
Noname manuscript No.
(will be inserted by the editor)

Optimizing Two-Pass Connected-Component Labeling Algorithms⋆

Kesheng Wu1, Ekow Otoo1, Kenji Suzuki2

1 Lawrence Berkeley National Laboratory, University of California, e-mail: {KWu, EJOtoo}@lbl.gov.
2 Department of Radiology, the University of Chicago, e-mail: suzuki@uchicago.edu.

The date of receipt and acceptance will be inserted by the editor

Abstract We present two optimization strategies to improve

connected component labeling algorithms. Taking together,

they form an efficient two-pass labeling algorithm that is fast

and theoretically optimal. The first optimization strategy re-

duces the number of neighboring pixels accessed through the

use of a decision tree, and the second one streamlines the

union-find algorithms used to track equivalent labels. We show

that the first strategy reduces the average number of neighbors

accessed by a factor of about 2. We prove our streamlined

union-find algorithms have the same theoretical optimality

as the more sophisticated ones in literature. This result gen-

eralizes an earlier one on using union-find in labeling algo-

rithms by Fiorio and Gustedt (1996). In tests, the new union-

find algorithms improve a labeling algorithm by a factor of 4

or more. Through analyses and experiments, we demonstrate

that our new two-pass labeling algorithm scales linearly with

the number of pixels in the image, which is optimal in com-

putational complexity theory. Furthermore, the new labeling

algorithm outperforms the published labeling algorithms ir-

respective of test platforms. In comparing with the fastest

known labeling algorithm for two-dimensional (2D) binary

images called Contour Tracing algorithm, our new labeling

algorithm is up to 10 times faster than the Contour Tracing

program distributed by the original authors.

Key words connected-component labeling – optimization

– union-find algorithm – decision tree – equivalence relation

1 Introduction

Connected-component labeling is a procedure for assigning a

unique label to each object (or a connected component) in an

image [7,17,34,36]. Because these labels are key for other

analytical procedures, connected-component labeling is an

⋆ This work was supported in part by the Office of Science

of the U.S. Department of Energy under Contract No. DE-AC03-

76SF00098.

indispensable part of most applications in pattern recognition

and computer vision, such as character recognition [6,9,23,

37]. In many cases, it is also one of the most time-consuming

tasks among other pattern-recognition algorithms [4]. There-

fore, connected-component labeling continues to be an active

area of research [1,9,12,21,22,24,29,32,38,43,47]. In this

paper, we present two optimization strategies to improve la-

beling algorithms. Through extensive testing, we demonstrate

these optimization strategies greatly enhance the labeling al-

gorithms on all machines tested.

To illustrate the new optimization strategies, we consider

the problem of labeling binary images stored in 2-dimensional

(2D) arrays. These images are typically the output from an-

other image-processing step, such as segmentation [20,35,

44]. A binary image contains two types of pixels: object pixel

and background pixel. The connected-component labeling prob-

lem is to assign a label to each object pixel so that connected

(or neighboring) object pixels have the same label. There are

two common ways of defining connectedness for a 2D im-

age: 4-connectedness and 8-connectedness [33]. In this pa-

per, we use the 8-connectedness as illustrated in Fig. 1(a).

Our optimization strategies can be applied to higher dimen-

sional images, but the new labeling algorithm combining the

two optimization strategies even outperforms the fastest la-

beling algorithms designed specifically for 2D images.

1.1 Background

There are a number of different approaches to labeling con-

nected components. The simplest approach repeatedly scans

the image to determine appropriate labels until no further

changes can be made to the assigned labels [34]. A label as-

signed to an object pixel before the final assignment is called

a provisional label. For a 2D image, a forward scan assigns

labels to pixels from left to right and top to bottom. A back-

ward scan assigns labels to pixels from right to left and bot-

tom to top. Each time a pixel is scanned, its neighbors in the

scan mask are examined to determine an appropriate label

for the current pixel. In the illustration shown in Figure 1,



2 Kesheng Wu et al.

(c) Backward scan mask

e
b ca

d e

b

d

c

e

a

(a) 8−connected neighborhood (b) Forward scan mask

Fig. 1 The masks and the neighborhood of pixel e. Notice that all the pixels in the forward and backward scan masks are in the neighborhood

of pixel b.

the current pixel being examined is marked as e and the four

neighbors in the scan masks are designated as a, b, c and

d. If there is no object pixel in the scan mask, the current

pixel receives a new provisional label. On the other hand, if

there are object pixels in the scan mask, the provisional la-

bels of the neighbors are considered equivalent, a represen-

tative label is selected to represent all equivalent labels, and

the current object pixel is assigned this representative label.

A common strategy for selecting a representative is to use the

smallest label. A more sophisticated labeling approach may

have a separate data structure for storing the equivalence in-

formation or a different strategy to select a representative of

the equivalent labels. Without considering the issues such as

image formats or parallelization, we divide the labeling al-

gorithms into three broad categories: multi-pass algorithms,

two-pass algorithms and one-pass algorithms.

1. Multi-pass algorithms ([7,36,38,19,33]): The basic la-

beling algorithm described in the preceding paragraph is

the best known example of this group. They may require

a large number of passes before reaching the final labels.

Given an image with p pixels, a labeling algorithm is said

to be optimal if it uses O(p) time. Because the number

of passes over the image depends on the content of the

image, multi-pass algorithms are not considered optimal.

To control the number of passes, one may alternate the

direction of scans or directly manipulate the equivalence

information. The most efficient multi-pass algorithm we

know of is that of Suzuki et al. [38]. It uses a label con-

nection table to reduce the number of scans. In tests, this

algorithm uses no more than four scans and was observed

to be much faster than many well-known algorithms [38].

In later discussions, we refer to this algorithm as Scan

plus Connection Table, or SCT.

2. Two-pass algorithms ([18,27,28,30]): Many algorithms

in this group operate in three distinct phases.

(a) Scanning phase: In this phase, the image is scanned

once to assign provisional labels to object pixels, and

to record the equivalence information among provi-

sional labels.

(b) Analysis phase: This phase analyzes the label equiva-

lence information to determine the final labels.

(c) Labeling phase: This third phase assigns final labels

to object pixels using a second pass through the im-

age.

Depending on the data structure used for representing the

equivalence information, the analysis phase may be inte-

grated into the scanning phase or the labeling phase. One

of the most efficient data structures for representing the

equivalence information is the union-find data structure

[10,12]. Because the operations on the union-find data

structure are very simple, one expects the analysis phase

and the labeling phase to take less time than the scanning

phase. Indeed, many two-pass algorithms have the theo-

retically optimal time complexity of O(p), where p is the

number of pixels in an image. In this paper, we use an

algorithm by Fiorio and Gustedt [12] as the representa-

tive of this group. Because the equivalence information

is stored in a union-find data structure, we refer to this

algorithm as Scan plus Union-Find, or SUF.

3. One-pass algorithms ([7,9,22,33,42]): An algorithm in

this group scans the image to find an unlabeled object

pixel and then assigns the same label to all connected ob-

ject pixels. By definition, one-pass algorithms go through

the image only once, but typically with an irregular access

pattern. For example, an approach proposed by Udupa

and Ajjanagadde avoids the second pass by tracing bound-

ary faces with containment trees [42]. Similar to other

one-pass algorithms, this approach is recursive in nature.

In practice, the irregular access of pixels leads to slow

performance. To overcome this problem, one may limit

the scope of this irregular accesses. Recently, Hu et al. demon-

strated that it was possible to outperform SCT with such

a method [22]. For 2D images that we plan to use for il-

lustrations, the most efficient one-pass algorithm is the

Contour Tracing (CT) algorithm by Chang et al. [9]. Be-

cause of this, we choose to use CT as the representative of

one-pass algorithms. The implementation of CT used in

later tests is distributed by the original authors of the algo-

rithm1. Note that CT is also the most efficient sequential

(i.e., not parallel) labeling algorithm in literature.

1.2 Overview of key points

Generally, one expects a one-pass algorithm to be faster than

a two-pass algorithm and a two-pass algorithm in turn to be

faster than a multi-pass algorithm. However, this is not al-

ways the case, as demonstrated in [38]. One reason that a

multi-pass algorithm like SCT could be faster than a two-

pass algorithm is that SCT performs only sequential and local

memory accesses, whereas a two-pass algorithm needs ran-

dom memory accesses to maintain and update the union-find

1 An implementation of the Contour Tracing algorithm dis-

tributed by the original authors of the algorithm is available from

<http://www.iis.sinica.edu.tw/∼fchang/03src.html>.



Optimizing Two-Pass Connected-Component Labeling Algorithms 3

data structure. The sequential memory accesses are much bet-

ter supported on modern computers than are random memory

accesses. Based on this observation, our optimization strate-

gies seek to minimize the number of random memory ac-

cesses. We show the usefulness of each of the optimization

strategies with both analyses and timing measurements. By

combining the optimization strategies, we aim at producing

a two-pass algorithm that is more efficient than the fastest

known algorithm namely the Contour Tracing algorithm.

Our first optimization strategy minimizes the number of

neighbors visited during a scan and therefore reduces the num-

ber of memory accesses. Assuming the current pixel is desig-

nated e (see Figure 1), existing scanning procedures examine

all four neighbors a, b, c, and d. With our optimization, if

b is an object pixel, the other three pixels are not accessed.

