
Grid Collector: An Event Catalog
With Automated File Management

Kesheng Wu∗, Wei-Ming Zhang†, Alexander Sim∗, Junmin Gu∗ and Arie Shoshani∗
∗Lawrence Berkeley National Lab, Berkeley, CA 94720, Email: {KWu, ASim, JGu, Arie}@lbl.gov

†Kent State University, Kent, Ohio 44242, Email: zhang@hpacq.kent.edu

Abstract— High Energy Nuclear Physics (HENP) experiments
such as STAR at BNL and ATLAS at CERN produce large
amounts of data that are stored as files on mass storage systems
in computer centers. In these files, the basic unit of data is an
event. Analysis is typically performed on a selected set of events.
The files containing these events have to be located, copied from
mass storage systems to disks before analysis, and removed when
no longer needed. These file management tasks are tedious and
time consuming. Typically, all events contained in the files are read
into memory before a selection is made. Since the time to read the
events dominate the overall execution time, reading the unwanted
event needlessly increases the analysis time. The Grid Collector
is a set of software modules that works together to address these
two issues. It automates the file management tasks and provides
“direct” access to the selected events for analyses. It is currently
integrated with the STAR analysis framework. The users can select
events based on tags, such as, ”production date between March
10 and 20, and the number of charged tracks > 100.” The Grid
Collector locates the files containing relevant events, transfers the
files across the Grid if necessary, and delivers the events to the
analysis code through the familiar iterators. There has been some
research efforts to address the file management issues, the Grid
Collector is unique in that it addresses the event access issue
together with the file management issues. This makes it more
useful to a large varieties of users.

I. INTRODUCTION

A number of High-Energy Nuclear Physics (HENP) experi-
ments currently produce many petabytes (1015 bytes) of data a
year and future experiments are expected to produce data even
faster. In these data sets, information regarding one collision is
called an event. Most user analyses are conducted on subsets of
events [1], [2]. Typically, the events are organized into files and
the files are stored on tapes in some mass storage systems such
as HPSS. To perform an analysis, file management functions
such as finding what files contain the wanted events, locating
the files, transferring the files to a convenient location for
analyses and removing the files afterwards, are some of the
most tedious and time consuming tasks. There are two general
strategies to deal with this problem, automatically caching
needed files or try to place commonly used files on a large
disk system. The first approach require significant amount
of software infrastructures and the essential pieces of which
are just become mature enough for practical use. Our Grid
Collector is an example of this approach. It addresses a number
of shortcomings of the alternative approach. Next we briefly
describe these shortcomings.

In order for the end users not to deal with file management
issues, current experiments all establish some large computer
centers to house commonly used files on large disk systems, for
example the STAR experiment has a large computer center at
Brookhaven National Laboratory1. In these cases, committees
have setup policies to decide what to place on disks. Many
users can easily conduct their analyses because the files are
on disk. However, there are a number of serious limitations.
Because the disk space is only sufficient to store a small part
of data, only a small amount of data about each event is on
disk. This is generally designed to make “common” analyses
convenient and is typically sufficient immediately following
the collection of the data. After the initial set of “common”
analyses, users may typically want to perform more detailed or
more “exotic” analyses that require information than contained
in the files on disk. For example, a follow-on study of the
anti-particle production in STAR [3] wants to perform a more
detailed analysis on about 350 (out of 600,000) events that
might contain anti-helium-3 (3H̄e). Since this type of analysis
may be unique for every user, the user has to perform all the
necessary file management tasks. Clearly, automating the file
management tasks would benefit users in this situation.

Most experiments are large collaborations. They typically
have many users who are far away from the computer centers.
They typically have their own computing facilities. Automated
file management software would also make it much easier to
make effective use of these computing facilities.

In experiments like STAR, the analysis framework only
allows the user to read all events in a file one after the other.
In order to select the wanted events a user has applied a filter
after the event data has been read into the memory. This is
an inefficient use of the computer resources since the time to
read the events typically dominates the overall execution of
the analyses. The large disk arrays are typically hosted on file
servers, these unnecessary file accesses increases the network
traffic and reduces the overall system throughput. There are a
number tools such as condor that makes it more convenient
to distribute the files over a cluster to reduce the network
congestion, however, they can not provide a comprehensive
solution to the event access issue.

