Many research groups have also 

proposed network memory servers to reduce disk accesses and to let clients directly 

access memory remotely with an assumption that data can be accessed faster on network 

than from disks [Fmpk95, Cogr90, Feza91, Iflp93, Acks99, Olxl04]. Many prefetching 

strategies were also proposed in the context of hardware data prefetching.  

I/O PERFORMANCE OPTIMIZATION 

Many researchers introduced advanced compiler I/O optimization techniques. 

Brezany et al. [Brms95] have developed a parallel I/O system called VIPIOS that can be 

used by an optimizing compiler. Targeting out-of-core datasets, Bordawekar et al. 

[Bckk95, Bocr96] have presented several algorithms to optimize communication and to 

reorder stencil computations. Mowry et al. [Modk96] have developed compiler inserted 

I/O prefetching for out-of-core applications. A common problem with compiler 

optimizations is that they are not effective with dynamic nature of I/O accesses. Prefetch 

instructions statically inserted at compile time are not adaptive to changes in network 

traffic when disks are located remotely. Moreover, making compilers perform complex 

analysis of prefetching predictions increases compilation time severely. 

There has been significant amount of research effort in optimizing I/O performance 

using runtime libraries [Cffh95, Pggs95, Grap94, Grap95, Mpif96]. File prefetching in 

I/O performance optimization has been done in many approaches. Patterson et al. 

[Pggs95] have suggested modifying compilers to allow programmers to provide the 

operating system with hints about future file use. Kuenning et al [Kuen94] built SEER, a 

prototype file hoarding system based on the order in which files are referenced during 

periods of connection. Griffioen and Appleton [Grap94, Grap95] proposed an automatic 
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file prefetching based on the prior access stream. They maintained a probability directed 

graph for successors to each file and a weight is calculated for each edge of the graph 

based on the frequency of succeeding files. Various pattern based file prefetching 

methods have been proposed [Molg92, Ledu97, Vech99, Alpb02, Hire03]. These 

methods concentrated in improving the accuracy of predicting what to prefetching but 

failed to schedule adaptively and automatically when to move this data to the I/O caches. 

This scheduling of prefetching is necessary to maximize I/O performance. 

Parallel file systems such as Lustre [Cfsi00], GPFS [Scha02], PanFS, [Nase04], 

PVFS [Clrr00], and PPFS2 [Trre04] are popular in enabling concurrent I/O accesses from 

multiple clients to files. All these file systems provide high bandwidth for large, well-

formed parallel I/O requests, but perform relatively poorly on other less-ideal access 

patterns. PPFS2 [Trre04] offers better runtime optimization for caching, prefetching, data 

distribution and sharing compared to other file systems. 

Despite all the effort, each of these areas of research is lacking aggressiveness in 

reading, writing, and moving data around fast enough to avoid severe performance 

bottlenecks. 

PREDICTING FUTURE I/O ACCESSES 

Numerous prediction methods have been proposed for hardware data prefetching and 

can be applied for I/O caches. These prediction methods range from very simple 

sequential prefetch strategies to Markov prefetching, using compiler hints in prefetching 

and chasing pointers. The immediate next block of data* is fetched with the requested 

block of data in One-Block-Lookahead (OBL) strategy. Dahlgren et al. [Dads93] 

                                                 
* In the context of I/O caches, a block of data is a page. A block of data for hardware data caches is a cache 
line. 



146 

extended this method to fetch the next k blocks of data to improve the spatial locality. An 

adaptive sequential prefetching strategy is proposed by the same authors [Dads95] to 

adjust the value of k based on the efficiency of prefetching. The drawback of either fixed 

or adaptive sequential prefetching is that when the stride between data accesses is large, 

the number of unnecessary cache blocks becomes large. 

Various strategies have been proposed [Chba95, Fupa91] based on stride between 

successive accesses. These strategies maintain a reference prediction table (RPT) to 

record the recent accesses and to predict the next stride. Chen et al. [Chba95] proposed an 

aggressive arbitrary stride prefetching strategy. To capture the irregularity in accesses, 

Markov prefetching strategy [Jogr97] was proposed. This strategy assumes that history 

might repeat itself among the accesses and builds a state transition diagram with states 

denoting the accessed data block. Probability of each state transition is maintained, so 

that least probable predicted data references can be dropped from prefetching. Kandiraju 

et al. [Kasi02] have presented another strategy, which maintains state transition diagram 

of distances instead of references as in Markov prefetching. 