This is possible because all other three pixels are neighbors

of b. When the label equivalence information is recorded, it

is possible to derive the correct label of b (and therefore that

of e) later. If b is a background pixel, the order to examine

the other pixels is given as a decision tree. We are not aware

of any existing labeling algorithms that reduce memory ac-

cesses in this manner. The SCT approach proposed by Suzuki

et al. [38] has some resemblance to ours, however, theirs re-

duces the accesses to the label array and the label connection

table, but not the image pixels. Later we show that using a

decision tree can significantly speed up SCT.

Our second optimization strategy simplifies the data struc-

ture and the algorithms used to solve the union-find problem

[5,8,11,10,13,14]. Because union-find involves relatively sim-

ple operations, the time spent on union-find was expected to

be a small fraction of a two-pass algorithm. However, this is

not the case (see [13]). This has motivated a number of re-

search efforts to find more efficient data structures to imple-

ment union-find [13,15,40,39]. Our union-find data structure

is implemented with a single array. Even though this partic-

ular implementation strategy has been suggested before [11],

using it effectively in a connected component labeling algo-

rithm is new.

Although the basic versions of union-find algorithms are

simple, to achieve the best performance, they need to incorpo-

rate a number of well-known optimization strategies, which

can significantly complicate the implementation. In their work

on the Scan plus Union-Find algorithm, Fiorio and Gustedt [12]

found that by using a relative simple optimization strategy

called path-compression in union-find algorithms along with

some extra flattening of the active union-find trees (defined in

Section 4.2), they can achieve the optimal O(p) performance.

We find it possible to achieve the same optimal performance

without the extra flattening operations. This simplifies the use

of union-find in labeling algorithms and also improves their

overall performance.

Another key contribution of this paper is the development

of a two-pass labeling algorithm that combines the above two

optimization strategies. This algorithm generates consecutive

final labels, which are preferred over nonconsecutive ones in

most applications. We analyze this new labeling algorithm for

its correctness, its worst-case time complexity, and its aver-

age time complexity. In addition, we conduct extensive tim-

ing measurements on three different platforms to ensure that

the performance advantages we report are not due to any par-

ticularity of a specific hardware.

Previously, we have published a limited performance study

on the optimization strategies [45]. Since then, an indepen-

dent study has confirmed their effectiveness [47], which makes

it more interesting to carefully study them and fully under-

stand the reasons for their efficiency.

1.3 Organization

The remainder of this paper is divided into six sections. The

next section describes the decision tree used for minimizing

the number of neighbors visited during a scan. Section 3 con-

tains the description of the new union-find solution. In Sec-

tion 4, we analyze the correctness of the optimization strate-

gies, the worst-case time complexity of the new labeling al-

gorithm, and it expected average execution time on random

images. In Section 5, we present timing results that confirm

the expected performance advantages of the two optimization

strategies, and compare the perform of the new labeling algo-

rithm against the fastest known labeling algorithm. A sum-

mary and discussion on future work are given in Section 6.

We conclude this paper with a section discussing the origi-

nality and contribution.

2 Minimizing Scan Cost

In this section, we briefly describe the generic scanning pro-

cedure used by most connected-component labeling algorithms,

and then a decision tree to minimize the cost of such a scan-

ning procedure. To make the description concrete, we apply

this optimization strategy to the Scan plus Connection Table

(SCT) algorithm of Suzuki et al. [38]. To use the decision tree

in a scanning procedure, one needs to maintain enough label

equivalence information. The Connection Table used in SCT

is a minimalistic data structure that satisfy this requirement

and produce the correct final labels.

2.1 The basic scanning procedure

Let I denote the 2D array representing an image. A pixel

is a background pixel if I[i, j] = 0, and an object pixel if

I[i, j] = 12. We use an array L of the same size and shape as

I for storing the labels. In our implementation of the labeling

algorithms, we use one array to hold both I and L. However,

for clarity, we will continue to describe them as two separate

arrays. The problem of connected-component labeling is to

fill the array L with (integer) labels so that the neighboring

2 Note that we have made an arbitrary choice of denoting a back-

ground pixel by 0 and an object pixel by 1; however, there are other

equally valid choices [38]. It is also possible to use other types of

labels than the integers used in this paper.



4 Kesheng Wu et al.

object pixels have the same label. We name the pixel in the

scan mask (illustrated in Fig. 1) as a, b, c, d and e, and also

use the same letters in place of their (i, j) coordinates in the

following discussion. With this notation, L[e] denotes the la-

bel of the current pixel, I[b] denotes the pixel value of the

neighbor directly above e in the forward scan mask, and so

on. Let l be an integer variable initialized to 1. The assign-

ment of a provisional label for e during the first scan can be

expressed as follows (i ∈ (a,b, c,d)):

L[e]←















0, I[e] = 0,

l, (l← l + 1), I[i] = 0, ∀i,

min
i|I(i)=1

(L[i]), otherwise.
(1)

The above expression states that L[e] is assigned 0 if I[e] =
0. It is assigned a new label l, and l is increased by 1, if its

neighbors in the scan mask are all background pixels. Oth-

erwise, it is assigned the minimum of the provisional labels

already assigned to a neighbor in the scan mask.

In later scans, labels for object pixels are modified to be

the minimum labels of their neighbors, as described by the

following expression (which is the last case of Equation (1)):

L[e]← min
i∈(a,b,c,d)|I[i]=1

(L[i]),

if I[e] = 1, and I[i] = 1, ∃i ∈ (a,b, c,d).
(2)

The above formulas can be used for both forward scan and

backward scan. In principle, we can apply them to any type

of scan on any image format.

The simplest multi-pass algorithm repeats the above scan-

ning procedure until the label array L no longer changes. Ini-

tially, pixels in a connected component may receive different

provisional labels. We say that these labels are equivalent,

and we have chosen to use the smallest label as their represen-

tative. As labels are discovered to be equivalent, the pixels not

yet scanned will take on the smallest label of its neighbors in

the scan mask. Eventually each pixel will receive the smallest

provisional label assigned to any pixel in the connected com-

ponent, but it may take many scans. One successful technique

to reduce the number of scans is using the label connection

table [38], which we describe next.

2.2 Scan plus connection table

The connection table proposed by Suzuki et al. [38] is a one-

dimensional (1D) array that has as many elements as the num-

ber of provisional labels. Let T denote this connection table.

In the first scan, the arrays L and T are updated as follows

(i ∈ (a,b, c,d)):

L[e]←























0, I[e] = 0,

l, (T [l]← l, l← l + 1), I[i] = 0, ∀i,

min
i|I(i)=1

(L[i]), (T [L[i]]←

L[e], ∀i | I[i] = 1), otherwise.

(3)

In the subsequent scans, we only update the labels of object

pixels that have other object pixels in their scan masks. The

formula for updating L and T follows from the last case in

Equation (3) and is given as:

L[e]← min
i∈(a,b,c,d)|I[i]=1

(L[i]),

T [L[i]]← L[e], ∀i ∈ (a,b, c,d) | I[i] = 1,

if I[e] = 1, and I[i] = 1, ∃i ∈ (a,b, c,d).

(4)

Because the connection table passes the label equivalence in-

formation to all the pixels with the same provisional labels,

the labels can propagate much faster than in other multi-pass

algorithms. The above formulae indicate that all four neigh-

bors in the scan masks need to be visited. We refer to this

basic version of SCT as SCT-4.

2.3 Decision tree

In Fig. 2(a), it is clear that all the neighbors in the scan masks

are neighbors of b. If there is enough equivalence informa-

tion for accessing the up-to-date label of b, then there is no

need to examine the rest of the neighbors. Based on this ob-

servation, we present a set of decision trees that organize the

scan operation in a specific order as illustrated in Fig. 2. Two

equivalent trees are shown. We can produce two more equiv-

alent trees by swapping the labels a and d. Because they are

equivalent, one may use any one of them.

A decision tree is invoked to handle the case when the

current pixel is an object pixel. In the first scan pass, if all

neighbors in the scan mask are background pixels, a new la-

bel is generated. In subsequent scans, this branch of the de-

cision tree performs no operation. All other branches of the

decision tree deal with the case where some neighbors in the

scan mask are object pixels. Using this decision process, we

minimize the accesses to array I .

The decision trees presented in Fig. 2 need three functions

in their leaf nodes. They are defined as follows (using the

same arrays L and T defined previously):

1. The one-argument copy function, such as, copy(a), con-

tains one statement:

L[e]← T [L[a]]. (5)

2. The two-argument copy function, such as, copy(c, a), con-

tains three statements:

L[e]←min(T [L[c]], T [L[a]]),

T [L[c]]←L[e],

and, T [L[a]]←L[e].

(6)

3. The new label function performs the three statements be-

low, which replicate the second case in Equation (3).

L[e]← l, T [l]← l, and l← l + 1. (7)

The use of a decision tree minimizes the number of neigh-

bors visited in determining a label for pixel e. We formalize

this observation later after we have explained the concept of

union-find. In the following discussions, we denote the SCT

algorithm that employs a decision tree as SCT-1.



