
HDF5-FastQuery:
Accelerating Complex Queries on HDF Datasets using Fast Bitmap Indices

Luke Gosink1, John Shalf2, Kurt Stockinger2, Kesheng Wu2, Wes Bethel2

1Institute for Data Analysis and Visualization, University of California at Davis
One Shields Ave, Davis, CA 95616, USA

2Computational Research Division, Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720, USA

Abstract

Large scale scientific data is often stored in scientific
data formats such as FITS, netCDF and HDF. These storage
formats are of particular interest to the scientific user com-
munity since they provide multi-dimensional storage and re-
trieval. However, one of the drawbacks of these storage for-
mats is that they do not support semantic indexing which is
important for interactive data analysis where scientists look
for features of interests such as “Find all supernova explo-
sions where energy > 105 and temperature > 106”.

In this paper we present a novel approach called HDF5-
FastQuery to accelerate the data access of large HDF5
files by introducing multi-dimensional semantic indexing.
Our implementation leverages an efficient indexing tech-
nology called bitmap indexing that has been widely used
in the database community. Bitmap indices are especially
well suited for interactive exploration of large-scale read-
only data. Storing the bitmap indices into the HDF5 file
has the following advantages: a) Significant performance
speedup of accessing subsets of multi-dimensional data and
b) portability of the indices across multiple computer plat-
forms. We will present an API that simplifies the execution
of queries on HDF5 files for general scientific applications
and data analysis. The design is flexible enough to accom-
modate the use of arbitrary indexing technology for seman-
tic range queries. We will also provide a detailed perfor-
mance analysis of HDF5-FastQuery for both synthetic and
scientific data. The results demonstrate that our proposed
approach for multi-dimensional queries is up to a factor of
2 faster than HDF5.

1 Introduction

Large-scale scientific experiments often store data in sci-
entific data formats such as FITS [5], netCDF [9] and HDF
[11]. These data formats provide the ability to store and
retrieve multi-dimensional arrays that are often regarded as
the building blocks for scientific data exploration. The most
recent implementations of these data formats, such as HDF5
and parallelNetCDF, have been extended to support parallel
data access – a key requirement for the data output require-
ments for simulation codes on MPPs. However, one of the
open problems that is common to all scientific data formats
is that they to not have an interface to support semantic in-
dexing. As pointed out by Jim Gray et al. [6] “Scientists
need a way to use intelligent indices and data organizations
to subset the search” .

In this paper we address this fundamental open prob-
lem of scientific data formats by providing an interface to
support semantic indexing for HDF5 via a query API. We
integrate an efficient searching technology named FastBit
[19, 20] with HDF5. The integrated system named HDF5-
FastQuery allows users to efficiently generate complex se-
lections on HDF5 datasets using compound range queries
such as (enery > 105) AND (70 < pressure < 90)
and only retrieve the subset of data elements that meet the
query conditions. FastBit technology generates compressed
bitmap indices that accelerate searches on HDF5 datasets
and can be stored together with those datasets in an HDF5
file. Compared with other indexing schemes, compressed
bitmap indices are compact and very well suited for search-
ing over multi-dimensional data – even for arbitrarily com-
plex combinations of range conditions.

The main contributions of this paper are:

• We introduce HDF5-FastQuery, a novel approach
for simplifying storage and retrieval of HDF5 data



sets. We describe the architectural layout and the
API for creating and querying HDF5-files with multi-
dimensional bitmap indices.

• We perform a detailed performance evaluation of
our FastQuery enhancements to HDF5. The results
demonstrate that our proposed approach for processing
multi-dimensional queries is up to a factor of 2 faster
than HDF5.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the need for semantic indexing in HDF5
files and describes the related work on scientific data for-
mats and indexing technologies that are relevant in this area.
Section 3 outlines the architecture of HDF5-FastQuery.
Section 4 gives a detailed performance evaluation. Con-
cluding remarks and future work are presented in Section
5.