The Grid Collector is a set of software designed to provide
file-transparent event access for analysis programs. Using this

1More information available at http://www.star.bnl.gov.



software, users specify their requests for events as sets of
conditions on physically meaningful attributes, such as triggers,
production versions and other tags. The Grid Collector resolves
the given conditions into a list of relevant events and a list
of files containing the events. It is able to locate the files
and transfer the files as needed. Currently, the Grid Collector
is integrated into the STAR analysis framework to provide
familiar access functions to the user analysis code. This means
that the users can take advantage of its functions with a minimal
amount of changes to their analysis programs.

The Grid Collector is designed to work in a stream mode.
It attempts to maintain only a small number of active files on
disk. This is especially useful for analysis jobs that require a
large number of files that can not be stored on disks at the same
time. On busy centralized systems, like the one at Brookhaven,
it allows different analysis jobs to share files already retrieved
without user intervention. This should improve the overall
throughput of the analysis jobs. Another benefit of the stream
mode is that the analysis program requires less computer
memory since a smaller amount of information about files and
events are active at any given time. This may improve the
overall CPU utilization.

Overall, the Grid Collector has a number of unique features
that complements current data analysis approaches. This doc-
ument describes the main components behind the scene, gives
examples of how to use it in the STAR analysis framework,
and explains how it may be extended into other experiments.

II. RELATED WORK

Large HENP experiments like STAR, ATLAS2 and CMS3

are usually large collaborative projects involving hundreds of
researchers from many institutions. Participants have a large
varieties of computing and storage resources. The need for
easy access to data is generally recognized and there are a
number of activities to address various aspects of this issue.
Some of the large projects, including the Particle Physics
Data Grid (PPDG)4 and The Grid Physic Network (GriPhyN)5,
are studying various techniques and developing a number of
different tools. A general approach of these projects is to
leverage the momentum of Open Grid Service Architecture 6

to enable analysis of large distributed datasets.
One of the early projects following this general approach is

the Grid Data Management Pilot (GDMP) [4], [5]. It produced
a prototype data replication tool using Grid middleware for
authentication and data moving. Some of the later projects, such
as the Chimera virtual data system [6], produce software that
handle additional issues of querying and tracking derivation
of datasets from other datasets. The Grid Collector needs to
retrieve files over the Grid and cache them. For this purpose,

2More information about ATLAS is available at http://atlas.web.cern.ch.
3More information about CMS is available at http://cmsinfo.cern.ch.
4Information about PPDG is available at http://www.ppdg.net.
5Information about GriPhyN is available at http://www.griphyn.org.
6Information about OGSA is available at http://www.globus.org/ogsa.

we use a tool called the Storage Resource Manager7 [7].
The work that most directly influences the design of the Grid

Collector is the Storage Access Coordination System (STACS)
[8], [9], [10], [11]. Most known approaches treat a file as a basic
unit of data [12], [13], but STACS provides file-transparent
event access. STACS was able to select events efficiently by
using bitmap indices [10]. Another important ingredient of
STACS is that it was designed to interact with mass storage
systems [9]. These are two important features that are not
present in other tools. STACS software was designed for STAR
experiment before it came on-line. However, immediately after
STAR come on-line, the data most users care about fit on the
disks in the computer center. STACS was left unattended while
the rest of the STAR analysis framework evolved. For example,
STAR has decided to use the ROOT system while STACS and
its associated programs are only able to deal with Objectivity
files.

STAR experiment has been on-line for a couple of years
and the data production rate has been increasing steadily. It
is anticipated that the data produced in 2004 will have to be
distributed for reconstruction because the computer resources
at Brookhaven will not be able perform the task in time. This
would make it necessary for the STAR analysis framework to
deal with multiple storage sites. The upcoming experiments like
ATLAS and CMS are expected to have more than one storage
site as well. To demonstrate that file-transparent event access
is still efficient, we developed the Grid Collector software. In
addition to utilizing Grid middleware to access multiple remote
store sites, Grid Collector also implements a more efficient
version of the bitmap indexing scheme [14] and a more flexible
file caching scheme [7]. It is designed to utilize multiple disk
caches distributed on different machines. This makes it suitable
for use on clusters of workstations without centralized file
server.