Optimizing Two-Pass Connected-Component Labeling Algorithms 5

e

b ca

d

1

b

c

d

a

d

new label copy(c)

a

copy(c, a)copy(a)

copy(b)

copy(d) copy(c, d)

10

0

0

0
0

0

1

1

1

1

1

b

a

c

copy(b)

c

copy(c) copy(c, d)

d

10

new label copy(d)

d
copy(a) copy(c, a)

10

0

0
1 10

1

0

(a) Forward scan mask (b) Decision tree 1 (c) Decision tree 2

Fig. 2 The decision trees used in scanning for 8-connected neighbors. The two decision trees are equivalent. We use the first in this paper.

3 Array-Based Union-Find

The connection table help SCT to propagate the label equiva-

lence information quickly. The ultimate version of this would

be to bypass all the repeated scans by directly working with

the the equivalence information, which leads to theoretically

optimal two-pass labeling algorithms [10,12]. Our challenge

is to make the union-find algorithms simple enough so that

these optimal algorithms are also fast. Our approach is to im-

plement the union-find data structure with a single array. To

provide a context for the union-find algorithms, we briefly

review a two-pass labeling algorithm that uses them.

A two-pass labeling algorithm employing a union-find

data structure generally starts with a scanning phase by us-

ing one of the scanning procedures described in the previ-

ous section. During the scanning phase, it also builds up the

union-find data structure to record the equivalence informa-

tion among the provisional labels. After the scanning phase,

it analyzes the union-find data structure to determine the fi-

nal label for each provisional label. This is the analysis phase,

which does not access the image array. Finally, it passes through

the image a second time to convert all the provisional labels

into their final values. This is the labeling phase. Next, we

proceed to describe the union-find problem in general and

then given the details of the proposed array-based union-find

data structure and algorithms.

3.1 General union-find data structure

A union-find data structure can be viewed conceptually as

rooted trees, where each node of a tree is a provisional label

and each edge represents the equivalence between two labels

[16]. By definition, all labels in a tree are equivalent. The

label associated with the root of a tree is usually chosen as the

final label for all provisional labels in the tree. We will refer

to the union-find data structure and the associated algorithms

simply as the union-find in the future.

There are only three operations on a union-find data struc-

ture: (1) unite two trees, (2) find the root of a given node, and

(3) make a new tree with a single node. The first two oper-

ations are commonly referred to as union and find, respec-

tively, hence the name union-find. The find operation starts

from a node and follows the edges until it reaches the root

of the tree. This operation returns the root label. The union

operation adds an edge from the root of one tree to the root

of another. The input arguments to a union operation can be

two arbitrary nodes, and two find operations are needed for

finding the root nodes of their respective trees. In general, the

cost of a union operation is dominated by the two find oper-

ations. Therefore, an efficient find algorithm is critical to the

overall efficiency of union-find operations.

A natural to represent the edges in trees is to use soft-

ware pointers. In most cases, nodes of a pointer-based rooted

tree are scattered randomly by the memory management sys-

tem. A find operation follows the pointers to the root and tra-

verses the memory in an unpredictable manner. This is typi-

cally slow.

A number of authors have suggested storing these rooted

trees in arrays because an array resides in consecutive mem-

ory locations [11,3,36]. Fig. 3 shows an example of such an

array. Usually, the complexity of a union-find problem is de-

fined as the cost of an arbitrary combination of m union and

find operations on a union-find data structure with n nodes.

Because each operation touches at least one node, the time

complexity of m operations cannot be less than O(m). We

say that a union-find is linear if it has O(m) time complexity.

Such an approach is also said to be optimal. A naive approach

may require O(mn) time. Common optimization techniques

to speed up these operations are path compression [2] and

weighted union [16,40]. Using both these techniques, union-

find is nearly linear in general [41,39]. Under some restricted

settings [14,26] or some special classes of inputs [11,46,25],

m union and find operations can be proven to take O(m)
time. However, these approaches are too cumbersome to im-

plement with arrays or not applicable in a real application.

Our array-based union-find approach only uses path com-

pression. This allows us to implement all necessary algo-

rithms as simple iterative procedures on a single array. In the

next section, we prove that these algorithms leads to an op-

timal union-find for connected component labeling. We also

use a special union rule that allows us to access elements of

the array in a regular pattern, which makes the algorithms ef-

ficient.

3.2 Proposed union-find

Following examples in the literature [11,36], we call the ar-

ray that contains the equivalence information array P (short



6 Kesheng Wu et al.

provisional labels 0 1 2 3 4 5

content of array P

before union(1, 3) 0 1 1 3 3 3

after union(1, 3) 0 1 1 1 3 3

2

Find(e) = d

union(1, 3)0 1

2 4

3

5

0 1

3

4 5

Fig. 3 An array representation of the rooted trees.

for the parent array). Array P can be filled in a way similar

to that of the connection table T introduced in Section 2.2. In

particular, every time a new provisional label is generated, ar-

ray P is extended by one element denoted by the assignment

P [l] ← l. This operation adds a new single-node tree to the

union-find trees. In other cases, a reference to T[i] needs to

be replaced by either a find or a union operation. Next, we

describe these two operations using pseudo-code. Our imple-

mentations are in C++3. The two basic operations for finding

the root of a tree and changing all nodes on a path to point to

a new root are defined as findRoot and setRoot.

Function findRoot(P, i)

findRoot(P, i)

Input: An array P and a node i.

Output: The root node of tree of node i.

// Find the root of the tree of node i.

begin
root ⇐ i ;

while P[root] < root do root ⇐ P[root] ;

return root ;
end

Procedure setRoot(P, i, root)

setRoot(P, i, root)

InOut: An array P.

Input: A node i of the tree.

Input: The root node of the tree of node i.

// Make all nodes in the path of node i

point to root.

begin

while P[i] < i do
j ⇐ P[i] ; P[i] ⇐ root ; i ⇐ j ;

end

P[i] ⇐ root ;
end

3 In C++ convention, all indices to arrays start from 0. The word

array or vector in all pseudo-code segments is a short-hand of C++

STL type std::vector<unsigned>.

With the function findRoot and procedure setRoot,

we can easily define the functions for union and find oper-

ations. We note that these two functions are iterative rather

than recursive as in a pointer-based union-find implemen-

tation. In function findRoot, the variable root takes on

a sequence of values. This sequence forms a path from the

starting node i to the root of the tree. This path is known as

a find path. The procedure setRoot changes all nodes on

the find path to point directly to the specified new root. This

operation is the path compression.

Function find(P, i)

find(P, i)

InOut: An array P.

Input: A node i of tree of node i.

Output: The root node of tree of node i.

// Find the root of the tree of node i

// and compress the path in the process.

begin
root ⇐ findRoot(P, i) ;

setRoot(P, i, root) ;

return root ;
end

Function union(P, i, j)

union(P, i, j)

InOut: An array P.

Input: Two nodes i and j.

Output: The root of the united tree.

// Unite the two trees containing nodes

// i and j, and return the new root.

begin
root ⇐ findRoot(P, i) ;

if i 6= j then
rootj ⇐ findRoot(P, j) ;

if root > rootj then root ⇐ rootj; ;

setRoot(P, j, root); ;

end

setRoot(P, i, root) ;

return root ;
end

3.3 New labeling algorithm

With functions find and union, we now describe how to

implement the three different phases of a two-pass labeling

algorithm, the scanning phase, the analysis phase, and the la-

beling phase. We start by describing how to modify the scan-

ning phase to update the union-find data structure. To use the

basic scanning procedure defined by Equation (3), we per-



Optimizing Two-Pass Connected-Component Labeling Algorithms 7

form the operations as follows (i ∈ (a,b, c,d)):

L[e]←



































0, I[e] = 0,

l, (P [l]← l, l← l + 1), I[i] = 0, ∀i,

min
i|I[i]=1

(findRoot(P, L[i])) ,

(setRoot(P, L[i], L[e]),

∀i | I[i] = 1), otherwise.

(8)

To use a decision tree in the scanning phase, we need to

redefine the three functions used at the leaf nodes of the de-

cision tree (shown in Fig. 2): the new label function, one-

argument copy function and the two-argument copy function.

Note that the new label function is the second case in the

above equation. The one-argument copy function, copy(a),

previously defined by Equation (5), is simplified to be

L[e]← L[a]. (9)

The third function, the two-argument copy function, copy(c,

a) previously defined by Equation (6), is now simply

L[e]← union(P, L[c], L[a]). (10)

The above union function always selects the root with the

smaller label as the root of the combined tree, which means

the parent of a node always has a smaller label than its own

label (i.e., P[i] ≤ i), and furthermore, the root of a tree al-

ways has the smallest label in the tree. This has two important

consequences: the memory access pattern in findRoot and

setRoot is more predictable than using other union strate-

gies, and we can produce consecutive final labels efficiently

by using the procedure flattenL.

Procedure flattenL(P, size)

flattenL(P, size)

InOut: An array P.

Input: The size of the array P.

// Flatten the Union-Find tree and

// relabel the components.

begin
k ⇐ 1 ;

for i ⇐ 1 to size-1 do

if P[i] < i then
P[i] ⇐ P[P[i]] ;

else
P[i] ⇐ k ; k ⇐ k + 1 ;

end

end

end

The procedure flattenL carries out the analysis phase

of the two-pass labeling algorithm. After which, the third

phase of assigning the final labels can be expressed as the

following equation,

L[i, j]← P [L[i, j]], ∀i, j. (11)

Procedure flatten(P, size)

flatten(P, size)

InOut: A parent array P

Input: The size of the array P

// Flatten the Union-Find tree

begin
for i ⇐ 1 to size-1 do P[i] ⇐ P[P[i]] ;

end

If there is no need for consecutive labels, one may use the pro-

cedure flatten instead of flattenL because flatten

is less time consuming than flattenL.