2 Related Work

2.1 Scientific Data Formats

Scientific applications have used a variety of ad-hoc I/O
methods, including ASCII, raw binary, and Fortran unfor-
matted binary. In order to support more transparent shar-
ing of data, various scientific communities have developed
their own file formats (or format conventions) and associ-
ated APIs. For instance NetCDF has been engineered pri-
marily to support the climate modeling community; Plot3D
format supports aeronautics and FITS was developed as the
storage format for sharing astronomy and astrophysics data.
Efforts such as OpenDAP have attempted to separate the
high level data model from the underlying implementation.
This separation of concerns has enabled a unified interface
for managing data in files, or in directory servers, remote
data retrieval, and even support for data query operations.

While high level data interfaces, such as OpenDAP have
successfully separated underlying data layout issues from
the higher level data schemas, file formats like HDF5 are di-
rectly addressing the concerns of low-level file organization
issues. HDF5 offers a hierarchical data model packed in
a self-describing binary, platform-independent file format.
HDF5’s hierarchical data model is flexible enough to ac-
commodate the requirements of numerous higher-level data
schemas. The data organization is very similar to an object
database, but unlike most object database implementations
HDF5 is portable, non-proprietary, and supports concurrent
access to individual records (the kind of parallel I/O that is
essential for HPC applications). So, for example, Version
4 of NetCDF will jettison its own low-level file format and
implement its data schema on top of HDF5. HDF-EOS is
another example of a complex high-level data schema that
is implemented on top of HDF5 as a substrate.

Our work extends HDF5 in two dimensions. First, we
develop a high-level data schema that is appropriate for
time-series block-structured and particle data that is typi-
cal of a number of applications that we are interested in
supporting. We developed the high-level schema in or-
der to provide a testbed for our work on HDF5 index-
ing technology (HDF’s data schema would otherwise be
too low-level to use sensibly in scientific applications).
Next, we extend HDF5’s low-level dataset selection mecha-
nisms to incorporate our accelerated bitmap indexing tech-
nology. Our work differs from the HDF5 Storage Re-
source Broker (SRB) work at SDSC in the granularity of
our query/selection mechanism. Whereas SRB focuses on
queries and selections at the file and full dataset granularity
(object-level access), our selection mechanism focuses on
queries and selections of data elements within the dataset.
(http://hdf.ncsa.uiuc.edu/hdf-srb-html/)

2.2 Indexing for Scientific Data Formats

HDF5 has several parallel I/O optimization techniques
based on caching and prefetching. HDF5 uses B-tree in-
dices internally but does not expose them to the end-user.
However, semantic indexing for improving the performance
of range queries got very little attention.

PyTables [1] manages persistent collections of data ob-
jects for improved I/O speeds. The collections can be effi-
ciently accessed with B-trees.

Nam and Sussman [8] have designed an indexing library
that supports R*-trees for HDF4 and HDF5 datasets. This
type of index is particularly well-suited for querying spatial
data.

The above described solutions work well for low-
dimensional queries. Our approach focuses on improving
the performance of high-dimensional queries with 5, 10
or even more query dimensions. In order to achieve this
goal, we use bitmap indices for querying high-dimensional
HDF5-files.

2.3 Bitmap Indexing Technology

A bitmap index uses a set of bitmaps to mark whether or
not each record (or row) of a dataset has a particular prop-
erty, e.g., whether the value of an attribute (or variable) is
a particular value or falls in a particular bin. Because most
CPUs support efficient operations between bitmaps, bitmap
indices can efficiently answer range queries [14, 4, 13, 18].
They are particularly well suited for data warehousing type
of applications where the experts often submit complex,
multi-dimensional ad-hoc queries on read-only data. They
have been introduced into major commercial database sys-
tems by vendors such as Sybase, IBM and Oracle.



bitmap index
RID I =0 =1 =2 =3 =4 =5

1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 3 0 0 0 1 0 0
4 2 0 0 1 0 0 0
5 3 0 0 0 1 0 0
6 5 0 0 0 0 0 1
7 5 0 0 0 0 0 1
8 2 0 0 1 0 0 0

b1 b2 b3 b4 b5 b6

Figure 1. A sample bitmap index where RID
is the record ID and I is the integer attribute
with values in the range of 0 to 5.