While most of these prefetching strategies concentrate on what data to prefetch, we 

have found only one significant effort in predicting when to prefetch. ARIMA [Trre04] 

performs time series analysis to schedule prefetch instructions. In our push-based 

strategy, we plan to use all these strategies by adaptively selecting an appropriate method 

to predict future file references based on detected I/O access pattern. 

 

7.2.3 TECHNICAL CHALLENGES 

Challenges such as what data to push and when to push are addressed in Chapter 3 of 

this dissertation. We can apply similar approaches for I/O level data push. Future data 
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access prediction algorithms can be adaptively chosen based on history of accesses or 

page faults. Other challenges that are exclusive for I/O are replacement strategies and 

collective I/O. Replacement policies can be improved further with the use of predicted 

information.  

When I/O cache is full and a new data block has to be prefetched into that I/O cache, 

it is necessary to avoid replacement of data blocks that are useful in the near future. 

Traditionally, LRU replacement policy is popularly used due to its simplicity of 

implementation. However, LRU policy does not capture “frequency” of usage of a data 

block. For example, if a data block is used frequently, but not accessed recently, it will 

become a victim block even if it will be accessed frequently in the near future. Adaptive 

Replacement Cache (ARC) [Memo04] replacement policy was proposed to capture the 

“recency” and “frequency” features of data blocks. This policy maintains two logical 

LRU lists. One list contains the metadata of blocks that were accessed only once 

“recently”, while the other list maintains the metadata of data blocks that have been 

accessed at least twice “recently”. The first list captures the “recency” and the second list 

captures the “frequency”. ARC adaptively increases the sizes of these lists based on the 

application workload and chooses a data block for replacement from the list that has more 

data blocks than I/O cache can accommodate. Even with ARC strategy, there is still a 

possibility of a data block that would be used in the near future is replaced. 

Our File Access Server can utilize the knowledge of I/O access patterns predicted by 

prefetching strategies. We call this strategy Prediction-based Adaptive Replacement 

(PAR). In this strategy, after a victim data block is selected by ARC policy, we verify 

that if the selected victim block address is in the list of predicted addresses by prefetch 
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strategy mentioned in the previous section. If the reference of victim data block is in the 

list of predicted pattern, it means that data block would be accessed by the client of the 

I/O cache in the near future and shall not be replaced. Another data block is selected, 

which meets the criteria of ARC policy and verified with predicted addresses in the 

prefetch queue. This process continues until a data block is selected, which will not be 

accessed in the near future according to the prefetch engine predictions. This strategy 

provides an extra level of surety that a data block, which would be accessed in the near 

future, is not replaced. 

In many parallel applications, multiple processes often need to access different 

portions of a file simultaneously, a pattern that is commonly known as collective I/O 

[Thgl02]. For example, each process may need to read or write a subarray of a 

multidimensional array. In MPI programs, the user often provides the file access 

information of a group of processes. Implementation of MPI-IO [Thgl99] uses this 

information to merge these requests of different processes and services the merged 

request through collective I/O. We plan to enhance our access pattern detection and 

prediction algorithms to be aware of collective I/O and perform optimizations based on 

the collective requests from multiple processes. In particular, we plan to use user 

provided hints as well to merge these small I/O requests, and push the data to the 

appropriate processes in time and optimize the performance further. 

 

7.2.4 INITIAL RESULTS 

 We modified SimpleScalar simulator [Buab96] to test the performance of FAS 

model, similar to the modification discussed in Chapter 6. We ran simulations of file 

accesses with different strides using modified. In this simulation, we recorded the page-
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hit rates in accessing memory for uni-processor system, while accessing a file from disk. 

Using prefetching strategy of DMS, page hit rates are above 95% for regular access 

patterns, which are far better, compared to the cases of without using prefetching and 

using simple strided prefetching. (See figure 7.10).  