One important characteristics of two above algorithms is

that their computational complexities are not affected by the

actual content of array P. No matter how the union-find trees

are shaped, the costs of both flatten and flattenL are

the same. Therefore, there is no need to keep the height of the

union-find tree as short as possible to reduce the cost of the

analysis phase. Later, we show that this is true even if other

union-find data structures are used.

4 Analyses of Expected Performance

We now show the correctness of our proposed algorithms and

their expected time requirement. One of the main results of

our analyses is that any two-pass algorithm using the path

compression in union-find has the worst-case time complex-

ity of O(p). There is no need to flatten the union-find trees im-

mediately after scanning each row as recommended in [12].

We use SUF (Scan plus Union-Find) as a short-hand for any

two-pass labeling algorithm and use SAUF (Scan plus Array-

based Union-Find) to denote the version that uses our Array-

based Union-Find describe in the previous section.

4.1 Correctness of algorithms

The main results of this section are stated in the form of lem-

mas and theorems. The first two lemmas concern the union-

find algorithms. Their proofs do not require explicit details of

the scanning procedure. For completeness, one can assume

that Equation (8) is used for defining the scanning procedure.

We then show that the use of a decision tree achieves the same

result as checking all four neighbors. We conclude this sub-

section by showing that the use of a decision tree minimizes

the number of neighbors visited during a scan.

Lemma 1 The array P produced by the array-based union

and find algorithms satisfies P[i] ≤ i, ∀ i.

Proof Each element of the array P [i] is initialized to i. Dur-

ing both union and find procedures, the value of P [i] never

increases. Therefore, the lemma is true. �



8 Kesheng Wu et al.

The procedure flatten can be used to produce final la-

bels for the connected components. However, the labels may

be discontinuous. For example, the array P may contain 0,

1, 2, and 4, but not 3. In many applications, consecutive la-

bels are preferred. In these cases, one may use the proce-

dure flattenL to generate consecutive labels. The follow-

ing lemma formalizes this property.

Lemma 2 Given that there are k connected components, the

procedure flattenL changes array P to contain all inte-

gers between 0 and k.

Proof Label 0 is reserved for the background pixels. If

there is one connected component, we must have P[0] = 0

and P[1] = 1. Clearly, the lemma is true for k = 1. To prove

the lemma by induction, we assume that it is true for the first

i elements of array P and prove that, after executing the pro-

cedure flattenL for one more iteration, the lemma is true

for P with (i+1) elements. We observe that flattenL only

changes one value of P in any iteration and does not go back

to change any values already examined. If there are (k − 1)
connected components represented by the first i elements of

P, then P[0:i-1] must contain the final label already, i.e., P[0]

. . . P[i-1] must contain all integers between 0 and (k−1). At

the ith iteration, depending on the value of P[i], the procedure

flattenL may perform one of two possible actions. If P[i]
= i, then P[i] is assigned the value of variable k. In this case,

there are k components and the content of P[0] . . . P[i] is be-

tween 0 and k. The correctness of the lemma is maintained.

On the other hand, if P[i] < i, then the content of P[P[i]] must

be an integer less than k and a correct final label for the tree

that contains node P[i] and i. In this case, there are (k − 1)
components, and the lemma is also correct. By induction, the

lemma is true for any i. �

Lemma 3 Let S0 denote the scanning phase without a deci-

sion tree, and let S1 denote the scanning phase with a deci-

sion tree. The connected-component labeling algorithm SUF

using either S0 or S1 produces the same final labels.

Proof To produce the same final labels, the scanning phase

needs to ensure that each union-find tree contains all provi-

sional labels assigned to the pixels that are connected. Be-

cause the final labels are always produced with a flattening of

union-find trees, different scanning procedures must perform

the same union operations but may perform different find op-

erations. We say that two union-find trees are equivalent if

they contain the same set of provisional labels. We say that

two sets of union-find trees are equivalent if each tree from

one set is equivalent to exactly one tree from the other set.

With the above definitions, to prove this lemma, we need

to show that S0 and S1 produce equivalent sets of union-

find tree. To do this, we observe that they produce exactly

the same trees after scanning the first row of an image and

the first pixel of the second row because each union-find tree

contains only a single node. To generalize this, we assume

that S0 and S1 have produced equivalent sets of trees up to

pixel d in the scan mask. We need to show that, after a label

is assigned to e, the two sets of trees remain equivalent. To

prove this, we show that there are only two union operations

that may possibly involve two distinct trees; all remaining ap-

parent union operations performed by S0 are operating on a

single tree and therefore are actually find operations.

If pixel b is an object pixel, the provisional labels as-

signed to all neighbors of e in the scan mask must be in one

tree. If pixel b is a background pixel, pixel c may belong to

one union-find tree, and a and d may belong to another tree.

The two union operations that may involve two distinct trees

must involve c and one of a or d. These two cases are captured

by the decision trees as two invocations of the two-argument

copy function. Therefore, the decision trees correctly capture

the equivalence information. The union-find trees produced

by S0 and S1 are equivalent. �

To prove that using the decision tree actually minimize

the work performed in the scanning phase, we need to quan-

tify the costs of operations. For this purpose, we count the

number of accesses to pixel values I[i], i ∈ (a,b, c,d). The

actual number of operations is bounded by a small constant

times the number of pixels accessed, where the constant de-

pends on the details of the scanning procedure such as the

union-find algorithms.

Theorem 1 The use of a decision tree minimizes the number

of pixels accessed during the scanning phase of the connected-

component labeling algorithm.

Proof Lemma 3 implies that using the decision tree in a

scanning phase performs all necessary work. To prove that

it actually performs the minimal amount of work, we show

that any modification to the order of accessing the neighbors

leads to one of the three outcomes, an equivalent decision

tree, a more expensive decision tree, or an incomplete scan-

ning phase.

In Section 2.3, we mentioned four equivalent decision

trees. They all access pixel b first, and the four variations

represent all possible arrangements of the other three neigh-

bors. Without any specific information about which neighbor

is more likely to be an object pixel, the four variations are

equivalent in the sense that they have the same average cost

overall all possible combinations of pixel values.

If we rearrange the decision tree so that we access a pixel

other than b, it is easy to see that it leads to accessing at least

two pixels before reaching a leaf node and therefore increase

the cost of the scanning phase.

Inspecting a decision tree, such as the one in Fig. 2(b),

makes it clear that removing any node or leaf or subtree leads

to incomplete scanning operation. Furthermore, we can not

remove any operations from a leaf node. More specifically, if

we neglect any of the new label operation or the one-argument

copy functions, we will not assign provisional labels to some

pixels. The two-argument copy function is simply a union

operation as shown in Equation 10. If we remove any union

operations or replace then with find operations, we neglect

to record the equivalence information between provisional

labels. Note that the actual cost of union-find operations is

counted in the constant mentioned above, and the fact that it

is actually a constant follows from Theorem 2. In terms of the



Optimizing Two-Pass Connected-Component Labeling Algorithms 9

number of accesses to neighboring pixels, using the decision

tree indeed minimizes this cost measure. �

4.2 Worst-case complexity

Fiorio and Gustedt [12] proved that the worst-case time com-

plexity of a two-pass algorithm with the path compression in

its union-find is O(p), where p is the number of pixels in the

image. A key step in their approach is that they flatten the

union-find trees after scanning each line of the image. Our

thesis is that these flattening operations are not necessary. We

just showed that the find operations can be skipped without

affecting the final labels and without adding any extra work

to the last two phases of the Scan plus Array-based Union-

Find (SAUF) algorithm. We next show that this is true for

any union-find with path compression.

To be precise, we define the cost of a find operation to be

the number of nodes on the find path. This definition ensures

that the cost of a find operation is at least one. We define

the cost of a union operation to be the cost of the two find

operations it invokes.

Theorem 2 Given an arbitrary union-find tree with t nodes,

the total cost of executing a find operation with path compres-

sion on each node is no more than 3t.

Proof For convenience, let us number the nodes of the tree

from 0 to t − 1 and assign the root of the tree to be node 0.

We define the degree di of node i to be the number of children

of the node. In each find path, there is a starting node and the

root. In all t find operations, there are t distinct starting nodes.

The root node appears t times as well. In one case, the root

appears also as the starting node. Altogether, the t find paths

include 2t−1 nodes at the beginning and the end of the paths.

To compute the total cost, we need to account for the nodes

that appear in the middle of the find paths.

With path compression, node i can appear in the middle

of a find path at most di times. Because the path compression

ensures that all nodes on a find path point to the root directly,

after appearing in the middle of find path di times, all children

of node i must directly point to the root of the tree. The total

number of nodes that appear in the middle of t find paths is
∑

di. In any tree with t nodes,
∑

di = t − 1. Because the

root is never in the middle of any find path, the total number

of nodes that appear in the middle of the find paths is actually

less than t− 1. The total cost of t find operations is no more

than 3t− 2 < 3t. �

After the scanning phase, the union-find data structure

may contain an arbitrary number of trees. However, the to-

tal number of provisional labels (i.e., the number of nodes in

all trees) is no more than the number of object pixels, which,

in turn, is no more than the total number of pixels p. In the

most general case, the analysis phase (the second phase) of a

two-pass algorithm performs a find operation (with path com-

pression) on each provisional label. The total cost of the anal-

ysis phase then is no more than 3p. This proves the following

lemma regarding the computational complexity of the analy-

sis phase.