For example, the integer attribute I shown in Figure 1
can be one of 6 distinct values, 0, 1, 2, 3, 4 and 5. For each
value one bitmap is generated. Since the value in record 5
is 3, the fifth bit in b4 is set to 1 and the same bits in other
bitmaps are 0. Assume we wish to answer the following
range query I < 3. We know that bin b1 represents records
with the value 0, bin b2 represents records with the value 1,
and bin b3 represents records with the value 2. In order to
retrieve all records that fulfill the query constraint < 3, the
bins b1, b2 and b3 are ORed together.

FastBit [12] is a specialized bitmap indexing software for
scientific data that uses a bitmap compression method de-
signed to be more compute-efficient than the best available
commercial implementations [19, 20]. In the worst case,
the FastBit index size can be twice as large as the user data
which compares favorably against some commercial B-tree
implementations. In many tests on application data sets, the
size of the compressed indices is typically about a third of
the data size.

It was further proven through formal analysis that the
time required to answer a one-dimensional range query us-
ing the compressed bitmap index used in FastBit scales lin-
ear with the number of hits. In terms of computational com-
plexity theory, this is optimal. Some of the well-known in-
dexing methods, such as B∗-trees and B+-trees, have this
same optimality property. However, the bitmap index has a
unique advantage that answers to one-dimensional queries
can be efficiently combined to answer multi-dimensional
range queries.

For most data analysis tasks, the procedure of searching
for interesting data records is one step in a long chain of
activities. In this process, the user data often needs to be in
a particular order to make most of the steps efficient. The
compressed bitmap index is much easier to accommodate
this requirement than similar indexing methods because it
does not require one to sort the data in any particular way.

This leaves the users the freedom to choose the way to or-
ganize their data to reduce the total data analysis time. For
data produced on uniform grids, FastBit has been demon-
strated to find regions of interest in time that is proportional
to the size of boundaries of the regions [16, 21]. Since find-
ing regions of interest is a common task in many visualiza-
tion and data analysis tasks, FastBit is clearly a useful tool.

3 Architecture of HDF5-FastQuery

HDF5 supports slab and hyper-slab selections of N-
dimensional datasets. HDF5-FastQuery extends the HDF5
selection mechanism to allow arbitrary range conditions on
the data values contained in the datasets using the bitmap in-
dices. This allows the HDF5-FastQuery technology to sup-
port a fast execution of results for compound queries that
span multiple datasets. The API also allows us to seam-
lessly integrate the FastBit query mechanism for data se-
lection with HDF5’s standard hyper-slab selection mech-
anism. Using the HDF5-FastQuery API, one can quickly
select subsets of data from a HDF5 file using text-string
queries.

The bitmap indices are created and stored through a sin-
gle call to the HDF5-FastQuery API. The storage of these
indices uses separate arrays in the same file as the datasets
they refer to and are opaque to the general HDF5 func-
tions. It is important to note that all such indices must
be built before any queries are posed to the API. Once
the bitmap indices have been built and stored in the data
file, queries are posed to the API as a text-string such as
”(temperature > 1000) AND (70 < pressure < 90)”,
where the names specified in the range query correspond
to the names of the datasets in the HDF5 file. The HDF5-
FastQuery interface uses the stored bitmap indices that cor-
respond to the specified dataset to accelerate the selection
of elements in the datasets that meet the search criteria. An
accelerated query on the contents of a dataset requires only
small portions of the compressed bitmap indices to be read
into memory, so extremely large datasets can be searched
with little memory overhead. The query engine then gen-
erates an HDF5 selection that can be used to only read the
elements from the dataset that are specified by the query
string.

The FastBit technology is amenable to handling datasets
and selections that are far larger than system memory. In re-
cent experiments[17] with data of 241 GB in size, a search
that consumed 2467 seconds using sequential scan was re-
duced to only 22.8 seconds using the bitmap indices. This
same ability to handle out-of-core data selections will be
available in the HDF5-FastQuery implementation.



3.1 Design

In this section, we present a high-level view of the
HDF5-FastQuery architectural layout. We begin by defin-
ing relevant terms used throughout the architectural layout
as well as the HDF5-FastQuery API.

Groups: Groups are the logical way in a HDF5 file for-
mat to organize data. In this paper we will use the term
group or grouping to refer to this logical structuring. These
groups act as a container of various metadata which in our
approach is specific to a given dataset. Note that these
groups may be assigned type information (float, int, string
etc.) to uniquely describe these datasets.