The FAS approach is different from traditional client-directed prefetching and has an 

improved performance. Traditional prefetching requires the client either to know what to 

prefetch based on user-provided hints or to fetch based on predicting future access 

patterns. In reality, users rarely provide access pattern hints, and predicting future access 

patterns requires compute power at the client side that will be taken away from the user’s 

application running on the client machine. Even the client has good hints, the information 

are often lost through the I/O layers. In addition, without the control of the server, the 

client is hardly to conduct in time prefetching, even we assume it has extra computing 

power to spend. On the other hand, server machines are more powerful, and when access-

pattern analysis is performed at the server, it can be done based on the combined requests 

of multiple processes and can therefore better meet the needs of parallel applications. In 

addition, modern scalable parallel machines, such as the IBM BG/L and Cray Red Storm, 
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Figure 7.10. Memory performance comparison for file access kernel 
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have very limited operating systems on the client; I/O system calls are simply forwarded 

from the clients to an intermediate I/O node, which in turn does actual file I/O. In such 

systems, our server-based prefetching would work even better. The Server-Push I/O 

architecture overlaps the processor stall time during data access more effectively and in 

turn reduces the execution time of application running on the memory clients. It has great 

potential and should be explored further. 

 

7.3 ENERGY - PERFORMANCE TRADEOFF 

Increase in the usage of portable and mobile computing and communications ignited a 

new topic for research: reducing power consumption. Most of the portable computing is 

based on battery-powered devices. Saving power whenever possible increases their 

usability time. This topic is expanding to high-end computing too. It is obvious since the 

latest processors are racing towards giga-hertz of frequencies. This also makes the HEC 

machines power hungry, as power consumption is proportional to the frequency.  

 

7.3.1 POWER CONSUMPTION BASICS 

In general, electrical power is the rate at which electrical energy is converted to 

another form, such as motion, heat or electromagnetic field. This is measured with a unit 

called Watt (W). One watt of power is resulting from energy dissipation, conversion, or 

storage process equivalent one Joule per second. In a DC circuit, power is the scalar 

quantity and is equal to the product of Voltage (V) and Current (I). Electrical energy is 

the energy made available by the flow of electric charge through a conductor. Energy is 

measured in Joules. Power is the metric at a discrete point of time and energy 

corresponds to a period of time. Energy is the product of power over a period of time.  
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    Energy = Power * Time  

     = ∫
2

1

t

t

Pdt    --- (7.1) 

Power consumption in CMOS (complementary metal oxide semiconductor) circuits is 

a combination of static power and dynamic power. Static power is consumed by the 

dissipation of leakage currents. Dynamic power is the sum of the short circuit dissipation 

and the switching power consumed while charging and discharging load capacitances. 

Dynamic power consumption has quadratic dependency on the supply voltage DDV , 

fCVP DDdynamic
2∝    --- (7.2) 

where, C is the switching capacitance and f is the common switching frequency and 

Pdynamic is the dynamic power dissipation.  

Assume that an application is required to perform N operations in t seconds. Then, to 

keep up with the requirement, it should follow the following equation: 

t
fIPC

N

avg

≤
*

    --- (7.3) 

IPCavg refers to the average number of instructions issued per second, across the 

whole application. From this, the idea frequency is: 

tIPC
Nf
avg

ideal *
=    --- (7.4) 

tIPC
NCVP
avg

DDdynamic *
2∝    --- (7.5) 

From Flynn et al. [Flyn99] the total power is: 

VIVI
tIPC

NCVP switchingleakage
avg

DDtotal **
*2

1 2 ++=    --- (7.6) 
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7.3.2 POWER SAVING STRATEGIES 

From the above equation (7.5), power reduction is possible by: increasing the IPC, 

lowering the ideal frequency and by reducing the voltage. Among these, voltage 

reduction and frequency reduction are being implemented in the modern mobile 

microprocessors. The operating speed of a circuit depends on the supply voltage as 

shown above in the equations. Voltage reduction by a factor of S reduces the dynamic 

power consumption by a factor of S2. This has been the reason for the popularity of 

scaling voltage in low power processors.  