Lemma 4 The worst-case time of the analysis phase of a two-

pass connected-component labeling algorithm using any union-

find with pass compression is O(p), where p is the number of

pixels in the image being labeled.

After flattening of a union-find tree, the steps to assign

the final labels clearly costs O(p) (see Equation 11).

So far, we have analyzed the last two phases of a two-

pass labeling algorithm. Now we turn our attention to the first

phase, the scanning phase. We have shown (see Lemma 3)

that using a decision tree produces the same final labels as

using the straightforward scanning strategy, and using either

scanning procedure does not change the cost of the analysis

phase or the labeling phase of a two-pass algorithm. There-

fore, we choose the simple scanning strategy for the analy-

sis of the worst-case complexity of the scanning phase. This

scanning procedure is defined by Equation (8), but may use

different union rules or different union-find data structures.

During a forward scan, only the labels of the pixel in the

preceding line may directly affect the labels to be used. We

call these labels the active labels. These active labels form

their own union-find trees we call the active union-find trees

or the active trees for short.

After scanning of the first line, each union-find tree con-

tains a single node. The above statement is clearly true. We

next examine what happens while scanning an arbitrary line

i. By construction, the scanning procedure always assigns the

label of a root to a pixel. What we need to show then is that,

as new pixels are assigned labels, the labels used earlier either

remain as roots or are connected to roots through labels used

more recently. A root of a tree may become non-root only

through union operations such as the following. The label as-

signed to pixel d was a root when the assignment was made.

While determining a label for pixel e, a union involving d and

c is performed and the root of the tree containing the label of

c becomes the parent of the label of d. In this case, pixel e is

assigned the label of the root of the newly united tree and the

label of d is a child of the new root. This is the only mecha-

nism by which a root becomes a non-root. In this process, the

old label becomes a child of the new label. This process may

be repeated many times, but the earlier labels always connect

to the roots through other labels that have been used more

recently.

Lemma 5 The total cost of a scanning phase of a two-pass

labeling algorithm (using any union-find with path compres-

sion) with flattening of active trees after scanning each line

is O(p).

Proof Following from the argument above, the active la-

bels form their own union-find trees. Therefore the cost of

flattening the active tree is proportional to the number of pix-

els on the line. The process to assign labels to the pixels on

the next line of the image will only involve these active labels

and new labels that are in single-node union-find trees. The

cost of each find and union operation is bounded by a small

constant. The total cost of assigning labels to the next line is

again proportional to the number of pixels on the line. Over-

all, the total time is O(p). �



10 Kesheng Wu et al.

If we do not flatten the active trees, we cannot account

for the costs in the same way. However, we expect that the

total cost of a scanning phase without the flattening of active

trees to be no more than the total cost of a scanning phase

with the flattening. This is because the process of flattening

the active trees are simply a series of find operations on the

active labels. If we do not perform these find operations ex-

plicitly, the procedure of assigning a new label may invoke

them anyway.

Lemma 6 The total cost of a scanning phase of a two-pass

labeling algorithm (using any union-find with path compres-

sion) without flattening of active trees is O(p).

Proof In the process of assigning a provisional label to

pixel e, it may perform find operations on the labels of a, b,

c, and d. Instead of associating the cost of these find opera-

tions with e, we associate the cost of each find operation to its

starting pixels a, b, c, or d. This leaves a small constant cost

of assigning the provisional label to be associated with pixel

e. While labeling a 2D images, each pixel may be the starting

point of up to 4 find operations. Because these find operations

involve only the active trees or newly generated single-node

trees, the total cost of all find operations after scanning each

row is at worst proportional to the number of object pixels

in the row. Therefore, the total cost of all find operations is at

worst proportional to the number of object pixels. Accounting

for other constant costs per pixel, the total cost of the scan-

ning phase is O(p). �

Theorem 3 The total time required by a two-pass labeling al-

gorithm using any union-find with path compression is O(p),
where p is the number of pixels in the 2D image.

Proof A two-pass labeling algorithm can be divided into

three phases: scanning phase, analysis phase, and labeling

phase. Lemmas 5 and 6 show that the scanning phase takes

at most O(p) time with or without flattening of active trees.

Lemma 4 shows that the analysis phase takes O(p) time by

the use of a series of find operations with path compression,

or one of the simplified algorithms, flatten and flattenL.

The labeling phase, as defined by Equation (11), obviously

takes O(p) time. Overall, the total time is at worst O(p). �

4.3 Average performance on random images

For the expected performance of the Scan plus Array-based

Union-Find (SAUF) algorithm, consider a random image with

n rows and m columns where each pixel has a probability q of

being an object pixel. We also refer to q as the density of ob-

ject pixels (0 ≤ q ≤ 1). The total number of pixels p = mn,

of which no = qmn are expected to be object pixels.

To illustrate the probability model, we first consider the

number of provisional labels produced by a forward scan. A

new provisional label is generated if all neighboring pixels

in the scan mask are background pixels. Each pixel has the

probability (1 − q) of being a background pixel. Assuming

that each pixel is generated independently, the probability of

all four pixels being background pixels is (1− q)4.

In a 2D image, pixels normally have four neighbors in

the forward scan mask. There are also four special cases that

contain fewer pixels in their scan masks.

1. The top-left pixel that has no neighbors in the scan mask.

2. The pixels on the top-most row (except the left-most pixel),

each of which has one neighbor to the left.

3. The pixels on the left-most column (except the top-most

pixel), each of which has two neighbors.

4. The pixels on the right-most column (except the top-most

pixel) each of which has three neighbors.

Including the normal case, there are five different scan masks

used during a forward scan. An illustration of these five scan

masks is shown in Table 1. The same table also lists the num-

ber of instances (in column 2 under the heading of instances)

for each case and the probabilities of an object pixel receiv-

ing a new label (in column 6 under the heading of labels).

Multiplying the density q and the values in columns 2 and 6

of Table 1, we get an estimate of the number of provisional

labels produced for each case. The following equation shows

the total number of provisional labels expected:

np =q
(

1 + (m− 1)(1− q) + (n− 1)(1− q)2

+(n− 1)(1− q)3 + (m− 2)(n− 1)(1− q)4
)

.
(12)

Using the same probability model, we can estimate the

time required by SAUF to label a random 2D binary image.

To do this, we divide the operations performed by SAUF into

six independent categories.

1. Work done per pixel: Work performed on every pixel,

such as reading a pixel value from main memory to a reg-

ister, testing whether a pixel is a background pixel or an

object pixel, and assigning the final label to each pixel

(the last phase of any two-pass algorithm).

2. Unaccounted work done per object pixel: Work performed

on an object pixel that is not already counted in the next

four categories.

3. Time for visiting the neighbors: This is the major part of

the scanning procedure. The process of traversing a de-

cision tree requires multiple if-tests. Because each if-test

is for a different neighbor, the amount of time required

in this category should be proportional to the number of

neighbors visited. The expected number of neighbors to

be visited for each object pixel is shown in column 3 un-

der the heading of neighbors in Table 1.

4. Copying a provisional label or assigning a new label:

This includes two types of terminal nodes on a decision

tree shown in Fig. 2, the new label operation and the one-

argument copy function. The amount of work performed

for each copy or assignment is a small constant. The ex-

pected number of copy (or new label) operations to be

performed for each object pixel is shown in column 4 un-

der the heading of copy in Table 1.

5. Union operations: This is a case where the two-argument

copy function is invoked by a decision tree. Each union



Optimizing Two-Pass Connected-Component Labeling Algorithms 11

Table 1 The expected numbers of operations per object pixel used by the SAUF algorithm. The dominant case is shown on the last row.

expected values

mask instances (3) neighbors (4) copy (5) union (6) labels

e 1 0 1 0 1

d e m − 1 1 q 0 1 − q

b c

e
n − 1 2 − q q(2 − q) 0 (1 − q)2

a b

d e
n − 1 3 − 3q + q2 1 − (1 − q)3 0 (1 − q)3

a b c

d e
(m − 2)(n − 1) (2 − q)2 4q − 8q2 + 7q3 − 2q4 q2(1 − q)(2 − q) (1 − q)4

operation has the same cost as two find operations. Based

on Theorem 2, we can say that the average cost of a find

operation is a constant, and therefore the average cost of

a union operation is a constant. The probability of per-

forming a union operation for each object pixel is shown

in column 5 under the heading of union in Table 1.

6. Flattening operation: This is the second phase of the SAUF

algorithm. The total cost of this operation is proportional

to the number of provisional labels. The probability of as-

signing a new label to an object pixel is shown in column

6 under the heading of labels in Table 1.