III. ARCHITECTURE

In this section, we describe the overall designed and the main
components of the Grid Collector. Overall, the Grid Collector
adopts a client-server model. The server portion performs
the bulk of the functions and the client portion is currently
integrated into the STAR analysis framework. The most unique
feature of the Grid Collector is that it provides direct access to
event level data. This feature is implemented with the Query
Interpreter that holds a set of bitmap indices about the events. It
enables the user to specify criteria for selecting events based on
known attributes. The information about the selected events in
each file is passed to the Event Iterator so that only the selected
events are given to the user analysis code. The other modules
in the server, including the File Scheduler, the File Catalog,
and the Storage Resource Manager[7], are for file management
tasks. To save space, we only describe the Query Interpreter and
the Event Iterator. The information about the Storage Resource
Manager and its Disk Resource Manager (DRM) has been

7Information about SRM also available at
http://sdm.lbl.gov/projectindividual.php?ProjectID=SRM.



bitmap index
OID X =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b0 b1 b2 b3

Fig. 2. A sample bitmap index.

published [7]. Other modules performs functions that are either
relatively straightforward or has been described elsewhere.

A. Query Interpreter

The core of the Query Interpreter module is the bitmap
index, which is generally used to index the write-once read-
many (WORM) data [15], [16], [17]. It is particularly use-
ful in applications like data warehousing to support On-Line
Analytical Processing (OLAP). All major database system
vendors now have some versions of the bitmap index in their
products. Since most data produced in a HENP experiment
are only read by analysts, bitmap indexing techniques should
be effective for selecting events. In STAR, there are about
500 attributes that can be used to select events. In database
research community, this is known as high-dimensional data
since each attribute can be viewed a dimension of the data. The
selection criteria typically are range conditions on a handful
of different attributes. This type of query on high-dimensional
data is known as the partial range query because it does not
involve all dimensions of the data. Many indexing schemes are
available in the database literatures, however most of them are
not efficient for data with hundreds of dimensions [18], [19].
To answer partial range queries, they usually take longer than
the sequential scan that does not use any index at all [18], [19].
In our tests, the bitmap index is able significantly outperform
the sequential scan [14], [20].

Figure 2 shows a bitmap index example. In this case, a
bitmap is a set of columns of 0s and 1s. Bitmaps b0, . . ., b3

each represent whether X = 0, 1, 2, or 3. In this case, the
number of bitmaps is equal to the number of distinct values of
the attribute, also known as the attribute cardinality. When the
number of bitmaps is large, they may take up too much space to
be used efficiently. This is especially a concern for HENP data
since many of the attributes have floating-point values which
make the attribute cardinalities very high. We address this with
a combination of binning [10] and compression [14].

The current implementation of the Query Interpreter stores
the compressed bitmaps in files, not in a database system. We
came to this arrangement after a number of experiments show
that overhead of using a database system was very high in many
cases [20]. The bitmaps are read into memory when needed.

They are removed from memory when the space is required for
other operations.

The attributes indexed include all attributes in the tag
database [21]. The physics working groups of STAR call them
tags and have requested about 500 or so to be included in the
database. The data production programs generate these tags
and store them in ROOT files. Currently, a separate module
called the Index Feeder is used to digest the ROOT files
before generating bitmap indices. In actual operations, we have
noticed some inefficiencies in this arrangement. Eventually we
are going to integrate the Index Feeder into the Bitmap Index
module.

In addition to tags, we also build indices for attributes such
as production version, trigger and magnetic filed configuration.
These are common attributes that analysts use to select the data
files to perform analyses on. For example, a user might select
all events from production “P03ia” with the number of primary
tracks greater than 500.

This module implements a number of different indexing
strategies. The user may change the default scheme through
either a graphical tool or by directly editing the control files.

The Query Interpreter is implemented as two layers, a core
for handling bitmap indices plus an interprocessor communi-
cation layer. The communication layer currently uses CORBA
and can relatively easily changed to use another scheme, say,
web service.