Variables vs. Attributes: The properties assigned to a
specific group (i.e. group metadata) are called attributes
or group attributes. For all datasets, the specific physical
property that the dataset quantizes (density, pressure, helic-
ity etc.) will be referred to as dataset variables.

To organize a given multivariate dataset consisting of a
discrete range of time steps, a division is made between the
raw data and the attributes that describe the data. This divi-
sion is represented in the architectural layout by the separa-
tion and formation of two classes of groups: the TimeStep
groups for the raw data, and the VariableDescriptor groups
for the metadata used to describe the dataset variables.

For the dataset variables, one VariableDescriptor group
is created for each variable (pressure, velocity etc.). The
metadata saved under these groups usually includes:

• The size of the data set

• The name of the dataset variable

• The coordinate system used in the dataset (spherical,
Cartesian etc.)

• The schema (structured, unstructured, AMR [3])

• Centering (cell centered, vertex centered, edge cen-
tered etc.)

• The number of coordinates which must exist per cen-
tering element (each vertex, each face etc.)

The various VariableDescriptor groups are then orga-
nized under one TOC (table of contents) group that retains
common global information about the file’s variables (the
names of all variables, bitmap indices metadata informa-
tion). For the raw datasets, a unique TimeStep group is
created for each time step in the discrete time range. Un-
der each TimeStep group exists one HDF5 dataset that con-
tains the raw data for a given variable at that time step. At
this group too will also exist a variable bitmap dataset for

the corresponding variable dataset. That is to say variable
dataset data, for both raw and bitmapped data, will exist
logically under the same TimeStep group. Additionally, all
bitmap-key and bitmap-offset datasets for a given variable
at a given time step are also recorded and saved here.

This division between data and metadata is essential for
the primary reason that variable metadata for a given dataset
will be relevant and accurate across all time steps for that
dataset variable (there is no need to store redundant meta-
data). Figure 2 illustrates the HDF5-FastQuery architectural
layout.

Figure 2. Architectural layout of HDF5-
FastQuery.

3.2 API for Indices

From the user’s perspective, the HDF5-FastQuery API
provides a way to store and retrieve subsets of their dataset
variables. The API’s basic design maintains many of the
current design principles of the index interface from the
HDF5 developers [10]. However, HDF5-FastQuery re-
quires extra parameters to address queries. This subsection
briefly outlines the top level interface related to index cre-
ation and data subset selection.

Conceptually, FastBit views all user data as relational
tables where each variable (dataset in HDF5 terminology)
maps to a column and each record (e.g., variables associated
with a mesh point) maps to a row. In HDF5-FastQuery, each
time step described above is a FastBit table and users only
need to know about the time steps rather than tables. The
operations of creating indices, creating selections and using
selections are based on specified time steps. This design can
be easily changed to match that of HDF5 indexing interface
once the HDF5 developers have finalized their design.



3.2.1 Creating Indices

The main function for creating indices in HDF5-FastQuery
is

int createIndex
(const std::vector<const char*>& variable_names,
const char* binning_options);

which is a member function of the class timestep. It
creates a compressed bitmap index using the named vari-
ables and stores the result in HDF5 format back in the file
that contains the original user data. This function takes two
arguments. The first argument specifies a list of variables
to be indexed. The second argument specifies the binning
operation that will be used to generate the indices. If the
name list is empty, the default behavior is to index every
variable across all time steps. If the binning option is not
specified, the default binning option is to not bin or use one
bin for each distinct value. This function returns the number
of indices successfully created and stored.

3.2.2 Querying

The functions for creating a selection, computing the
number of records selected, and retrieving the re-
spective values along with the coordinates of the
records selected are called createSelection,
evaluateSelection, getSelectedData
and getSelectedCoordinates. The function
createSelection has two versions depending on the
specification of selection conditions. The first version
takes the user specified selection conditions in a string
form. The second version is based on the HDF5 indexing
function H5INquery, and takes three arrays as function
input. In both cases this function returns a token as a string.
Functions calling createSelection use this token to
identify the selection made.

evaluateSelection computes the number of hits.
It will attempt to use the indices in the data file if there are
any. Alternatively, it will read the values into memory and
evaluate the selection conditions in memory.