To illustrate how we obtain values in Table 1, we briefly

describe how we compute the values in columns 3, 4, and

5 in the last row (the normal case). Column 3 contains the

average number of neighbors accessed. In the normal case,

the computation of this quantity is based on the decision tree

shown in Fig. 2(b). We associate each edge labeled “1” with

the probability q and each edge labeled “0” with the proba-

bility (1− q). There is one path from the root to a leaf that is

of length 1 (i.e., when I[b] = 1). Note that the path length is

the number of neighboring pixels accessed. The probability

of taking this path is q. There are two paths of length 3. The

probabilities of taking these paths are (1−q)q2 and (1−q)2q.

The total probability of accessing 3 neighbors is (1 − q)q.

There are four paths of length 4. The probabilities of tak-

ing these four paths are (1 − q)4, (1 − q)3q, (1 − q)3q, and

(1 − q)2q2. The total probability of accessing 4 neighbors

is (1 − q)2. The average number of accesses to neighbors is

q+3q(1−q)+4(1−q)2 = (2−q)2. This value is entered in

the row for the normal case (case 5) under the column head-

ing neighbors in Table 1.

Among the seven paths in a decision tree, there are two

leading to a two-argument copy function. These two paths

have probabilities of (1 − q)q2 and (1 − q)2q2. The two-

argument copy function invokes the union operation, and there-

fore the total probability of invoking a union operation is

q2(1− q)(2− q). This value is entered in the row for the nor-

mal case under the heading of union. The remaining 5 paths

lead to either a one-argument copy function or a new label

function. We enter their total probability under the heading

of copy. The other four rows of Table 1 are computed simi-

larly.

For a typical image, where m and n are sufficiently large,

the normal case should dominate the four special cases. Only

considering the normal case, we can make a few observations.

Our first observation is that the probability of performing a

union approaches 0 for both small q (q → 0) and large q
(q → 1). This agrees with our expectation.

Theorem 4 In the scanning phase of two-pass labeling algo-

rithm on a random 2D binary image, the average number of

neighboring pixels visited following a decision tree is 7/3,

and consequently, using a decision tree speeds up the scan-

ning procedure by a factor of 12/7.

Proof In the normal case, the number of neighbors visited

is given by a quadratic formula, (2 − q)2. As the density q
increases from 0 to 1, the quadratic formula quickly drops

from 4 to 1. Using this formula, we can compute an aver-

age number of neighbors visited. If the density q is uniformly

sampled between 0 and 1, we can compute the average num-

ber of neighbors visited by simply integrating the function

f(q) = (2− q)2 over q from 0 to 1, which yields 7/3.

The naive scanning procedure always accesses all 4 neigh-

bors. On average, the speedup of using a decision tree is 12/7.

�

Based on the probabilities shown in Table 1, we define

the number of instances of six categories as:

p = mn,

no = qmn,

nn = q(m− 1 + (n− 1)(5− 4q + q2) +

(m− 2)(n− 1)(2− q)2),

nc = q + q2(m− 1 + (n− 1)(5− 4q + q2) +

(m− 2)(n− 1)(4− 8q + 7q2 − 2q3)),

nu = q3(1− q)(2− q)(m− 2)(n− 1),

Let constants C1, . . . , C6 represent the average cost per oper-

ation of the six categories identified, then the total execution

time of SAUF is (note that np is defined in Equation (12)):

tS = C1p + C2no + C3nn + C4nc

+C5nu + C6np. (13)



12 Kesheng Wu et al.

Table 2 Summary information about test images, where N is the number of images in the test set, P is the average number of pixels in an

image, O is the average number of object pixels, C is the average number of connected components, and Q is the average number of pixels

per component.

name N P O C Q description

imgs 54 254,558 94,256 1,088 3,633 images used in [38]

lung 64 468,220 315,898 3 198,211 mouse lung structure images from lbl.gov

nasa 63 8,294,591 5,041,424 17,289 638 satellite images from nasa.gov

noise 78 1,750,000 875,000 35,434 309,246 random binary images (500 x 500, 1000 x 1000, 2000 x 2000)

imgs

lung

nasa

noise

Fig. 4 A sample of the binary images used in tests. Object pixels

are shown as black.

5 Performance Measurements

In this section, we report the timing measurements of vari-

ous connected-component labeling algorithms. We use these

measurements to verify the expected performance advantages

of the two optimization strategies and the resulting labeling

algorithm SAUF. The decision tree shown in Fig. 2(b) was

implemented in all test programs that required a decision tree.

5.1 Test setup

To measure the performance of labeling algorithms, we used

four different sets of binary images. We previously conducted

a limited performance study in which we used random binary

images only [45]. For this study, we used three additional sets

of images from various applications. Some sample images are

shown in Fig. 4, and summary descriptions of these images

are given in Table 2. We applied Otsu thresholding [31] on the

intensity to turn the application images into binary images.

The random binary images used in this study were smaller

than in our previous study, so that they were closer to the

application images in size. Users who apply our algorithms

on large images may see larger performance improvements

as demonstrated in [45].

To ensure that our measurements are not biased by a par-

ticular hardware environment, we elected to run the same test

cases on three different machines listed in Table 3. With each

machine, we also chose to use a different compiler.

5.2 Effectiveness of the decision tree

We implemented two variants of the Scan plus Connection

Table algorithm, namely, SCT-4 and SCT-1. A summary of

timing results is given in Table 4. Because the four sets of

test images have significantly different sizes, we show the av-

erage time for each set separately. The timing measurements

were made for each test image. The test on each image was

repeated enough times so that at least one second is used

altogether. A minimum of five iterations was always used.

The time values reported are wall clock time. The speedup

of SCT-1 is measured against SCT-4. Each speedup value is

computed for one test image and the speedup values reported

in Table 4 are averages.

On each test platform, the two algorithms, SCT-4 and

SCT-1, show consistent relative performances on the three

sets of application images. The performance characteristics

are slightly different for random binary images (marked noise).

This is partly because the application images typically con-

tain well-shaped connected components, whereas the random

images contain irregular components. This irregularity slightly

reduces the effectiveness of SCT-1. On the application im-

ages, SCT-1 is about twice as fast as SCT-4. Based on the

number of neighbors accessed, Theorem 4 predicts a speed

up of 12/7, which is about 1.7. On random images, the actual

observed speedup values shown in Table 4 are close to 1.7,

which confirms our analyses.

In all test cases, SCT-1 is never slower than SCT-4. Be-

cause of this, we use a decision tree in all subsequent tests.

5.3 Effectiveness of array-based union-find

To assess the effective of the new union-find algorithms, we

compare the new Scan plus Array-based Union-Find (SAUF)



Optimizing Two-Pass Connected-Component Labeling Algorithms 13

Table 3 Information about the three test machines.

CPU type Clock Cache Memory OS Compiler

(MHz) (KB) (MB)

UltraSPARC 450 4096 4096 Solaris 8 Forte workshop 7

Pentium 4 2200 512 512 Linux 2.4 gcc 3.3.3

Athlon 64 2000 1024 512 Windows XP Visual Studio .NET

Table 4 Summary of timing measurements on the multi-pass algo-

rithms. The time values are in milliseconds and the values reported

for speedup are the averages of speedups computed for each indi-

vidual image.

UltraSPARC
Time (ms) speedup

SCT-4 SCT-1 SCT-1
SCT-4

imgs 96 44 2.1

lung 215 95 2.3

nasa 5776 2880 2.1

noise 940 501 1.9

Pentium 4
imgs 15 8 2.0

lung 29 14 2.2

nasa 782 383 2.1

noise 173 97 1.8

Athlon 64
imgs 14 8 1.7

lung 26 14 1.8

nasa 687 394 1.8

noise 141 87 1.7

algorithm with the Scan pus Union-Find (SUF) algorithm [12].

We implemented two versions of SUF, SUF1 that flattens the

active union-find trees after scanning each line of the image

as suggested by Fiorio and Gustedt [12], and SUF0 that does

not perform the extra flattening operation. In Lemmas 5 and

6, we prove that both should use O(p) time, and suggested

that SUF0 could be faster than SUF1. This expectation is

confirmed by the timing results shown in Table 5. SAUF is

considerably faster than both SUF1 and SUF0. Since all of

them use the same scanning procedure, the performance dif-

ferences are due to different union-find algorithms. The sim-

pler union-find algorithms in SAUF are clearly more efficient.

As in the previous table, Table 5 reports the elapsed time.

In this table, the speedup was measured against SUF1. In our

tests, SUF0 was at least 30% faster than SUF1 on relatively

small test images. On larger images, the performance differ-

ences were much larger. For example, on the lung structure

images, SUF0 was five times as fast as SUF1 on two of the

three test machines. From our analyses, we expected SUF0

to be faster than SUF1; however, the observed performance

difference was much larger than anticipated. Our new label-

ing algorithm SAUF was usually four times or more as fast as

SUF1, and about twice as fast as SUF0. The performance dif-

ferences were even larger when many provisional labels were

combined into a small number of final labels, as in the test im-

age set lung. In these cases, the union-find algorithms need

Table 5 Summary of timing measurements on the three two-pass

algorithms. The time values are in milliseconds and the speedup val-

ues are relative to SUF1.

