
Improving the Performance of MPI Derived Datatypes
by Optimizing Memory-Access Cost

Surendra Byna† William Gropp‡ Xian-He Sun† Rajeev Thakur‡
†Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616.

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Introduction
• The MPI Standard supports derived datatypes, which allow users

to describe noncontiguous memory layouts and communicate
noncontiguous data with a single communication function

• However, many MPI implementations perform poorly with
derived datatypes

• Users resort to their own implementations of packing data into a
contiguous buffer and then calling MPI_Send

• Such usage clearly defeats the purpose of having derived
datatypes in the MPI Standard

• Noncontiguous communication occurs commonly in many
applications and improving the performance of derived datatypes
is essential

Possible Solutions
• The performance of derived datatypes can be improved in two ways.

• Improving the data structures used to store derived datatypes
internally in the MPI implementation

• Optimizing packing noncontiguous data into a contiguous
buffer by exploiting the advanced memory hierarchies of
today’s computer architectures.

• Research has already been done on the first solution, mainly in
using data structures that allow a stack-based approach to parse a
datatype, rather than making recursive function calls, which are
expensive

• We chose to optimize the performance based on the data access
pattern and the memory architecture of the machine

Solution to Improve the Performance

• Performance is improved at 2 levels
• When MPI_Type_commit is called – Find the current data access

cost and possibility of optimization. If optimization is possible,
find all the loop optimization parameters (Tile size, array padding
etc.,)

• When MPI communication function is called at the source
process, If the optimization tag is set, use the loop optimizations
to pack data into contiguous buffer before sending data to network
buffer

Optimizing Memory Access Cost
• When MPI_Type_commit function is called, retrieve the data access

pattern and apply loop transformations to optimize the memory
access cost

Modeling Memory Communication
• Total communication cost = Network communication cost + Memory

communication cost
• Memory communication cost is the cost incurred in the transmission of

data to/from user space from/to the local network buffer (or shared
memory buffer).

• Network communication cost is the cost incurred in the movement of
data between source and target network buffers.

• Memory access cost is a function of data size, access pattern,
architecture of memory hierarchy and compiler

• Memory communication is modeled with memory-logP model

Inherent middleware + hardware overhead (oideal)

ideal cpi of cpu performance equation for data transfer

Application + middleware + hardware performance of contiguous

o parameter of memory logP model (om)

data size (s)

M
em

or
y

co
m

m
un

ic
at

io
n

la
te

nc
y

Inherent hardware overhead (on)

o parameter from LogP model (bandwidth = 1 / on)

Application + middleware + hardware performance of noncontiguous (d)

l parameter of memory logP model for given d

Inherent middleware + hardware overhead (oideal)

ideal cpi of cpu performance equation for data transfer

Application + middleware + hardware performance of contiguous

o parameter of memory logP model (om)

data size (s)

M
em

or
y

co
m

m
un

ic
at

io
n

la
te

nc
y

Inherent hardware overhead (on)

o parameter from LogP model (bandwidth = 1 / on)

Inherent middleware + hardware overhead (oideal)

ideal cpi of cpu performance equation for data transfer

Application + middleware + hardware performance of contiguous

o parameter of memory logP model (om)

data size (s)

M
em

or
y

co
m

m
un

ic
at

io
n

la
te

nc
y

Inherent hardware overhead (on)

o parameter from LogP model (bandwidth = 1 / on)

Application + middleware + hardware performance of noncontiguous (d)

l parameter of memory logP model for given d

The memory-logP model
• For a given implementation of data transfer on a given system the time

per byte the processor is engaged in transmission or reception of a
message is characterized by four components:

• l: the effective latency, cost due to data size and distribution
l=f(s,d)

• o: the overhead, cost of an ideally distributed message
• g: the gap, defined as the minimum time interval between

consecutive message receptions at a processor.
1/g=achieved memory bandwidth

• P: the number of processor/memory modules

† Assume g = o+l, applied simplification of LogP model and P=1 for memory communication.
Memory-logP model is developed by Dr. Kirk W. Cameron and Dr. Xian-He Sun.

Optimizing the Packing Cost
• When the MPI communication function is called, if the optimization

flag is set to 1, use the loop optimization parameters (such as tile size
of cache/TLB tiling, padding size of array padding) to pack the non-
contiguous data into contiguous buffer.

• Send the contiguous data to the network buffer

Experimental Setup
• IBM Blue Horizon at SDSC

• Power3 processors run at 375 MHz
• 64KB, 128-way set associative L1 cache
• 8MB 4-way set associative L2 cache
• MPI implementation: IBM MPI

• Matrix Transpose algorithm is implemented for performance
comparison in the following cases :

• Using original MPI derived datatypes of MPICH 1.2.5
• Using optimized MPICH implementation
• Without MPI derived datatypes, manual implementation

• On IBM machine, potential performance improvement is shown
for IBM’s MPI with memory access cost optimization

Initial Results
• Optimized MPICH significantly outperforms the original

MPICH and user packing for data size greater than 8MB, where
the cache optimization comes into effect

Improvement on Vendor MPI
• Advanced vendor MPI implementations such as IBM’s MPI

also stand to gain significant performance improvements by
using memory optimizations for derived datatypes.

Initial Results – Experimental
Setup

• SGI Origin 2000
• MIPS R10000 Processor, 195MHz
• 32KB 2-way set associative L1 cache
• 4MB off-chip L2 cache
• IRIX 6.5.14 operating system
• MPI implementation: MPICH 1.2.5 with shared memory device
• Hardware counters are used to measure the performance

Future Work
• A model to predict the memory access cost based on data

access pattern is under development
• We plan to extend optimizations to include more loop

transformations such as loop interchange, loop unrolling etc.
• Eventually this work will be incorporated into MPICH2 and its

new improved implementation of derived datatypes.
• This technique will also be applied to automatic tuning of

memory performance of parallel applications.

Contact Info:
Surendra Byna† William Gropp‡ Xian-He Sun† Rajeev Thakur‡
†{renbyna, sun}@iit.edu ‡ {gropp, thakur}@mcs.anl.gov

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38, and in part by a grant from the Office of Advanced Simulation and Computing, National Nuclear Security Administration, U.S. Department of Energy.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Figure 1. Data access cost prediction and optimization

Figure 3. Data access cost optimization with loop transformations

Figure 2. Memory Communication

Performance with IBM's MPI

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

4.5M 8M 18M 32M 72M
data size (bytes)

tim
e

(s
ec

)

derived datatypes unoptimized manual packing
optimized manual packing

Figure 6. Performance improvement on vendor MPI (IBM’s
MPI) implementations

Optimized MPICH performance

0

50

100

150

200

250

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

cy
cl

es
 p

er
 re

fe
re

nc
e

original MPICH manual packing optim ized MPICH

Communication bandwidth

0

5

10

15

20

128K 512K 2M 8M 32M 128M 512M

data size (byte s)

ba
nd

w
id

th
 (M

B
/s

)

original MPICH m anual packing optim ized MPICH

Figure 5. Overall communication bandwidth is as much as 85%
higher achieved with optimization over original MPICH

Figure 4. Performance improvement with optimized derived
datatypes.

YES

NO

MPI Communication function

optimization=1?

Pack data into contiguous
buffer with loop optimizations

Network buffer

Use original MPI
Communication function

NO

YES

YES

NO

MPI_Type_commit

Predefined
Datatype?

Retrieve data access pattern and
calculate memory access cost

using memory-logP model

Is performance
improvement possible

with optimization?

Set optimization = 1

Calculate loop optimization
parameters

Architectural
Information
(Cache and
TLB Info)

Set optimization = 0