Power savings strategies can be classified as Static power management (SPM) 

techniques (off-line) such as synthesis and compilation for lower power. Dynamic power 

management (DPM) techniques (on-line) use runtime behavior to reduce power when 

systems are serving light workloads. Static power management models are used in 

architecture level such as optimization of the chip design. Many simulators and 

measurement tools exist to analyze the processor and system power consumption. Among 

these Wattch [Brtm00], SimplePower [Yvki00], and ARMulator [W3arm] are popular 

simulators. PowerScope [Flis99] is a power measurement tool to map energy 

consumption to program structure by augmenting the information gathered by time-

driven statistical sampling. Dynamic power reduction techniques utilize the runtime 

behavior of applications to reduce power when the components are serving light 

workloads or idle. DPM uses Dynamic Voltage Scaling (DVS), and shutting down 

unused I/O devices. At cluster level, it is used to shut down the unused nodes. Both SPM 

and DPM techniques can be applied at CPU level and system (non-CPU components 

such as memory, NIC, disk etc.) level.  
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Dynamic voltage scaling (DVS) has been proposed and being deployed widely 

[Bubr00, Intx03, Tran03]. DVS allows a processor to dynamically change speed and 

voltage at runtime. This utilizes the variance in processor utilization, lowering the voltage 

(in turn frequency) when processor is lightly loaded and running with maximum 

frequency when the processor is heavily loaded. This can be extended to all other 

devices, such as memory, network interface card (NIC) based on their variation of 

utilization.  

In our research, we plan to identify active and inactive devices in executing an 

application. This can be done using profiling and modeling the energy consumption 

behavior during the execution time. We plan to schedule the power saving modes for 

these devices to reduce overall power consumption. The challenge however is to maintain 

the performance. The whole performance should not be reduced significantly due to 

power saving schedules. This requires metrics to define the energy savings and 

performance of the application. In the next section, we discuss the energy-performance 

metrics in detail.  

 
7.3.3 ENERGY – PERFORMANCE METRICS 

The power reduction methods mentioned in the previous section saves power as well 

as reduces the speed of the components. This directly results in the increase of execution 

time (loss of performance). This would cause panic in the minds of high performance 

zealots. But given two algorithms A and B, with energy and execution time (EA, TA) and 

(EB, TB) respectively, the question arises on how to combine both energy and time. The 

energy-time product E*T was being used as a reasonable metric of energy efficiency 
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[Goho96]. Martin, Nystroem and Penzes [Manp01] show that E*T product is not the right 

metric and proposed ET2 as a special case of the ETn metric that is voltage independent.  

The discussion to find “the” metric that represents energy-performance still 

continues. Research in [Flyn99, Brmb00] suggests that operating frequency is roughly 

proportional to the supply voltage. That makes the above equation,  

33 fVP ∝∝     --- (7.7) 

This leads to the conclusion that to reduce the power dissipation of a processor 

designed to operate at high frequency: reduce the voltage (and hence the frequency). 

There is a limit however to what level VDD can be reduced, depending on the 

manufacturability and circuit reliability issues. In SIGMETRICS ’01 tutorial Bose et al. 

[Bomd01] suggests to use E or ET2 type metrics, depending on the class of processors 

being compared. The caveat is that in future processors, the leakage power control 

techniques will be used, that use lots of low voltage transistors.  

In exposing more about the caveat mentioned above, Lee et al. [Lfdd03] emphasizes 

to consider the growing portion of leakage and switching current. All the previous 

research concentrated on reducing the dynamic power specified in equation 7.5, but with 

the new process technology of sub-0.13-µm, the leakage and switching currents cannot 

be ignored. This paper also mentions that ET product for the whole system does not 

reflect the energy savings, when the savings are applied only to a particular functional 

block (L1 cache, NIC etc.). This shows that there is need to find new metrics, which 

reflect the energy-performance tradeoff. 

The goal of any energy-time tradeoff metric is to make energy and time equally 

important entities. Therefore, we propose that a metric Eα * Tβ, where α and β can adjust 
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their values based on the importance of energy-delay. We think that value for α and β 

depend on the ratio of static and dynamic energies. We have to investigate further on how 

to find these values. 