UltraSPARC
SUF1 SUF0 SAUF

Time Time Speedup Time Speedup

imgs 83 62 1.3 22 3.7

lung 366 134 2.7 53 6.8

nasa 5279 3231 1.6 1164 4.6

noise 1056 742 1.4 243 4.4

Pentium 4
imgs 25 16 1.7 5 5.5

lung 131 25 5.2 10 13.3

nasa 1506 576 2.5 182 7.9

noise 332 186 1.9 47 6.6

Athlon 64
imgs 17 11 1.7 4 4.7

lung 86 17 5.1 7 11.7

nasa 1073 429 2.4 134 7.5

noise 237 140 1.9 34 6.5

Table 6 The constant values (10−8 seconds) of Equation (13) pro-

duced with a non-negative least-square fitting of measured time val-

ues.

UltraSPARC Pentium 4 Athlon 64

C1 9.5 1.1 1.2

C2 0 0 0

C3 5.3 0.8 3.7

C4 0.2 0 0

C5 0 6.7 4.1

C6 0 11.5 5.4

to unite more provisional labels and a set of more efficient

union-find algorithms makes a bigger difference. On lung im-

ages, the SAUF is more than 10 times faster than SAUF1 on

two of the three test machines.

5.4 Verifying performance model for SAUF

As shown in Table 2, we used 78 random binary images of

various sizes for this set of tests. For each image, we com-

puted the average time used by SAUF on each of the test ma-

chines. We used these 78 average time values to compute the

six constants C1, . . . , C6 for each machine. The computa-

tion used a linear least-square formulation to minimize the



14 Kesheng Wu et al.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

density

tim
e 

(m
s)

2000x2000
1000x1000

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

density

tim
e 

(m
s)

2000x2000

1000x1000

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

density

tim
e 

(m
s)

2000x2000
1000x1000

UltraSPARC Pentium 4 Athlon 64

Fig. 5 The measured time (in milliseconds) used by SAUF agrees with the performance model (shown as broken lines) described by

Equation (13).

fitting error with a non-negative constraint4. The results of

C1, . . . , C6 for all three test machines are shown in Table 6.

Because the three computers used different types of CPUs,

caches and operating systems, these constants are different.

we next study their similarity and differences to understand

the our performance model further.

Overall, we see that our performance model captures the

actual work quite well because C2 is 0 on all three machines.

Category 2 was introduced as a catch-all category. The value

of C2 being 0 indicates there is no need for such term.

On all three machines, both C1 and C3 were computed

as positive values. The value of C1 is the average time spent

on per pixel operations such as reading a pixel from memory

to register and assigning the final labels. This value is posi-

tive because at a density of 0, SAUF uses some time to label

the image. The value C3 is the average time used to access a

neighboring pixel during the scanning phase, which involves

accessing the pixel value of the neighbor and performing an

if-test to see if it an object pixel. Both of which consume a

number of clock cycles.

The constant C4 represents the average cost of a copy op-

eration and the operation to assign a new label. We expected it

to be small. This was indeed the case as shown in Table 6. The

values C5 and C6 are zero on UltraSPARC, but are nonzero

on the others. This is due to the different sizes of CPU caches

as shown in Table 3. These two constants measure the aver-

age cost of a union operation and the operation to compute a

final label in the analysis phase. They involve operations on

array P, which is usually less than 1 MB because the array

has less than 1/4 million (4-byte) elements in most cases as

shown in Figure 6. An array of this size can fit in cache on

UltraSPARC, but not on the other systems.

With the six constants shown in Table 6, we can use Equa-

tion (13) to compute the expected time. In Fig. 5, we show the

measured time along with the expected time. We see that the

expected time agrees with the measured time to within±10%

in most cases. The only case where the expected values never

intersected any observed values is when random images of

4 The computation uses the function lsqlin from the optimiza-

tion toolbox of MATLAB.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

density

# 
pr

ov
is

io
na

l l
ab

el
s

2000x2000
1000x1000

Fig. 6 The actual number of provisional labels observed plotted

against the estimated labels (shown as broken lines).

size 1000 x 1000 were labeled on UltraSPARC. In this par-

ticular case, the estimated time is about 1/4 larger than the

actual measured values. This discrepancy is largely because

we used the same parameters for the smaller images and the

larger ones. On this particular machine, the smaller images

fit into the cache, which makes the labeling algorithm more

efficient on smaller images than on larger ones.

The estimated number of provisional labels for random

images is given in Equation (12). As a sanity check for the

performance model, we compared this estimated number of

provisional labels with the actually observed numbers. We

plotted the estimated and the observed numbers of provisional

labels in Fig. 6. The estimated values are close to the ob-

served values for q < 0.2. For higher densities, the differ-

ences between estimated and observed values become more

pronounced because the independence assumption used for

our estimation becomes more unreliable as q increases.

In Theorem 3, we prove that SAUF has time complexity

of O(p), which is theoretically optimal. In Figure 7, we plot

the maximum observed time and the average observed time

versus the image size p. It is clear that both the maximum

time and the average time scales linearly with p.



Optimizing Two-Pass Connected-Component Labeling Algorithms 15

0 2 4 6 8 10

x 10
7

0

2

4

6

8

10

pixels

tim
e 

(s
)

 

 

CTi − maximum
CTi − average
SAUF − maximum
SAUF − average

Fig. 7 Time (seconds) used by SAUF scales linearly with the num-

ber of pixels in the images to be labeled.

Table 7 Average time (in milliseconds) used by CTo and SAUF to

label the test images. The overall average speedup is 1.5.

UltraSPARC
time (ms) speedup

CTo SAUF SAUF
CTo

imgs 21 22 1.0

lung 127 53 2.4

nasa 793 1164 0.8

noise 327 243 1.5

Pentium 4
imgs 4 5 0.8

lung 21 10 2.1

nasa 358 182 1.3

noise 67 47 1.3

Athlon 64
imgs 4 4 1.0

lung 20 7 2.7

nasa 191 134 1.4

noise 59 34 1.7

5.5 Comparison with Contour Tracing

According to the current literature, the Contour Tracing algo-

rithm is the fastest algorithm for connected-component label-

ing on 2D binary images [9]. To demonstrate the effectiveness

of our optimization strategies, we compared SAUF versus the

Contour Tracing algorithm. We used the implementation of

the Contour Tracing algorithm distributed by the original au-

thors1. In the following discussions, we denote it as CTo to

emphasis that the program is from the original authors.

Table 7 shows the average time used by SAUF and the

Contour Tracing algorithm. In 8 out of the 12 cases shown,

SAUF is noticeably faster than CTo, particularly on larger

images. Of the three sets of large images, the images in the

set nasa are scenery photos which have more well-shaped

components than others. The Contour Tracing algorithm was

more efficient in identifying these well-shaped components

because there are fewer pixels on their boundaries. On the

smaller images, SAUF and CTo perform about the same over-

all. The average speedup of SAUF over CTo, across the four

sets of test images and on three machines, is about 1.5.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

density

sp
ee

du
p

Fig. 8 Speedup of SAUF over CTo on a set of large random images

(10,000 x 10,000).

Figure 8 shows the relative performance of SAUF over

CTo on a set of large random images. In this case, the im-

ages still fit in memory as in earlier tests. On these images

with 100 million pixels (requiring about 400 MB), SAUF

is between 6 and 10 times faster than CTo (except the spe-

cial case of the empty image with no object pixels). The rel-

ative performance differences between SAUF and CTo are

much larger in this test for two reasons. Firstly, the compo-

nents in random images are not well-shaped, and a majority

of the pixels in a components are on the boundary. CTo per-

forms more work on boundary pixels than on interior ones.

Therefore CTo performs more work per pixel on random im-

ages than on scenery images. Secondly, as the image sizes in-

creases, the random memory accesses used by CTo becomes

relatively more expensive because of the increased likelihood

of cache line address collision which leads to the same words

to be loaded from main memory to cache more times. CTo

also uses more memory than SAUF, which increases the like-

lihood that some inactive program or data may need to be

swapped out of memory to make space for the active program

and data. This also increases the observed elapse time.

6 Summary and Future Work

We have presented two strategies for optimizing the connected-

component labeling algorithms. The first strategy minimizes

the work in the scanning phase of a labeling algorithm; and

the second reduces the time needed for manipulating the equiv-

alence information among the provisional labels. Our analy-

ses show that a two-pass algorithm using these strategies has

the optimal worst-case time complexity O(p), where p is the

number of pixels in an image. We also showed with extensive

tests that the new algorithm SAUF significantly outperforms

well-known algorithms, such as the Scan plus Connection Ta-

ble [38] and Scan plus Union-Find [12]. On the set of 2D im-

ages used for our timing measurements, the Contour Tracing

(CT) algorithm is the fastest known method [9]. On relatively

small images, SAUF outperform CT by 50%. However, on

larger images, we observed a factor of 10 improvement for

SAUF, because the memory access pattern of SAUF is more



16 Kesheng Wu et al.

regular than CT and the relative advantage of SAUF increases

as the image size increases.

The optimization strategies are straightforward to imple-

ment and can be extended to higher dimensional images. It

also produces consecutive labels, which are convenient for

applications.

More work remains to be done for a better understanding

of the performance features and trade-offs of these strategies.

For example, it may be useful to mix the Contour Tracing al-

gorithm and SAUF. A derivation of a bound on the maximum

number of scans needed by the SCT algorithm would help us

to understand SCT better. It should also be interesting to ap-

ply the two optimization strategies to parallel algorithms for

connected-component labeling and for different image for-

mats.