The functions getSelectedData and
getSelectedCoordinates are intended for re-
trieving the records selected by the user. The first function
retrieves the selected values one variable at a time. The
second function retrieves the coordinates of the records
selected.

4 Experiments

In this section we compare the performance of HDF5-
FastQuery against the R*-tree implementation on top of
HDF5[8]. We call this software HDF5-R*-tree. To the

best of our knowledge, this is currently the only seman-
tic indexing software for HDF5 available. We show that
HDF5-FastQuery is significantly faster. Next, we perform a
detailed performance analysis of HDF5-FastQuery on both
synthetic and real data sets. All experiments are executed
on a 2.8 GHz Pentium 4 with 2 GB of main memory and a
RAID-5 disk.

4.1 Synthetic Data

In our first set of tests we performed a comparison of
HDF5-FastQuery against HDF5-R*-tree. Following the ex-
ample code that is part of the HDF5-R*-tree software distri-
bution, we generated a one-dimensional HDF5 data set that
consists of 1,000,000 records. The values of the records are
uniformly random distributed in the range of [0; 99]. First
we built a R*-tree and then we built an equality-encoded [4]
bitmap index for the same data set. The size of the original
data set was 4 MB. The size of HDF5-R*-tree is 6.8 MB,
i.e. the size of R*-tree is 2.8 MB. The size of the HDF5-
FastQuery file is 10 MB, i.e. the size of the bitmap index is
6 MB. The time to create the bitmap index is 0.33 seconds.

From previous analyzes [7], we know that the com-
pressed bitmap index sizes of uniform random variables are
larger than other variables with skewed distributions, but the
R*-tree sizes for uniform random data are generally smaller
than those with skewed distributions.

With both systems we performed 100 range queries that
cover that entire domain range, i.e. the query selectivity
is in the range of 0 and 100%. A query selectivity of
50% means that 500,000 records fulfill the query constraint.
These records are called hits. Figure 3 shows the perfor-
mance comparison of HDF5-R*-tree and HDF5-FastQuery.
The graph also shows the time to access the respective data
set with HDF5-calls (H5Dread). The results show that, on
average, HDF5-FastQuery is a factor of 3 faster than HDF5-
R*-tree and HDF5.

Let us interpret the shape of the performance graph for
HDF5-FastQuery. We observe that for queries with up to
50% selectivity (500,000 hits), the query response time is
increasing. This is due to the fact that for higher selectivi-
ties, more bitmaps have to read from disk and need to be
ORed together. In the specific case of 50% selectitivity,
50 bitmaps out of 100 need to be scanned. We also no-
tice that for queries above a selectivity of 50%, the query
response time decreases. This is because queries with se-
lectivities above 50% are evaluated by negating the query
expression. For instance, a query A < 80 is evaluated as
NOT (A >= 80). Assuming that the attribute range is be-
tween 0 and 100, then a query with 80% selectivity is first
evaluated as a query with 20% selectivity which means that
only 20 bitmaps need to be scan as apposed to 80. Finally,
the result bitmap is negated.



Figure 3. Response time of 1-dimensional
queries with HDF5, HDF5-R*-tee and HDF5-
FastQuery.

Next we generated two data sets with 100 million records
with different attribute cardinalities. The values of the first
data set are uniformly random distributed in the range of
[0; 99]. This corresponds to an attribute cardinality of 100.
The second data set has values in the range of [0; 999]. In
other words, the second data sets has an attribute cardinal-
ity of 1,000. For the first data set, we generated a bitmap
index with 100 bins (1 bin per attribute cardinality). For
the second data set we generated a bitmap index with 1,000
bins. The size of the HDF5 file is 400 MB. The sizes of
the bitmap indices are 600 MB and 770 MB, respectively.
The time to create these two indices was 36.8 and 260 sec-
onds. The goal of this experiment was to show the impact
of the attribute cardinality on the performance of the bitmap
index. Due to stability issues with the HDF5-R*-Tree im-
plementation, we do not include these measurements.