 

7.3.4 OPTIMIZING ENERGY – PERFORMANCE 

In analyzing the energy savings of a parallel (cluster) machine requires classifying the 

consumption of all the devices in that machine. In order to combine these two aspects, in 

this section we derive metrics of total energy consumption of a cluster and the 

performance of an application. There are many devices in a system where power 

reduction is possible. Among these, CPU, memory, disk and network card have been of 

interest since they are equipped with sufficient interface to access them to dynamically 

from the source code. Assuming that we have a cluster with N nodes and each node is 

equipped with single processor (considering the recent nodes have multiple CPUs). If the 

power required for the total cluster is Pcluster, the energy required executing an application 

from time t1 to t2 is, 

∫=
2

1

t

t
clustercluster dtPE     --- (7.8) 

The total power consumed by the cluster is the combination of power consumed by 

the number of nodes used and the power consumed by the network cards. Power 

consumed in a node is the total power consumed by all the devices. 

    ∑
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1
)(     --- (7.9) 
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)( inodeP is the power required by node i, and the cluster has N nodes. Assuming that 

there are D devices in each node, )( i
jdeviceP is the power consumed by device j in node i.  

When we apply the optimizations to these individual devices using the voltage scaling 

or frequency scaling, the energy consumed by each device is a combination of their 

energy in each state for the amount of time it spent in each state respectively and the 

amount of energy required for transitions between states. For example if there are two 

states, the total energy consumed by a device is the sum of energy spent in state 1, energy 

spent in state 2 and the energy consumed for each transitioning between these states. The 

transition energy varies based on the states the device moving to. So, the total transition 

energy is: ∑
=

=
T

m

i
mj

i
j deviceETdeviceET

1
, )()(    --- (7.11)  

Where T is the number of transitions for devicej in node i. The total energy consumed 

by devicej in node i is: 
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 --- (7.12) 

In (7.12), )( ,
i

kjdeviceP is the power consumed by devicej of node i in power state k. S 

is the number of power states for devicej. ( kk tt 12 − ) is the execution time, devicej spent 

in state k. Total energy consumed in a node after source code modifications is: 

∑
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ji deviceEnodeE

1

' )()(     --- (7.13) 

Total energy consumed by the cluster after modification: 

∑
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1

'' )(      --- (7.14) 
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If the execution time for original application is T and that of modified application is 

T’, then our goal is to find minimum value for (using ET2 metric) 2' '*TEcluster  such that 

)*()'*( 22' TETE clustercluster ≤  & clustercluster EE ≤' .   --- (7.15) 

If we use our proposed metric Eα * Tβ, the equation 7.15 transforms into the 

following: 

)*()'*( ' βαβα TETE clustercluster ≤  & clustercluster EE ≤'   --- (7.16) 

where, α and β can adjust their values based on the importance of energy-delay and the 

ratio of static and dynamic energy consumption. We have to investigate further in finding 

values for α and β.  

The next challenge is to balance the performance optimizations and energy saving. As 

described above the current view of researchers has been the effect of the energy savings 

on the performance. We need to view the problem in the other direction, how the 

performance optimizations affect the energy consumption. For example, optimization of 

improving the locality of data references increases the load on CPU, as there would not 

be as many cache misses as with unoptimized execution. Another example is overlapping 

of computation with communication makes both CPU and network card (NIC) busy. This 

view opens discussion for how the energy consumption changes for each optimization. 

Do we need to profile and measure the power every time an optimization method is 

applied? If we measure that for every optimization, we end up with the same problem as 

we had with finding an effective set of memory performance optimizations. To our best 

knowledge, this problem is still open and has not been addressed by anyone. [Cfgb03] 

has proposed a prototype of low-power network supercomputer. A good solution would 

be to be able to predict the effect of each optimization method on energy consumption. 
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With our current knowledge of memory performance, we plan attack this problem in 

predicting this effect, with a highly parameterized model and historical data of previous 

history of optimizations. The next goal is to find the balance between energy savings and 

performance using the requirement by equation 7.16.  

 

7.4 SUMMARY 

In this chapter, we discuss three areas of extending our fundamental research models. 

First, data push architecture is applicable to parallel computing clusters and shared 

memory parallel machines. Many nodes in parallel computers are idle. By using these 

idle nodes as servers, which provide data push service (DPS-P), data accesses from 

computing nodes are monitored and predicted data is pushed to the client nodes. These 

pro-active memory servers have enormous potential to bridge the divergence gap. 

