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Introduction
• The MPI Standard supports derived datatypes, which allow users 

to describe noncontiguous memory layouts and communicate 
noncontiguous data with a single communication function

• However, many MPI implementations perform poorly with 
derived datatypes

• Users resort to their own implementations of packing data into a
contiguous buffer and then calling MPI_Send

• Such usage clearly defeats the purpose of having derived 
datatypes in the MPI Standard

• Noncontiguous communication occurs commonly in many 
applications and improving the performance of derived datatypes 
is essential

Possible Solutions
• The performance of derived datatypes can be improved in two ways. 

• Improving the data structures used to store derived datatypes 
internally in the MPI implementation 

• Optimizing packing noncontiguous data into a contiguous 
buffer by exploiting the advanced memory hierarchies of 
today’s computer architectures. 

• Research has already been done on the first solution, mainly in 
using data structures that allow a stack-based approach to parse a 
datatype, rather than making recursive function calls, which are
expensive

• We chose to optimize the performance based on the data access 
pattern and the memory architecture of the machine

Solution to Improve the Performance

• Performance is improved at 2 levels
• When MPI_Type_commit is called – Find the current data access 

cost and possibility of optimization. If optimization is possible, 
find all the loop optimization parameters (Tile size, array padding 
etc.,)

• When MPI communication function is called at the source 
process, If the optimization tag is set, use the loop optimizations 
to pack data into contiguous buffer before sending data to network 
buffer

Optimizing Memory Access Cost
• When MPI_Type_commit function is called, retrieve the data access 

pattern and apply loop transformations to optimize the memory 
access cost

Modeling Memory Communication
• Total communication cost = Network communication cost + Memory 

communication cost
• Memory communication cost is the cost incurred in the transmission of 

data to/from user space from/to the local network buffer (or shared 
memory buffer). 

• Network communication cost is the cost incurred in the movement of 
data between source and target network buffers.

• Memory access cost is a function of data size, access pattern, 
architecture of memory hierarchy and compiler

• Memory communication is modeled with memory-logP model
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The memory-logP model
• For a given implementation of data transfer on a given system the time 

per byte the processor is engaged in transmission or reception of a 
message is characterized by four components:

• l: the effective latency, cost due to data size and distribution
l=f(s,d)

• o: the overhead, cost of an ideally distributed message
• g: the gap, defined as the minimum time interval between 

consecutive message receptions at a processor. 
1/g=achieved memory bandwidth

• P: the number of processor/memory modules

† Assume g = o+l, applied simplification of LogP model and P=1 for memory communication. 
Memory-logP model is developed by Dr. Kirk W. Cameron and Dr. Xian-He Sun.

Optimizing the Packing Cost
• When the MPI communication function is called, if the optimization 

flag is set to 1, use the loop optimization parameters (such as tile size 
of cache/TLB tiling, padding size of array padding) to pack the non-
contiguous data into contiguous buffer. 

• Send the contiguous data to the network buffer 

Experimental Setup
• IBM Blue Horizon at SDSC

• Power3 processors run at 375 MHz
• 64KB, 128-way set associative L1 cache
• 8MB 4-way set associative L2 cache
• MPI implementation: IBM MPI

• Matrix Transpose algorithm is implemented for performance 
comparison in the following cases :

• Using original MPI derived datatypes of MPICH 1.2.5
• Using optimized MPICH implementation
• Without MPI derived datatypes, manual implementation

• On IBM machine, potential performance improvement is shown 
for IBM’s MPI with memory access cost optimization

Initial Results
• Optimized MPICH significantly outperforms the original 

MPICH and user packing for data size greater than 8MB, where 
the cache optimization comes into effect

Improvement on Vendor MPI
• Advanced vendor MPI implementations such as IBM’s MPI 

also stand to gain significant performance improvements by 
using memory optimizations for derived datatypes.

Initial Results – Experimental 
Setup

• SGI Origin 2000
• MIPS R10000 Processor, 195MHz
• 32KB 2-way set associative L1 cache
• 4MB off-chip L2 cache
• IRIX 6.5.14 operating system 
• MPI implementation: MPICH 1.2.5 with shared memory device
• Hardware counters are used to measure the performance

Future Work
• A model to predict the memory access cost based on data 

access pattern is under development
• We plan to extend optimizations to include more loop 

transformations such as loop interchange, loop unrolling etc. 
• Eventually this work will be incorporated into MPICH2 and its 

new improved implementation of derived datatypes.
• This technique will also be applied to automatic tuning of 

memory performance of parallel applications. 
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Figure 1. Data access cost prediction and optimization

Figure 3. Data access cost optimization with loop transformations

Figure 2. Memory Communication

Performance with IBM's MPI
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Figure 6. Performance improvement on vendor MPI (IBM’s 
MPI) implementations

Optimized MPICH performance
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Figure 5. Overall communication bandwidth is as much as 85% 
higher achieved with optimization over original MPICH

Figure 4. Performance improvement with optimized derived 
datatypes.
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