Figure 4 shows the query response time for 100 one-
dimensional queries with selectivities of 0 to 100%. The
graph also shows the time it takes to perform the same query
with traditional HDF5-calls. The bitmap index with 100
bins is, on average, 13 times faster than HDF5. With 1,000
bins the performance of HDF5-FastQuery is about a factor
of 2 better than HDF5. The reason is that with 1,000 bins, in
the worst case, 500 bins have to be read which corresponds
to 385 MB. Note that this is about the same size as the raw
data.

4.2 Scientific Simulation Data

In our next set of experiments we used a large com-
bustion data set that is a time-dependent simulation of a

Figure 4. Response time of 1-dimensional
queries with HDF5 and HDF5-FastQuery. FQ,
B=100 and FQ=1000 correspond to HDF5-
FastQuery with 100 and 1000 bins respec-
tively.

Figure 5. Surface of a V-flame for a time-
dependent combustion simulation.

laboratory-scale rod-stabilized premixed turbulent V-flame
[2]. The surface of the flame is shown in Figure 5.

The data set contains 5 variables over 8 time steps. Each
variable consists of some 56 million records. For each vari-
able and each time step we built an equality-encoded bitmap
index with 100 bins. The total size of the data set with 5
variables and 8 time steps is about 18GB. The size of the



bitmap indices is 4GB. The time to create the indices for
all the data took about 2 hours. The average time to create a
bitmap index per attribute consisting of 56 million records
was 2 minutes. Note that this data set including the indices
is about 10 times larger than the main memory of our test
machine.

For each of the 5 variables we calculated the minimum
and the maximum value. Next we generated 100 one-
dimensional queries where we randomly selected the query
range within the minimum and the maximum value of the
chosen attribute. In order to cover the widest possible query
performance matrix, we also made a random choice on (1)
the data variable, (2) the time step and (3) the query range.

Since bitmap indices with bins represent attribute ranges
rather than attribute values, the query results contain also
values that might not exactly match the query. In order to
return only qualifying values, some of the data records must
be fetched from disk to verify them against the query con-
straint. This additional step is also known as the candidate
check [18]. We will first show the query response time with-
out candidate check and next present results including the
candidate check.

The number of values that do not fulfill the query con-
straint due to binning is indirect proportional to the number
of bins. In general, the maximal error in % introduced with
equi-depth bins is 100/B where B is the number of bins.
In our experiments we use 100 and 1000 bins which means
that the maximal error rate of the results is 1% and 0.1%,
respectively.

Figure 6 shows the query response time for one-
dimensional queries as a function of the number hits. The
average response time for a one-dimensional query over 56
million records with 100 bins is 0.4 seconds. For 1000 bins,
the query response time is on average 1.12 seconds. Per-
forming the same query with HDF5 takes some 12 seconds
which shows that HDF5-FastQuery is about a factor of 10
faster than HDF5. Again we notice the characteristic A-
shape of the graph. However, we see no value with selec-
tivities around 50%. This is due to the highly skewed data
values and the random selection of the query range.

Next we measured the performance of multi-dimensional
queries. Similar to our previous experiments, we randomly
selected the query range between the minimum and the
maximum value of the respective attribute. Figures 7 and
8 show the response times of 3 and 5-dimensional queries.
The average response time for these queries with 100 bins
is 1.2 and 2 seconds, respectively. With 1000 bins the aver-
age query response time is 3.5 and 5.6 seconds. Answering
these queries with HDF5 takes 36 and 60 seconds. Since
HDF5-FastQuery scales linear with the number of query di-
mensions, the performance speedup over HDF5 is again a
factor of 10.

In the last set of tests we measured the time for

Figure 6. Response time of 1-dimensional
queries using bitmap indices.

Figure 7. Response time of 3-dimensional
queries using bitmap indices.

queries with exact answers, i.e. the query evalua-
tions include the candidate check. To best minimize
the overhead incurred in the disk access performed for
each candidate check, HDF5 scatter-gather techniques
are used via the H5Sselectelements() function call.
H5Sselectelements() allows a list of defined elements to
be included in the selection of a given dataspace which is
then accessed for candidate verification. The performance
advantage to this approach lies in submitting multiple can-
didates as apposed to individually defining and accessing
hyper-slabs for each candidate check.