Second, we have presented the design of File Access Server (FAS) to improve the 

performance of I/O performance in HEC by using push server architecture. A server can 

be placed in parallel system to observe the patterns, to predict future data accesses, and to 

push the data to the client nodes. This idea is innovative and gaining popularity in HEC 

community. Lastly, we discussed the basics of energy consumption, energy-performance 

tradeoffs, and the strategies to reduce the performance. We discussed the present 

dilemma over the metrics and proposed a new metric to find a balance between 

performance-energy savings tradeoff. All these extensions are based on our data access 

models. We plan to explore these systems in the future to materialize by testing the real 

application environment. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

We conclude this dissertation by stating the importance of solving data access latency 

and how our research effort has impacted in that direction. We present our future research 

ideas in finding energy-memory performance tradeoff and I/O performance improvement.  

 

8.1 SUMMARY OF CONTRIBUTIONS 

Over the last two and half decades, the gap between processor performance and data 

access performance has been growing wider. This gap has reached to a point, where 

sustained system performance of current High End Computing machines is only a small 

fraction of peak performance. This dismal performance situation must be solved in the 

direction of filling the divergence gap by developing hardware level and software level 

strategies in computer architecture and in parallel application developing.  

Research efforts in solving data access latency problem are numerous. Caching and 

prefetching are obvious additions made to memory subsystem. Various studies proposed 

strategies to improve cache utilization by reordering data access patterns of applications, 

to predict future cache misses, and to prefetch data before a processor needs it. However, 

many prefetching strategies are limited by the complexity of accurate future data access 

prediction algorithms within a processor. With the recent revolutions in processor 

architecture, abundant computing power is available to share the burden of data access by 

separating computing and data access operations. Some research efforts try to utilize 

helper threads to pre-execute codes to support this separation. However, existing methods 

of data access separation are pull-based strategies, where a processor or a helper thread 



160 

pulls data for another processor. This leaves burden either on program developers and/or 

on compilers to perform prefetching decisions, to provide prefetching hints, and to 

synchronize prefetching with processing. The same applies to software level 

optimizations in improving cache memory reuse efficiently. Many loop optimization 

methods have been proposed, but the burden is again left on compilers or developers to 

perform the optimizations. Application of these optimizations is at middleware level is 

also a more difficult problem due to the lack of models to optimize data access 

performance automatically.  

The work described in this dissertation concentrates in solving data access 

performance problem. We designed server-based data push architecture to use complex 

and adaptive strategies to increase the accuracy of future data access pattern prediction. 

We have developed analytical data access cost prediction models to automate the process 

of data access optimization. We have applied this model to improve the performance of 

message passing interface library. The simulation results of our data push architecture 

show significant performance gains. This architecture can be applied at various levels of 

memory hierarchy in order to solve the gap between peak and sustained performance. 

In Chapter 3, we explained the architecture of our Data Push Server (DPS). We 

addressed the issues of monitoring data access history, making spatial and temporal 

access pattern predictions, and architecture modifications to push the predicted data 

values close to processing cores. DPS chooses prediction strategies adaptively based on 

data access history pattern. As there is no single universal algorithm to predict all 

patterns, our adaptive selection strategy improves the accuracy in prediction of future 

data accesses. DPS uses prediction algorithms to perform timely pushing of data, in order 
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to reduce cache pollution. DPS can serve multiple client cores and improves parallelism. 

We have discussed the modified memory reference operation by CPU and the feasibility 

of implementing DPS on IBM Cell processor by using SPE local store’s software 

controllability feature.  

We presented our Simple Memory Access Cost (SMAC) prediction model in Chapter 

4, which predicts data access performance based on data access patterns. The data 

accesses are classified based on the strides between successive accesses and the size of 

each contiguous chunk of data. The simplicity of this model is useful to apply various 

cache performance improving optimizations automatically, avoiding the burden on 

application developers.  

Our work in improving the performance of derived datatypes of MPI implementation 

is presented in Chapter 5. We discuss a method to quantify data access cost from network 

communication and middleware latency. This has led to development of memoryLogP 

model. We apply our SMAC model in improving the performance MPI derived datatypes 

by selecting optimization parameters for loop optimizations, such as cache blocking, loop 

unrolling, software prefetching, array padding. These parameters are passed to optimized 

templates to pack/unpack data before sending/receiving between processes. The 

performance improvement is substantial and has direct impact on parallel application 

development.  