7 Originality and Contribution

This paper presents a new two-pass connected component la-

beling algorithm based on two optimization strategies, the

first one uses a decision tree to minimize the number of neigh-

bors examined during the scanning phase, and the second

one streamlines the union-find algorithms to minimize the

work needed to manage label equivalence information. These

optimization can be used in other labeling algorithms sepa-

rately and are novel in their own right. We have not seen any

other published labeling algorithm that uses a decision tree

to minimize work. The second strategy combines an effective

way of using union-find algorithms for labeling [12] with an

array-based implementation for union-find [2,11]. The nov-

elty of this approach is that we are able to remove a significant

amount of unnecessary work while keeping the algorithms

simple enough for an array-based implementation.

Combined together, the two optimization strategies form

a powerful two-pass labeling algorithm that are faster than

known labeling algorithms for 2D images. The new two-pass

labeling algorithm is efficient because it performs the mini-

mal amount of work necessary to find the connected compo-

nents and it does so with a relatively small amount of random

memory accesses. These are confirmed with both theoretical

analyses and extensive timing comparisons.

References

1. Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched

union-find and its applications to terrain analysis. In SCG

’06: Proceedings of the twenty-second annual symposium on

Computational geometry, pages 167–176, New York, NY, USA,

2006. ACM Press.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and

Analysis of Computer Algorithms. Addison - Wesley, Reading,

Mass., 1974.

3. Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft. Data

Structures and Algorithms. Addison Wesley, 1983.

4. H. M. Alnuweiri and V. K. Prasanna. Parallel architectures and

algorithms for image component labeling. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(10):1014–

1034, 1992.

5. Stephen Alstrup, Amir M. Ben-Amram, and Theis Rauhe.

Worst-case and amortised optimality in union-find. In Proc.

31th Annual ACM Symposium on Theory of Computing

(STOC’99), pages 499–506. ACM Press, 1999.

6. A. Amin and S. Fisher. A document skew detection method

using the hough transform. Pattern Analysis & Applications,

3(3):243–253, 2000.

7. D. H. Ballard. Computer Vision. Prentice-Hall, Englewood,

New Jesey, 1982.

8. B. Bollobás and I. Simon. On the expected behavior of disjoint

set union algorithms. In STOC ’85: Proceedings of the seven-

teenth annual ACM symposium on Theory of computing, pages

224–231. ACM Press, 1985.

9. Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. A linear-time

component-labeling algorithm using contour tracing technique.

Comput. Vis. Image Underst., 93(2):206–220, 2004.

10. Michael B. Dillencourt, Hannan Samet, and Markku Tammi-

nen. A general approach to connected-component labeling for

arbitrary image representations. J. ACM, 39(2):253–280, 1992.

11. Jon Doyle and Ronald L. Rivest. Linear expected time of a

simple union-find algorithm. Inf. Process. Lett., 5(5):146–148,

1976.

12. Christophe Fiorio and Jens Gustedt. Two linear time union-

find strategies for image processing. Theor. Comput. Sci.,

154(2):165–181, 1996.

13. Christophe Fiorio and Jens Gustedt. Memory management

for union-find algorithms. In Proceedings of 14th Sympo-

sium on Theoretical Aspects of Computer Science, pages 67–79.

Springer-Verlag, 1997.

14. Harold N. Gabow and Robert Endre Tarjan. A linear-time al-

gorithm for a special case of disjoint set union. In STOC ’83:

Proceedings of the fifteenth annual ACM symposium on Theory

of computing, pages 246–251. ACM Press, 1983.

15. Zvi Galil and Giuseppe F. Italiano. Data structures and algo-

rithms for disjoint set union problems. ACM Comput. Surv.,

23(3):319–344, 1991.

16. Benrard A. Galler and Michael J. Fisher. An improved equiva-

lence algorithm. Commun. ACM, 7(5):301–303, 1964.

17. Rafael C. Gonzalez and Richard E. Woods. Digital Image Pro-

cessing. Prentice Hall, New Jerse, 2nd edition, 2002.

18. T. Gotoh, Y. Ohta, M. Yoshida, and Y. Shirai. Component la-

beling algorithm for video rate processing. In Proc. SPIE 1987,

volume 804 of Advances in Image Processing, pages 217–224,

1987.

19. R. M. Haralick. Some Neighborhood Operations, pages 11–35.

Plenum Press, New York, 1981.

20. Robert M. Haralick and Linda G. Shapiro. Image segmentation

techniques. Computer Vision, Graphics, and Image Processing,

29(1):100–132, January 1985.

21. H. Hayashi, M. Kudo, J. Toyama, and M. Shimbo. Fast labelling

of natural scenes using enhanced knowledge. Pattern Analysis

and Applications, 4(1):20–27, 2001.

22. Qingmao Hu, Guoyu Qian, and Wieslaw L. Nowinski. Fast

connected-component labelling in three-dimensional binary im-

ages based on iterative recursion. Comput. Vis. Image Underst.,

99:414–434, 2005.

23. J.-H. Kim, K. K. Kim, and C. Y. Suen. An HMM-MLP hy-

brid model for cursive script recognition. Pattern Analysis &

Applications, 3(4):314–324, 2000.

24. Felipe Knop and Vernon Rego. Parallel labeling of three-

dimensional clusters on networks of workstations. Journal

of Parallel and Distributed Computing, 49(2):182–203, March

1998.



Optimizing Two-Pass Connected-Component Labeling Algorithms 17

25. Donald E. Knuth and Arnold Schönhage. The expected linearity

of a simple equivalence algorithm. Theor. Comput. Sci., 6:281–

315, 1978.

26. Joan M. Lucas. Postorder disjoint set union is linear. SIAM J.

Comput., 19(5):868–882, 1990.

27. R. Lumia. A new three-dimensional connected components

algorithm. Comput. Vision, Graphics, and Image Process,

23(2):207–217, 1983.

28. R. Lumia, L. Shapiro, and O. Zungia. A new connected compo-

nents algorithm for virtual memory computers. Comput. Vision,

Graphics, and Image Process, 22(2):287–300, 1983.

29. A. N. Moga and M. Gabbouj. Parallel image component label-

ing with watershed transformations. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 19(5):441–450, 1997.

30. S. Naoi. High-speed labeling method using adaptive variable

window size for character shape feature. In IEEE Asian Con-

ference on Computer Vision, 1995, vol. 1, pages 408–411, 1995.

31. N. Otsu. A threshold selection method from gray level his-

tograms. IEEE Trans. Systems, Man and Cybernetics, 9:62–66,

March 1979.

32. E. Regentova, S. Latifi, S. Deng, and D. Yao. An algorithm

with reduced operations for connected components detection in

itu-t group 3/4 coded images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(8), 2002.

33. Azriel Rosenfeld. Connectivity in digital pictures. J. ACM,

17(1):146–160, 1970.

34. Azriel Rosenfeld and Avinash C. Kak. Digital Picture Process-

ing. Academic Press, San Diego, CA, 2 edition, 1982.

35. Jianbo Shi and Jitendra Malik. Normalized cuts and image seg-

mentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):888–905, August 2000.

36. George C. Stockman and Linda G. Shapiro. Computer Vision.

Prentice Hall, Englewood, New Jesey, 2001.

37. J. S. Suri, B. Singh, and L. Reden. Computer vision and pat-

tern recognition techniques for 2-d and 3-d mr cerebral cortical

segmentation: A state-of-the-art review. Pattern Analysis and

Applications, 5(1):46–76, 2002.

38. Kenji Suzuki, Isao Horiba, and Noboru Sugie. Linear-time

connected-component labeling based on sequential local oper-

ations. Comput. Vis. Image Underst., 89(1):1–23, 2003.

39. Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of

set union algorithms. J. ACM, 31(2):245–281, 1984.

40. Robert Endre Tarjan. Efficiency of a good but not linear set

union algorithm. J. ACM, 22(2):215–225, 1975.

41. Robert Endre Tarjan. Reference machines require non-linear

time to maintain disjoint sets. In STOC ’77: Proceedings of the

ninth annual ACM symposium on Theory of computing, pages

18–29. ACM Press, 1977.

42. J. K. Udupa and V. G. Ajjanagadde. Boundary and object la-

belling in three- dimensional images. Computer Vision, Graph-

ics, and Image Processing, 51(3):355–369, 1990.

43. Kuang-Bor Wang, Tsorng-Lin Chia, Zen Chen, and Der-

Chyuan Lou. Parallel execution of a connected component la-

beling operation on a linear array architecture. Journal of In-

formation Science And Engineering, 19:353–370, 2003.

44. Yang Wang and Prabir Bhattacharya. Using connected compo-

nents to guide image understanding and segmentation. Machine

Graphics & Vision, 12(2):163–186, 2003.

45. Kesheng Wu, Ekow Otoo, and Arie Shoshani. Optimizing

connected component labeling algorithms. In Proceedings of

SPIE Medical Imaging Conference 2005, San Diego, CA, 2005.

LBNL report LBNL-56864.

46. Andrew C. Yao. On the expected performance of path compres-

sion algorithms. SIAM J. Comput., 14(1):129–133, 1985.

47. R. D. Yapa and H. Koichi. A connected component labeling

algorithm for grayscale images and application of the algorithm

on mammograms. In SAC’07: Proceedings of the 2007 ACM

symposium on Applied computing, pages 146–152, New York,

NY, USA, 2007. ACM Press.