Note that as the number of bins increases, the bitmap



Figure 8. Response time of 5-dimensional
queries using bitmap indices.

evaluation costs increase as more bitmaps have to be
scanned. On the other hand, however, as the number of
bins increases, the cost for the candidate check decreases
as the number of candidates per bin decreases [18]. Fig-
ures 9 to 11 show the query response times for 1, 3 and 5-
dimensional queries. For all queries, HDF5-FastQuery with
1000 bins shows the best performances with an average re-
sponse time of more than a factor of 2 faster than HDF5 for
5-dimensional queries. We can also see that as the num-
ber of query dimensions increases, the performance gain of
HDF5-FastQuery over HDF5 increases as well.

Figure 9. Response time of 1-dimensional
queries using bitmap indices. Exact answers
including candidate check.

Figure 10. Response time of 3-dimensional
queries using bitmap indices. Exact answers
including candidate check.

Figure 11. Response time of 5-dimensional
queries using bitmap indices. Exact answers
including candidate check.

5 Applications

In addition to data analysis applications, we have ap-
plied bitmap indices for efficient query-based visualization
within the DEX framework [15, 16]. DEX uses the bitmap
indices for isosurface extraction as well as retrieval of high-
dimensional volumes of data that can be used for post-
processing in typical combustion simulation experiments.
Figure 12 shows an interactive visualization process based



(a) CH4 > 0.3

(b) temp < 3

(c) CH4 > 0.3 AND temp < 4

Figure 12. A visualization of flames in a high-
fidelity simulation of methane-air jet. The im-
ages show the cells in a 3D block-structured
dataset that were returned by three different
queries.

on a combustion simulation dataset similar to the one of
the previous section. The example demonstrates how data
is progressively interrogated to focus on cells that contain
properties of interest. Figure 12 (a) shows the resulting iso-
surface based on the query CH4 > 0.3. This query is re-
fined in several steps Figure 12 (b), (c). and the isosurface
is displayed in real-time.

6 Conclusions

In this paper we introduced HDF-FastQuery, a novel
approach to accelerate data access of large HDF5-files by
introducing semantic indexing. Our indexing technology
is based on bitmap indices that are optimized for multi-
dimensional queries on read-only data. We introduced the
architectural layout of HDF-FastQuery that has the follow-
ing advantages over traditional HDF5: (1) Simplified stor-
age and retrieval of data in HDF5. (2) Ability to construct
and store indices in HDF5. (3) Ability to query the data effi-
ciently. We performed a detailed performance evaluation of
our proposed solution on both synthetic and real data sets
from a large combustion simulation. The performance re-
sults show that HDF5-FastQuery is up to a factor of 2 faster
than HDF5 for multi-dimensional queries.

As our experiments have shown, there is quite some
overhead for the candidate check which is due to the se-
quential skip scan of the HDF5-file. Currently, random ac-
cess candidate checks are supported through the use of the
HDF5 H5Sselectelements() function call which allows a
list of defined elements to be included in the selection of a
given dataspace. While this approach, referred to as scatter-
gather, is certainly faster than defining and accessing hyper-
slabs for each random access, we are currently investigat-
ing optimization techniques to improve the performance of
scatter-gather and the random access to HDF5.

We will also extend HDF5-FastQuery to handle irregu-
lar data such as AMR [3] that are very typical for scientific
applications. These data sets are stored in multiple reso-
lution levels and need special indexing for efficient access.
We will also work on more sophisticated visualization tech-
niques to analyze complex scientific processes that are often
difficult to understand with traditional analysis tools.

7 Acknowledgment

This work is supported by the Director, Office of Sci-
ence, Office of Advanced Scientific Computing, of the
U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.



References

[1] F. Alted, M. Fernandez-Alonso, PyTables: Process-
ing and Analyzing Extremly Large Amounts of Data in
Python In PyCon 2003, Washington D.C., USA March
2003.

[2] J. B. Bell, M. S. Day, I. G. Shepherd, M. Johnson, R. K.
Cheng, J. F. Grcar, V. E. Beckner, M. J. Lijewski. Nu-
merical Simulation of a Laboratory-Scale Turbulent V-
flame. In Proc. Natl. Acad. Sci. USA, 102(29), 10006-
10011 2005.