Chapter 6 presents the simulation results of DPS architecture. We discuss the 

modifications to SimpleScalar simulator in order to implement DPS architecture. The 

results show a great effect on data access performance for various SPEC CPU2000 

benchmarks, which have high cache miss rates.  
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Applying DPS architecture at various levels of memory hierarchy has potential to 

improve data access performance further, especially at I/O level. In Chapter 7, we 

discussed the designs and initial results of using DPS model at memory server level and 

I/O level. DPS for parallel computing (DPS-P) serves client nodes in a cluster 

environment or SMP machine level by observing the data access patterns of the clients 

and pushing data closer to processing in time. We also presented the basic metrics of 

another important problem, finding balance between energy consumption and memory 

performance improvement.  

 

8.2 IMPACT 

In parallel application development, aside from poor data access performance that 

contributes to the gap between peak and sustained performances, there is another non-

technical gap which is often ignored by researchers. Even though many of advanced 

architectures offer various optimizations, application developers from various domains of 

sciences are not fully aware of these optimizations. This expertise gap in parallel 

programming development must be addressed in order to improve the productivity of 

current HEC. Our work has demonstrated the need for new strategies in computer 

architecture and practical solutions for optimizing the data access performance 

automatically. Evolving architectures of general-purpose processors provide great 

opportunity for compute intensive workloads. Many scientific workloads, however, are 

typically data intensive than compute intensive. The performance of data intensive 

workloads is limited by data access latency. Our work is directed towards these 

applications. We developed prefetching and automatic cache optimization methods in our 
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research in this dissertation. These strategies have a broad impact in developing systems 

that avoid burden on application developers and provide superior data access 

performance, automatically.  

Our work in improving the performance of MPI derived datatypes will be in the 

future release of MPICH2 implementation. Previous research efforts were implemented 

on MPI derived datatypes to bring their performance to a level a naïve developer can 

achieve. Our implementation improves this performance further, which an advanced 

developer can obtain by applying various cache optimizations to pack and unpack data in 

data communication. This strategy directly attempts our goal of providing superior 

performance for novice and other non-computer science parallel application developers. 

This work can be further improved to apply to general applications.  

 

8.3 FUTURE WORK: ENERGY-PERFORMANCE TRADEOFF 

Technical advances in processor and chip technologies also pose increased power 

consumption is a problem to modern computing. Following the Moore’s law, the current 

improvement of chip performance depends on the raising of number of transistors. This 

increases the power demands rapidly caused by numerous devices in the current 

supercomputers as the high end computing machines use thousands of processors. The 

increasing power requirement can be understood by comparing the consumption of Intel 

Pentium 4 (75 watts) to Intel Itanium (130 watts). The current fastest supercomputer 

BlueGene/L will use 1.5 megawatts of power per day when it is fully operational. This is 

a significant figure given that one megawatt is enough to power about 800 homes per day 

[Yeom04]. Multi-core processor architectures are attempting to achieve low power 
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designs. However, with a requirement for large supercomputers, the power consumption 

problem is growing rapidly. With the scale of the latest supercomputers is increasing, it is 

necessary to save power wherever possible with minimum performance compromise. 

There are a few existing power saving schemes. Operating system level schemes turn 

processor, disk and monitor off when the user doesn’t use a computer for a specific 

amount of time. Much Research effort has been spent on low power alternatives for 

battery-powered devices at hardware and software level [Bubr00, Intx03, Tran03, 

Brtm00, Sibd99]. Dynamic voltage scaling (DVS) is a technique for exploiting hardware 

capabilities to select an appropriate clock rate and voltage to meet application 

requirements at the lowest energy cost. Many chips are coming out with this feature and 

many DVS algorithms have been proposed [Wwds94, Gocw95, Pebb98, Glfm00, 

Flrm01, Pols01]. Reducing CPU voltage reduces the energy consumption substantially. 

Extending this trend towards high end computing, processor manufacturers recognized 

the necessity to provide software level interfaces to control the power saving levels. 