B. Event Iterator

The Event Iterator is the key that glues the STAR analysis
framework to the Grid Collector. To a user, it appears as a low
level file access class called StGridCollector. It provides
the same interface as an existing class named StFile. Its
constructor takes a string argument. This string is a simplified
version of the select statement of SQL [22] or a GC command.
Both form can be used to specify the conditions on the events
to be selected. The Query Interpreter translates the selection
criteria into a list of files and events in the files. The Event
Iterator response to user analysis program by retrieving files
and pass the selected events to the analysis code. Since these
interactions are provided through other classes of the STAR
analysis framework, such as StIOMaker, the user is not
required to change how they work in order to take advantage
of the Grid Collector.

The Event Iterator has a number of features that are important
to the overall function of the Grid Collector. For example,
it releases the pin on a file immediately after it receives the
function call to retrieve the next file. This allows DRM to
reclaim the disk space as necessary. This is also used as a cue to
the File Scheduler for it to schedule more prefetches if there are
more files to be retrieved from remote storage sites. Normally,
a job using the STAR analysis framework holds information
about all files it uses. The Event Iterator allows one to use
only a small set of files at a time. It is also responsible for
generating the necessary key for the underlying ROOT system



DRM

Disk 
Cache
Disk 
Cache

Disk 
Cache
Disk 
Cache

Disk 
Cache
Disk 
Cache

Disk 
Cache
Disk 
Cache

HRMGridFTPGridFTP GridFTPFTP

Disk 
Cache
Disk 
Cache

Query
Interpreter

File
scheduler

server server server server

Query
Object

Event
Iterator DRMDRM

File
Catalog

Physics
Analysis

Logical Request

Get result

Client Server

 
Fig. 1. A scatch of the Grid Collector.

to directly read the selected events instead of looping through
all events in the files.

IV. USING THE GRID COLLECTOR

In a typical analysis program, an object of class StFile
is constructed to hold the list of files to be analyzed. This
object is passed on to another class StIOMaker to perform
the actual analysis operations. With the Grid Collector, this
object is replaced with an object of class StGridCollector.
As mentioned in previous section, the two objects implements
the same set of functions and are thus interchangeable for the
remaining portion of the analysis code. Both type of objects
also take a string as the argument to their constructors. The
difference is in the syntax of the string. The constructor of
StFile takes a list of file names, the constructor of StGrid-
Collector takes a select statement or a GC command.

The select statement mimics the SQL select statement [22],
but much simpler. It supports only three keywords, SELECT,
FROM and WHERE. Each keyword can be followed by
a clause. In many cases, keywords SELECT and FROM
can be omitted. Keyword WHERE is used to lead a set
of conditions joined by the usual logical operators, such as
“production=P03ia AND numberOfPrimaryTracks>100.” The
keyword FROM may be used to specify the data sets to be
searched. If it is omitted, it is assumed to be “FROM *.”
In STAR, most data sets are identified by attributes such as
production version, trigger type, and magnetic field configu-
ration. A user can use these attributes to select events in the
WHERE clause instead of specifying the name of data sets
in the FROM clause. The keyword SELECT may be used to
specify the type of files to be used. In STAR, the types of files
supported are event, MuDst, hist, runco and tags. If
keyword SELECT is omitted, event files are assumed.

The GC command is a string started with “GC ” followed by
a set of options. It can be used to carry the same information

specified in a select statement. Here we only describe one useful
option that can not be easily expressed in a select statement.
An event typically has an identifier. A user may wish to specify
a list of identifiers and request the Grid Collector to retrieve
them. The example given in the 1introduction about a follow-
on study of anti-helium 3 acutally has a list of event identifiers
available from previous analyses. In this case, the user may
place the identifies in a file, say “he3bar,” and use the following
GC command, “GC -i he3bar.”

Most of the existing analysis scripts in STAR take a list
of file names as input to create an object of class StFile.
To use the Grid Collector, the user replaces the list of file
names with a select statement (or a GC command) and pass
the string to the function StGridCollector::Create().
This function creates an object of type StGridCollector.
Either an object of type StFile or StGridCollector can
be used to create a StIOMaker object and the remaining
portion of the analysis script does not require any change.

One of the analysis scripts that have gone through this change
is doEvents.C. Using the old interface, if the user knows that
location of some files, the following command line may be used
to analyze the first 10 events of the files.