[3] M. Berger, P. Colella, Local Adaptive Mesh Refine-
ment for Shock Hydrodynamics, In Journal of Compu-
tational Physics, May 1989

[4] C.-Y. Chan and Y. E. Ioannidis. Bitmap Index De-
sign and Evaluation. In SIGMOD, Seattle, Washington,
USA, June 1998. ACM Press.

[5] FITS - Flexible Image Transport System,
http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

[6] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D.
DeWitt and G. Heber, Scientific Data Management in
the Coming Decade, In SIGMOD Record, 34(4), De-
cember 2005.

[7] J. M. Hellerstein, E. Koutsoupias, C. H. Papadimitriou,
On the Analysis of Indexing Schemes. In Symposium
on Principles of Database Systems (PODS), Tucson,
Arizona, USA, May, 1997.

[8] B. Nam, A. Sussman, Improving Access to Multi-
dimensional Self-describing Scientific Dataset. In In-
ternational Symposium on Cluster Computing and the
Grid (CCGrid), May 2003, Tokyo, Japan. IEEE Com-
puter Society Press.

[9] NetCDF - Network Common Data Form,
http://www.unidata.ucar.edu/software/netcdf/

[10] H5IN: Indexing Interface,
http://hdf.ncsa.uiuc.edu/RFC/H5IN/RM H5IN.html,
November 2005.

[11] HDF - Hierarchical Data Format,
http://hdf.ncsa.uiuc.edu/

[12] FastBit: An Efficient Compressed Bitmap Index Tech-
nology, http:://sdm.lbl.gov/fastbit

[13] T. Johnson. Performance Measurements of Com-
pressed Bitmap Indices. In International Conference
on Very Large Data Bases (VLDB), Edinburgh, Scot-
land, September 1999. Morgan Kaufmann.

[14] P. O’Neil and D. Quass. Improved Query Perfor-
mance with Variant Indexes. In International Confer-
ence on Management of Data (SIGMOD), Tucson, Ari-
zona, USA, May 1997. ACM Press.

[15] K. Stockinger, John Shalf, Wes Bethel, and K. Wu.
DEX: Increasing the Capability of Scientific Data Anal-
ysis Pipelines by Using Efficient Bitmap Indices to Ac-
celerate Scientific Visualization. In International Con-
ference on Scientific and Statistical Database Manage-
ment (SSDBM), Santa Barbara, California, USA, June
2005. IEEE Computer Society Press.

[16] K. Stockinger, J. Shalf, W. Bethel, and K. Wu. Query-
Driven Visualization of Large Data Sets. In IEEE Vi-
sualization 2005, Minneapolis, MN, October 23-25,
2005, IEEE Computer Society Press.

[17] K. Stockinger, K. Wu, S. Campbell, S. Lau, M.
Fisk, E. Gavrilov, A. Kent, C.E. Davis, R. Olinger,
R. Young, J.E. Prewett, P. Weber, T.P. Caudell, E.W.
Bethel, S. Smith. ”Network Traffic Analysis With
Query Driven Visualization SC 2005 HPC Analytics
Results.” In Supercomputing 2005, HPC Analytics
Challenge, November 2005.

[18] K. Stockinger, K. Wu, and A. Shoshani. Evaluation
Strategies for Bitmap Indices with Binning. In Interna-
tional Conference on Database and Expert Systems Ap-
plications (DEXA), Zaragoza, Spain, September 2004.
Springer-Verlag.

[19] K. Wu, E. J. Otoo, and A. Shoshani. An Efficient
Compression Scheme for Bitmap Indices. To appear in
ACM Transcations on Database Systems, 2006. ACM
Press.

[20] K. Wu, E. J. Otoo, and A. Shoshani. On the Per-
formance of Bitmap Indices for High Cardinality At-
tributes. In International Conference on Very Large
Data Bases (VLDB), Toronto, Canada, August 31 -
September 3, 2004, Morgan Kaufmann.

[21] K. Wu, W. Koegler, J. Chen, and A. Shoshani. Us-
ing Bitmap Index for Interactive Exploration of Large
Datasets. In International Conference on Scientific
and Statistical Database Management (SSDBM), Cam-
bridge, MA, 2003. IEEE Computer Society Press.