Energy is proportional to the square of frequency; so reducing the frequency by half 

reduces the energy consumption to a quarter of what is needed at full frequency. But it is 

the responsibility of the application developers to design high performance applications 

by keeping these energy saving schemes in mind.  

Our memory performance optimization can be extended towards developing models 

for energy-performance tradeoff and automatic optimization of performance and 

reduction of energy consumption. In Chapter 7, we have presented the basics towards 

developing new energy-performance models. We plan to expand our research in this 

direction to solve this important problem. 
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8.4 FUTURE WORK: HIGH-END COMPUTING I/O 

While memory access performance has been getting a lot of attention, I/O access 

performance has been continuously ignored by many researchers. In our future research, 

we aim to reduce the performance disparity between processors and I/O access to and 

from disks, ultimately to reduce the divergence gap. The main reason behind poor I/O 

performance has again been the gap between the improvements of processor performance 

and storage performance. Our goal is to reduce this gap by overlapping data movement 

from disks and computing efficiently. 

In solving the I/O problem, parallel file systems such as Lustre [Cfsi00], GPFS 

[Scha02], PanFS [Nase04], PVFS [Clrr00], PPFS2 [Trre04] provide high bandwidth for 

simple I/O access patterns. However, for complex non-contiguous access patterns the 

performance of these file systems is relatively poor, which directly wastes processor 

cycles. Numerous studies of the I/O characteristics of parallel applications (such as 

weather forecasting, seismic exploration, climate modeling, and bioinformatics 

applications) have shown that these applications make large number of requests for small 

and noncontiguous pieces of data from files [Nkpe96, Cacr95, Smre98]. High-level I/O 

libraries such as HDF-5 [HDF5] also end up making lots of small requests. Although 

techniques such as data sieving and collective I/O [Thgl02] can be used in some cases to 

merge small I/O requests into large ones, it is not possible to eliminate small I/O requests 

entirely. Therefore, improving the performance of small I/O requests is a necessity to 

achieve the vision of having systems with balanced compute and I/O capability. 
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Among various strategies to improve I/O performance, caching and prefetching are 

considered to be effective. Large buffers in memory (referred to as I/O caches) are 

provided to store data blocks that are frequently used, instead of accessing disk for each 

request. With prefetching, data is fetched to these I/O caches before an application 

requests that data. In this way, file access latency is overlapped with computation. 

However, existing usage of I/O caches, prefetching strategies, and file systems to 

optimize I/O performance is conservative and limited to static prediction strategies due to 

tradeoff between the amount of access pattern information retained and the achievable 

resolution in prefetching decisions. To solve this problem and to overlap the file access 

latency effectively, novel adaptive strategies are necessary. 

With recent advances in processor and network technologies, it is time to explore 

more adaptive and aggressive strategies in moving data closer to the processing unit. 

Emerging HEC machines with hundreds of thousands of processors with multiple cores 

provide massive computing power. Latest network technologies such as Infiniband are 

aiming to provide nanosecond latencies. Utilizing these advances in improving the I/O 

performance will reduce time-to-solution and in turn reduce the gap between peak 

performance and sustained performance. 

With the experience in designing DPS, we plan to develop an intelligent File Access 

Server (FAS) to reduce I/O access time. This server pro-actively “pushes” data in time in 

client’s memory. We have presented the design diagrams of FAS and initial results in 

Chapter 7 of this dissertation. As our next step, we plan to implement FAS on PVFS.   
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8.5 SUMMARY 

This dissertation has presented the need to develop novel architectures for HEC 

application workloads that are typically data intensive. We have provided designs of 

server-based data push architecture for memory subsystem and developed new models to 

improve the cache performance dynamically. These models were applied to improving 

the performance of MPI library and can be applied to optimize cache performance of 

many scientific applications. The data push server approach has demonstrated improved 

overall application performance for benchmarks with high L1 cache misses. Our server-

based push strategy has enormous potential to be applied at various levels of memory 

hierarchy including shared memory and disk I/O.  

During this dissertation, I have conducted research to improve the data-access 

performance. This research can be continued further to attack various unsolved problems 

in reducing energy consumption, optimizing data access performance automatically for 

various parallel libraries, improving I/O performance of parallel file systems etc. I plan to 

carry on my research efforts along these directions and look forward to solving more 

problems.  
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