.x doEvents.C(10, "/star/data10/*.root")

Using the Grid Collector, the following command line ana-
lyzes the first 10 events that from production P02gc with more
than 300 primary tracks,

.x doEvents.C(10, "where production=P02gc
and numberOfPrimaryTracks>300")

The next command can be used to extract the events listed in
the file “he3bar.” The output files follow the usual convention
in STAR.

.x doEvents.C(-1, "GC -i he3bar",
"evout")



V. SUMMARY AND FUTURE PLANS

The Grid Collector implements an efficient bitmap index to
make it practical to catalog millions of events from the STAR
experiment. Most user analysis programs make some selections
on events. Currently, this is accomplished by first reading the
events into memory. Since reading the events into memory takes
much longer than the analysis computations, avoiding unnec-
essary read operations can significantly improve the efficiency
of these analysis programs. Many of these selection criteria
can be efficiently realized using the bitmap indices in the Grid
Collector.

The Grid Collector is designed to perform its own file man-
agement functions without user intervention. This can greatly
improve the user productivity. The Grid Collector is able to
build personalized subsets and users are no longer restricted
to work with “official” data sets. This is especially useful for
users who perform exotic analyses and those who wish to use
their own computer facilities rather than the centrally managed
ones.

While developing and testing the current version of the Grid
Collector, we have identified a number of issues that needed
to be addressed. We will mention two of them here. The first
one is related to the use of CORBA. In general, the client-
server programming model is being replaced by web services
and grid services. In the free software community, there is
the lack of support for free CORBA. The Index Feeder uses
CORBA to pass data to the Query Interpreter, this causes extra
delays because CORBA requires the data to be marshaled and
unmarshaled. The second issue is related to how STAR analysis
framework handles different types of data. Currently, the two
main types of data files, event files and MuDst files are
handled differently. Currently the Grid Collector can process
event files correctly, but additional work is needed to deal
with MuDst files.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the helps received from
the STAR software team, particularly, Jerome Lauret, Victor
Perevoztchikov, and Frank Laue. We would also like to thank
our early users, especially, Lee Barnby and Aihong Tang, for
their patience and willingness to work with a new tool.

REFERENCES

[1] J. Beringer, N. Brook, P. Buncic, F. Carminati, R. Cavanaugh, P. Cerello,
F. Donno, D. Foster, C. Grandi, F. Harris, L. Perini, A. Pfeiffer, R. Pordes,
D. Quarrie, A. Sciaba, O. Smirnova, J. Templon, A. Tsaregorodtsev, and
C. Tull, “Common use cases for A HEP common application layer for
analysis – HEPCAL II,” http://www.cern.ch/fca/HEPCAL-II.doc, 2003.

[2] F. Carminati, P. Cerello, C. Grandi, E. V. Herwijnen, O. Smirnova, and
J. Templon, “Common user cases for A HEP common application layer
– HEPCAL,” http://www.cern.ch/fca/HEPCAL-prime.doc, 2003.

[3] C. A. et al (STAR collaboration), “d̄ and 3H̄e production in
√

sNN =
130 GeV Au + Au collisions,” Phys. Rev. Lett., no. 26, p. 262301, 2001,
available on-line at http://link.aps.org/abstract/PRL/v87/e262301.

[4] A. Samar and H. Stockinger, “Grid data management pilot (GDMP): A
tool for wide area replication in high-energy physics,” in Proc. of IASTED
International Conference on Applied Informatics (AI 2001), Innsbruck,
Austria, February 2001, 2001.

[5] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. T. Foster, and
B. Tierney, “File and object replication in data grids,” Cluster Computing,
vol. 5, no. 3, pp. 305–314, 2002.

[6] I. Foster, J. Vöckler, M. Wilde, and Y. Zhao, “Chimera: A virtual
data system for representing, querying, and automating data derivation,”
in Fourteenth International Conference on Scientific and Statistical
Database management, Proceedings, July 24-26, 2002, Edinburgh, Scot-
land, J. Kennedy, Ed. IEEE Computer Society, 2002, pp. 37–46.

[7] A. Shoshani, A. Sim, and J. Gu, “Storage resource managers:
Middleware components for grid storage,” in Proceedings of
Nineteenth IEEE Symposium on Mass Storage Systems, 2002
(MSS ’02). IEEE, 2002, paper available on the web at
http://romulus.gsfc.nasa.gov/msst/conf2002/papers/d02ap-ash.pdf.

[8] L. Bernardo, H. Nordberg, D. Olson, A. Shoshani, A. Sim, A. Vaniachine,
D. Zimmerman, B. Gibbard, R. Porter, T. Wenaus, and D. Malon, “New
capabilities in the HENP grand challenge storage access system and its
application at RHIC,” Computer Physics Communications, vol. 140, pp.
179–188, Oct. 2001.

[9] L. M. Bernardo, A. Shoshani, A. Sim, and H. Nordberg,
“Access coordination of tertiary storage for high energy
physics applications,” in IEEE Symposium on Mass Storage
Systems, 2000, pp. 105–118, document available at http://esdis-
it.gsfc.nasa.gov/MSST/conf2000/PAPERS/B05PA.PDF.

[10] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim,
“Multidimensional indexing and query coordination for tertiary storage
management,” in 11th International Conference on Scientific and Statis-
tical Database Management, Proceedings, Cleveland, Ohio, USA, 28-30
July, 1999. IEEE Computer Society, 1999, pp. 214–225.

[11] A. Shoshani, A. Sim, L. M. Bernardo, and H. Nordberg, “Coordinating
simultaneous caching of file bundles from tertiary storage,” in Proceed-
ings of the 12th International Conference on Scientific and Statistical
Database Management, July 26-28, 2000, Berlin, Germany, O. Günther
and H.-J. Lenz, Eds. IEEE Computer Society, 2000, pp. 196–208.

[12] A. S. Johnson, “Java analysis studio,” Stanford Linear
Accelerator Center, Stanford University, Tech. Rep. SLAC-
PUB-7963, 1998, document available at http://www-
sldnt.slac.stanford.edu/jas/documentation/Chep98/Chep98.htm and
the last software is available at http://jas.freehep.org.

[13] H. B. Newman, J. Bunn, and S. Iqbal, “Distributed
heterogeneous data warehouse for grid analysis,”
http://pcbunn.cacr.caltech.edu/GAE/workshop/SaimaGAEworkshop.ppt,
2003.

[14] K. Wu, E. J. Otoo, and A. Shoshani, “Compressing bitmap indexes for
faster search operations,” in Proceedings of SSDBM’02, 2002, pp. 99–
108, lBNL-49627.

[15] P. O’Neil, “Model 204 architecture and performance,” in 2nd Interna-
tional Workshop in High Performance Transaction Systems, Asilomar, CA,
ser. Lecture Notes in Computer Science, vol. 359, Sept. 1987, pp. 40–59.

[16] C.-Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,”
in Proceedings of the 1998 ACM SIGMOD: International Conference on
Management of Data. ACM press, 1998.

[17] M.-C. Wu and A. P. Buchmann, “Encoded bitmap indexing for data ware-
houses,” in Fourteenth International Conference on Data Engineering,
February 23-27, 1998, Orlando, Florida, USA. IEEE Computer Society,
1998, pp. 220–230.

[18] V. Markl, M. Zirkel, and R. Bayer, “Processing operations with re-
strictions in RDBMS without external sorting: The tetris algorithm,” in
Proceedings of the 15th International Conference on Data Engineering,
23-26 March 1999, Sydney, Austrialia. IEEE Computer Society, 1999,
pp. 562–571.

[19] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB’98, Proceedings of 24th International Conference on
Very Large Data Bases, August 24-27, 1998, New York City, New York,
USA, J. Widom, A. Gupta, and O. Shmueli, Eds. Morgan Kaufmann,
1998, pp. 194–205.

[20] K. Stockinger, K. Wu, and A. Shoshani, “Strategies for processing ad hoc
queries on large data warehouses,” in Proceedings of DOLAP’02, 2002.

[21] D. Zimmerman, “The design and implementation of the star tag data
base,” 1998, slides of presentation given at CHEP 98 is available at
http://wwwasd.web.cern.ch/wwwasd/cernlib/rd45/chep98/star-tag.ppt.

[22] J. R. Groff and P. N. Weinberg, SQL: The Complete Reference, 2nd ed.
McGraw-Hill Osborne Media, 2002.


